Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(11): e2306528, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37922525

RESUMO

Assembling metal-organic frameworks (MOFs) into high-performance macroscopic membranes is crucial but still challenging. MOF-containing hybrid membranes can effectively integrate the advantages of flexible guest materials and MOFs. Nevertheless, the inherent limitations in fully harnessing the distinct characteristics of MOFs persist due to the substantial guest material content necessitated in membrane fabrication. Herein, inspired by the rigid and flexible structures in biological systems, rigid MIP-202(Zr) and defective MIP-202(Zr) (D-MIP-202(Zr)) modified flexible graphene oxide (GO) sheets are synthesized in situ and then assembled into a rigid-flexible coupled MOF-based membrane. The defects in D-MIP-202(Zr) are introduced by using acetic acid as the modulation agent. The obtained GO@MIP-202(Zr) membrane possesses a hierarchical porous structure with a 99 wt% MOF proportion, which is higher than the GO@D-MIP-202(Zr) (75 wt%) membrane with a compact bulge-structured surface. The water permeability of the GO@MIP-202(Zr) membrane attains remarkedly 5762.92 L h-1 m-2 bar-1 , which is 960 and 2.6 times higher than that of the GO membrane and GO@D-MIP-202(Zr) membrane. Additionally, benefiting from the superhydrophilicity and underwater superoleophobicity, the resultant membrane not only demonstrates high rejection for oil-water emulsions but also exhibits exceptional recyclability and anti-fouling ability. These findings provide valuable insights into the assembly of MOFs into high-performance membranes.

2.
J Environ Sci (China) ; 146: 118-126, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969440

RESUMO

With the increasing demand of recycling disposal of industrial wastewater, oil-in-water (O/W) emulsion has been paid much attention in recent years owing to its high oil content. However, due to the presence of surfactant and salt, the emulsion was usually stable with complex physicochemical interfacial properties leading to increased processing difficulty. Herein, a novel flow-through electrode-based demulsification reactor (FEDR) was well designed for the treatment of saline O/W emulsion. In contrast to 53.7% for electrical demulsification only and 80.3% for filtration only, the COD removal efficiency increased to 92.8% under FEDR system. Moreover, the pore size of electrode and the applied voltage were two key factors that governed the FEDR demulsification performance. By observing the morphology of oil droplets deposited layer after different operation conditions and the behavior of oil droplets at the electrode surface under different voltage conditions, the mechanism was proposed that the oil droplets first accumulated on the surface of flow-through electrode by sieving effect, subsequently the gathered oil droplets could further coalesce with the promoting effect of the anode, leading to a high-performing demulsification. This study offers an attractive option of using flow-through electrode to accomplish the oil recovery with simultaneous water purification.


Assuntos
Eletrodos , Filtração , Eliminação de Resíduos Líquidos , Purificação da Água , Purificação da Água/métodos , Filtração/métodos , Eliminação de Resíduos Líquidos/métodos , Óleos/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Emulsões/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação
3.
Environ Res ; 219: 114959, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36535398

RESUMO

A ceramic-polymeric membrane was fabricated through in-situ oxidative polymerization of pyrrole (Py) on alumina (Al2O3) ceramic ultrafiltration support. The establishment of polypyrrole (PPy) active layer on the ceramic support led to a new PPy coated ceramic-polymeric membrane. Various salient features such as surface wettability, surface morphology, composition and functional goups of PPy coated ceramic-polymeric membrane were determined by various characterization techniques water contact angle (WCA), scanning electron microscopy (SEM), energy dispersive x-ray (EDX) analysis and attenuated total reflectance fourier transform infrared (ATR-FTIR). The PPy coated ceramic-polymeric membrane showed superhydrophilic nature owing to its under water oil contact angle of ≥160° (superoleophobic). Thanks to stable deposition of PPy active layer on ceramic support, the membrane retained a separation efficiency of >99% for O/W emulsions at varied transmembrane pressures ranging from 0.5 bar to 2 bar with a feed concentration of 125 ppm of oil in water. Moreover, the PPy coated ceramic-polymeric membrane exhibited an ideal behaviour to the applied transmembrane pressure with a linear increase from 380 LMH to 2112 LMH in permeate flux as the pressure increased from 0.5 bar to 2 bar. As the concentration of oil was raised from 50 ppm to 250 ppm, the separation efficeincy separation remained at >99%. From among the different types of oils (Motor oil, Diesel oil and Crude oil) to mimic the oily waste water streams, the permeate flux was found to be highest in case of motor oil with a value reaching to 1690 LMH at 1 bar. The stability test revealed that the PPy coated ceramic-polymeric membrane was able to separate >99% of 125 ppm O/W surfactant stabilized emulsion for a period of 420 min.


Assuntos
Petróleo , Purificação da Água , Águas Residuárias , Polímeros , Pirróis , Porosidade , Membranas Artificiais , Purificação da Água/métodos , Óleos , Cerâmica , Emulsões
4.
J Sep Sci ; 46(14): e2300112, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37132076

RESUMO

In this work, amphiphilic polymers synthesized from carboxylated carbon nanotubes stabilized high internal phase emulsions are demonstrated to be capable of direct extracting zearalenone and zearalanone in samples consisting of an oil-water emulsion system. Under optimal conditions, the maximum adsorption capacities for zearalenone and zearalanone are 17.27 and 13.26 mg/g. The adsorption is mainly attributed to π-π interaction, hydrophobic interaction, and hydrogen-bonding interaction for zearalenone and zearalanone. The adsorption isotherms reveal that the adsorption of zearalenone and zearalanone on amphiphilic polymers synthesized from carboxylated carbon nanotubes stabilized high internal phase emulsions follows Freundlich model with multilayer and heterogeneous adsorption due to the presence of multiple kinds of adsorption sites. The relative recoveries of the spiked zearalenone and zearalanone in corn juice samples range from 85% to 93% with relative standard deviations lower than 3.52%. The results manifest the high efficiency of amphiphilic polymers synthesized from carboxylated carbon nanotubes stabilized high internal phase emulsions for the adsorption and separation of analytes in the oil-water emulsion system. This study provides a new perspective on adsorbent engineering for the adsorption application in heterogeneous media.


Assuntos
Nanotubos de Carbono , Zearalenona , Zearalenona/análise , Nanotubos de Carbono/química , Zea mays , Emulsões , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Extração em Fase Sólida/métodos , Água
5.
Ecotoxicol Environ Saf ; 255: 114824, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36966613

RESUMO

The present study was set out to synthesize Mxene (Ti3C2Tx) and functionalized Mxene nanoparticles and fabricating Mxene coated stainless steel meshes using the dip-coating methodology to investigate the capability of Mxene nanoparticles in oil-water emulsion separation. O/W mixtures separation with extraordinary 100% of effectiveness and purity using designed grid was observed. Most specifically, Mxene fabricated mesh showed good resistance to corrosive solutions of HCl and NaOH and was used to separate O/W at harsh medium condition with a separation efficiency of more than after 96.0% replicated experiment, and its super-hydrophilicity persisted in spite of the air exposure condition, extreme fluids immersion, or abrasion. The XRD, FTIR, SEM, FESEM, AFM and DLS tests have been performed to characterize the Mxene coating and its effectiveness on the O/W separation. These analyzes confirm the fabricated tough super-hydrophilic stainless-steel mesh explored in this research can basically be utilized as a highly effective useful mesh for O/W fluid separation under different sever circumstances. The XRD pattern of the resulting powder shows a single phase formation of Mxene, the SEM and FESEM images confirms creation of coated mesh with approximately 30 µ pore size, AFM tests verify that structures (both in nm and µm sizes) formation with high RMS (Root Mean Square) roughness values of 0.18 µm and 0.22 µm for Mxene and carboxylic-Mxene coated mesh. The DLS tests prove the droplets size distribution of emulsion has been augmented after several O/W separation, which confirmed the coagulating mechanism of oil droplets once contacting with the Mxene and carboxylic Mxene coatings of the mesh.


Assuntos
Óleos , Água , Água/química , Propriedades de Superfície , Emulsões/química , Aço Inoxidável/química
6.
Molecules ; 28(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36615584

RESUMO

The separation of oil/water emulsions has attracted considerable attention for decades due to the negative environmental impacts brought by wastewater. Among the various membranes investigated for separation, polyvinylidene fluoride (PVDF) membranes have shown significant advantages of ease of fabrication, high selectivity, and fair pore distribution. However, PVDF membranes are hydrophobic and suffer from severe fouling resulting in substantial flux decline. Meanwhile, the incorporation of wettable substrates during fabrication has significantly impacted the membrane performance by lowering the fouling propensity. Herein, we report the fabrication of an iron-containing porphyrin (hemin)-modified multi-walled carbon nanotube incorporated PVDF membrane (HA-MWCNT) to enhance fouling resistance and the effective separation of oil-in-water emulsions. The fabricated membrane was thoroughly investigated using the FTIR, SEM, EDX, AFM, and contact angle (CA) analysis. The HA-MWCNT membrane exhibited a water CA of 62° ± 0.5 and excellent pure water permeance of 300.5 L/m2h at 3.0 bar (400% increment), in contrast to the pristine PVDF, which recorded a CA of 82° ± 0.8 and water permeance of 59.9 L/m2h. The hydrophilic HA-MWCNT membrane further showed an excellent oil rejection of >99% in the transmembrane pressure range of 0.5−2.5 bar and a superb flux recovery ratio (FRR) of 82%. Meanwhile, the classical molecular dynamics (MD) simulations revealed that the HA-MWCNT membrane had greater solvent-accessible pores, which enhanced water permeance while blocking the hydrocarbons. The incorporation of the hemin-modified MWCNT is thus an excellent strategy and could be adopted in the design of advanced membranes for oil/water separation.


Assuntos
Nanotubos de Carbono , Purificação da Água , Emulsões , Hemina , Membranas Artificiais , Purificação da Água/métodos
7.
Molecules ; 28(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687192

RESUMO

This study centers around examining the impact of introducing varying (small) quantities of crude oil into mineral oil (Exxsol D60) on the resultant properties of dispersions and emulsions in oil-salty-water mixture properties such as rheology, droplet size distribution, separation duration, and interfacial tension. The experimentation encompassed bottle tests and a compact flow loop configuration featuring a 2 m horizontal pipe segment. The findings indicate that blends of oil infused with crude oil, combined with salty water at water ratios of 25% and 50%, necessitate an extended duration for separation and for the establishment and stabilization of interfaces, in contrast to mixtures of unaltered oil and saline water. To illustrate, in samples with spiking concentrations ranging from 200 to 800 ppm within a 25% water fraction, the separation period escalates from 51 s to 2 min and 21 s. Interestingly, when the water fraction increased to 75 percent, the impact of crude oil spiking on separation time was minimal. The analysis revealed that the Pal and Rhodes emulsion viscosity model yielded the most accurate predictions for the viscosity of resulting emulsions. The introduction of crude oil spiking elevated emulsion viscosity while diminishing interfacial tension from 30.8 to 27.6 mN/m (800 ppm spiking). Lastly, a comparative assessment was performed between droplet size distributions in the devised dispersed pipe flow and observed in an actual emulsion system comprising crude and salty water.

8.
Environ Sci Technol ; 56(7): 4151-4161, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35266701

RESUMO

Oily wastewater treatment has been restricted by the existence of stable oil-in-water (O/W) emulsions containing micrometer-sized oil droplets. However, the strong adhesion and stacking of emulsified oil droplets on the surface of current separation media cause serious fouling of the treatment unit and the rapid decline of treatment efficiency. Herein, a novel flow-through titanium (Ti) electrode-based filtration device with remarkable oil droplet rejection property was well designed for the continuously separating O/W emulsion. In contrast to the pristine Ti foam, the permeance of the TiO2 nanoarray-coated Ti foam (NATF) increased from 2538 to 4364 L m-2 h-1 bar-1 through gravity-driven flow. Further, more than ∼70% permeability can be maintained after 6 h of O/W emulsion filtration using the current device, the value of which was markedly higher than that of conventional oil/water separation filters (less than 5%). According to the results of wettability test, the super-oil-repellent surface endowed by this nanoarray structure primarily avoided the formation of a compact oil fouling layer. When the voltage was applied, accompanied by the electrophoresis effect, redistribution of surfactant molecules on the surface of oil droplets induced by an electric field made them readily captured by the microbubbles continuously generated from the electrode, thereby rapidly migrating these bubble-adhered oil droplets far from the filtration medium.

9.
Environ Eng Sci ; 39(12): 907-917, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36636559

RESUMO

Efficient separation of oil droplets from oil/water emulsions is necessary for many energy and food industrial processes and for industrial wastewater treatment. Membrane microfiltration has been explored to address this issue because it is simple to operate and low in cost. However, filtration of oil droplets with a size around or less than 1 µm is still a major challenge. Furthermore, the fabrication process for polymeric membranes often uses hazardous organic solvents and petroleum-derived and nonbiodegradable raw materials, which pose additional environmental health and safety risk. In this study, we examined the use of chitosan-based membranes to efficiently remove oil droplets with an average diameter of ∼1 µm. The membranes were fabricated based on the rapid dissolution of chitosan in an alkaline/urea solvent system at a low temperature, thus avoiding the use of any toxic organic solvent. The chitosan membranes were further modified by dopamine and tannic acid (TA). The as-prepared membrane was characterized in terms of surface morphology, pore size distribution, and mechanical strength. The membrane performance was evaluated on a custom-designed crossflow filtration system. The results showed that the modified chitosan membrane with dopamine and TA had a water flux of 230.9 LMH at 1bar transmembrane pressure and oil droplet rejection of 99%. This water flux represented an increase of more than 10 times when compared with the original chitosan membrane without modification. The study also demonstrated excellent antifouling properties of the modified membrane that could achieve near 100% water flux recovery.

10.
Molecules ; 26(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071526

RESUMO

Developing a porous separation membrane that can efficiently separate oil-water emulsions still represents a challenge. In this study, nanofiber membranes with polydopamine clusters polymerized and embedded on the surface were successfully constructed using a solution blow-spinning process. The hierarchical surface structure enhanced the selective wettability, superhydrophilicity in air (≈0°), and underwater oleophobicity (≈160.2°) of the membrane. This membrane can effectively separate oil-water emulsions, achieving an excellent permeation flux (1552 Lm-2 h-1) and high separation efficiency (~99.86%) while operating only under the force of gravity. When the external driving pressure was increased to 20 kPa, the separation efficiency hardly changed (99.81%). However, the permeation flux significantly increased to 5894 Lm-2 h-1. These results show that the as-prepared polydopamine nanocluster-embedded nanofiber membrane has an excellent potential for oily wastewater treatment applications.

11.
Molecules ; 25(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331458

RESUMO

Self-stabilizing biodegradable microcarriers were produced via an oil/water solvent evaporation technique using amphiphilic chitosan-g-polyester copolymers as a core material in oil phase without the addition of any emulsifier in aqueous phase. The total yield of the copolymer-based microparticles reached up to 79 wt. %, which is comparable to a yield achievable using traditional emulsifiers. The kinetics of microparticle self-stabilization, monitored during their process, were correlated to the migration of hydrophilic copolymer's moieties to the oil/water interface. With a favorable surface/volume ratio and the presence of bioadhesive natural fragments anchored to their surface, the performance of these novel microcarriers has been highlighted by evaluating cell morphology and proliferation within a week of cell cultivation in vitro.


Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Microesferas , Poliésteres/química , Polímeros/química , Fibroblastos , Engenharia Tecidual
12.
J Food Sci Technol ; 53(8): 3215-3224, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27784916

RESUMO

Dextran (polyol) was oxidized with 0, 0.5, 1, and 2 % sodium hypochlorite at pH 9.5 and 35 °C to produce polyaldehyde dextran (PD), which was subsequently conjugated with soy peptides (SP) to improve surface activity. SP-PD complexes were formed by heating 1 % SP and 10 % PD at 60 °C and pH 6.5 for 48 h. PD was more reactive than unmodified dextran with SP to produce conjugates based on the Schiff base with absorption at 294 nm. The formation of SP-PD complexes was confirmed by SDS-PAGE with glycoprotein staining. Turbidity and particle size measurements indicated the SP-PD conjugates had significantly improved emulsifying properties compared to non-conjugated SP and the SP/PD mixtures. The results indicate that controlled oxidation of polysaccharides can be a novel technique to efficiently synthesize amphiphilic functional biopolymers.

13.
J Hazard Mater ; 476: 135131, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39018593

RESUMO

Extracting clean water from oily wastewater and seawater is one of the effective strategies to alleviate the freshwater crisis. However, achieving both high separation efficiency and excellent salt resistance remain challenges for materials. Herein, a novel methyltrichlorosilane-modified polyvinyl alcohol/cellulose aerogel (MPCA) was prepared by freeze drying, chemical cross-linking, and chemical vapor deposition (CVD) methods. The superwetting MPCA presented an asymmetric structure, in which the small dense pores at the top surface facilitated the efficient separation of water-in-oil (W/O) emulsions and the large pores on the bottom surface were beneficial for brine exchange. The as-prepared superwetting aerogel was suitable for the separation of various W/O emulsions with excellent separation flux (631.9-2368.7 L·m-2·h-1) and outstanding separation efficiency (99.5 %). In addition, MPCA achieved a high evaporation efficiency of 1.39 kg·m-2·h-1 and a satisfactory energy conversion efficiency of 89.7 %. Moreover, the unique asymmetric structure endowed the evaporator excellent salt resistance and could self-dissolve the accumulated salt in 20 min. The as-prepared MPCA could achieve efficient W/O emulsion separation as well as produce freshwater in seawater, providing a new strategy for oily waste seawater purification.

14.
Environ Sci Pollut Res Int ; 31(21): 30663-30675, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38613752

RESUMO

In this study, dip coating method was investigated to prepare superhydrophilic MIL-101 (Cr)-coated copper mesh for highly efficient oil/water emulsion separation. To increase the surface area of synthesized MIL-101 (Cr), a purification procedure was developed to remove unreacted H2BDC crystals present in the channel of the initial MIL-101 (Cr) sample synthesized. After that, a dispersing solution of MIL-101 (Cr) was needed to coat on the copper mesh. Thermoplastic polyurethane (TPU) was used as a binder in this procedure. The prepared membranes of M1 (once coated mesh) to M6 (six times coated mesh) were performed to separate oil/water emulsion effectively. Contact angle tests showed the superhydrophilic/underwater superoleophobic wettability behavior of MIL-101 (Cr)-coated copper meshes. The wetting mechanism of the prepared membranes is mostly relevant to the surface functional groups of purified MIL-101 (Cr). Also, the roughness of the nanostructured coated membranes was improved because of the uniform coating of MIL-101 (Cr) which is integrated into hydrophilic TPU. Oil/water separation results showed that M2 (twice coated mesh) showed the maximum amount of water flux (83076 L m-2 h-1) in oil/water separation and M3 (three times coated mesh) had the best performance of oil/water emulsion with 99.99% separation efficiency.


Assuntos
Cobre , Emulsões , Interações Hidrofóbicas e Hidrofílicas , Estruturas Metalorgânicas , Água , Cobre/química , Estruturas Metalorgânicas/química , Água/química , Óleos/química , Molhabilidade
15.
J Hazard Mater ; 478: 135569, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39178775

RESUMO

Hydrogel materials with hydrophilic cross-linked network exhibit remarkable super-wettability, enabling their widespread application in oily wastewater treatment. However, the single and loose structure lacks sufficient strength and porosity to resist long-term degradation. Herein, a structural synergistic molecular strategy was reported to introduce reinforcing phase structures and interfacial active sites into the polymer networks for long-term oil-water emulsion separation. The carbon skeleton was uniformly interspersed through the strongly hydrogen-bonded polymer chains via covalent bonds, resulting in a hydrogel network with high mechanical strength and exceptional flow conductivity, which maintained a separation flux of 1233 L m-2 h-1 after 20 separation cycles under gravitational force. Dense negative charges on the surface disrupted the internal charge stability of the oil-water emulsion, leading to remarkable demulsification with a separation efficiency exceeding 99 %. Simultaneously, the strong redox reaction of the photoheterojunction effectively removed organic dyes under visible light, enhancing the overall antifouling performance. This study provided a feasible strategy at the molecular level for optimizing the suitability of hydrogels for oil-water emulsion separation.

16.
Sci Rep ; 14(1): 14706, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926511

RESUMO

In this research, chemical vapor deposition (CVD) method was used to synthesize boron nitride nanotube (BNNT) powder. This method involves heating multi-walled carbon nanotube (MWCNT) and boric acid in the presence of ammonia gas up to 1000 °C. Then MWCNT and synthetic BNNT were coated on the copper mesh via dip-coating method separately to prepare nano-structured membranes for efficient oil/water separation. Various analyzes were performed to identify the synthetic BNNT properties (X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) and prepared coated membranes (FESEM, atomic force microscopy (AFM), water contact angle (WCA), oil contact angle (OCA) and oil/water separation process). Water and oil contact angle analyzes showed the super-oleophilic properties of both membranes with the underwater OCA of about 128°. For the separation process, a dead-end filtration setup was used, and free oil water mixture and o/w emulsion were prepared. So, in the separation process water was retained and decalin passed through both prepared membranes. The flux of CNT coated membrane was about 458 L m2 h-1, while this amount was 1834 L m2 h-1 for BNNT coated membrane and 99% separation efficiency was achieved by both of them. This four-fold increase in flux is due to the fact that the inner diameter of boron nitride nanotubes synthesized is four times larger than the inner diameter of MWCNT.

17.
Life (Basel) ; 13(10)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37895340

RESUMO

The current study investigates the formation of microencapsulated geraniol powder, with the exopolysaccharide EPS-K1B3 produced by Halomonas caseinilytica K1, as wall material, using spray-drying. Evaluation of the antimicrobial activity of the functional emulsions, prepared at either pH 5 or pH 7, was carried out against Gram-positive (Listeria innocua (ATCC 33090)) and Gram-negative (Escherichia coli (DSM682)) bacterial strains. Results showed prolonged antimicrobial efficacy until 30 days of incubation for geraniol microcapsules compared to wet geraniol emulsions, which could confirm the ability of the spray-drying process to protect encapsulated geraniol for a longer period. The highest antimicrobial efficacy of geraniol microcapsules was observed against L. innocua at pH 5. Therefore, the influence of pH on the functional property of geraniol microcapsules could be highlighted beside the targeted bacterial strain.

18.
Food Chem ; 413: 135613, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758390

RESUMO

The conformation and characteristics of soybean hull polysaccharide (SHP)/soy bean protein isolate (SPI) complex at oil-water interface in simulated gastric environment in vitro were discussed. Isothermal titration calorimetry (ITC) thermodynamic results illustrated that SPI formed a complex with SHP. ζ-potential and microstructure showed a flocculation phenomenon after SPI/SHP emulsion droplet treatment (especially at 60 min), which indicated that the inter droplet steric hindrance and repulsion were reduced after the emulsion was treated. Additionally, at 60 min, in FT-IR spectrum fitting results, the contents of ß-sheet and ß-turn structure were the lowest, which might be that the polar group residues exposed in the SPI/SHP complex at the interface interacted with Na+ by ion-dipole interaction or protonated with H+. The blue shift of maximum absorption intensity also indicated that the tryptophan residues moved to the hydrophobic environment, which made the treated droplets flocculate without obvious aggregation.


Assuntos
Polissacarídeos , Proteínas de Soja , Proteínas de Soja/química , Emulsões/química , Espectroscopia de Infravermelho com Transformada de Fourier , Polissacarídeos/química , Glycine max/química , Água/química
19.
Int J Biol Macromol ; 253(Pt 5): 127205, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37804898

RESUMO

Membrane separation is considered an effective approach to water purification. Nevertheless, membrane fouling dramatically decreases the separation efficiency and lifetime of membranes, thus limiting its further development and application. Herein, a multifunctional self-cleaning MIL-88A(Fe) decorated polyvinyl alcohol/sodium alginate (MIL-88A(Fe)@PVA-SA) nanofiber membrane was prepared by electrospinning and in-situ growth methods for the separation of oil/water emulsions and photo-Fenton degradation of dyes. The membrane possesses superhydrophilicity with a water contact angle (WCA) of 0° and superoleophobicity with underwater oil contact angle (UCA) of 161.7°, and exhibits superior separation efficiency (>99.5 %) and permeation flux (1140-2455 L/m2/h) for different oil/water emulsions. Moreover, the membrane exhibited an outstanding photo-Fenton performance under visible light, with degradation efficiencies (~99.9 %) towards methylene blue (MB) and reactive red 24 (RR24) within 90 min. Importantly, the membrane can be easily regenerated by simple rinsing and photo-Fenton self-cleaning treatment. In this study, MIL-88A(Fe)@PVA-SA nanofiber membrane has a promising application in dye removal and oil/water separation, providing a new idea to develop novel membrane materials.


Assuntos
Nanofibras , Emulsões , Álcool de Polivinil , Alginatos , Corantes
20.
Environ Technol ; 44(3): 381-393, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34420490

RESUMO

In this study, the stable emulsion of engine oil in water of concentration 10% was prepared using a non-ionic surfactant. Kapok fibres were used as filter beds to separate oil from the oil-water emulsion. The surface morphology of fibres was investigated using Scanning Electron Microscope (SEM) analysis and chemical bond analysis of fibres done using Fourier transform infrared (FTIR). Kapok filter beds were prepared with three different bed heights 10, 20 and 30 mm each with four different porosities 0.90, 0.92, 0.95 and 0.98 for preparing the coalescence filter. The oil-water emulsion (influent) was pumped into the filtration column and the coalesced oil droplets, water, as well as un-coalesced oil droplets, especially the finer oil droplets, were collected as effluent. Oil separation efficiency was evaluated in terms of change in droplet size (D50) and oil concentration from influent to effluent. With increasing porosity and bed height, apart from porosity of 0.92, the separation efficiency increases. Increasing the bed heights at lower porosities does not improve the efficiency of the process. A combination of 0.98 porosity and a bed height of 30 mm provided the highest filtration performance in terms of oil separation efficiency and D50 droplet ratio. At 0.98 porosity, increasing the bed height from 10 mm to 30 mm resulted in a D50 droplet ratio of 0.25-0.14, representing a significant decrease in droplet size in the effluent and therefore an increase in oil separation efficiency from 91.3% to 99.63%.


Assuntos
Filtração , Água , Emulsões/química , Água/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa