Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 236(3): 833-838, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35851478

RESUMO

The number of described contact sites between different subcellular compartments and structures in eukaryotic cells has increased dramatically in recent years and, as such, has substantially reinforced the well-known premise that these kinds of connections are essential for overall cellular organization and the proper functioning of cellular metabolic and signaling pathways. Here, we discuss contact sites involving plant lipid droplets (LDs), including LD-endoplasmic reticulum (ER) connections that mediate the biogenesis of new LDs at the ER, LD-peroxisome connections, that facilitate the degradation of LD-stored triacylglycerols (TAGs), and the more recently discovered LD-plasma membrane connections, which involve at least three novel proteins, but have a yet unknown physiological function(s).


Assuntos
Amigos , Gotículas Lipídicas , Retículo Endoplasmático/metabolismo , Humanos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Plantas , Triglicerídeos/metabolismo
2.
Crit Rev Food Sci Nutr ; : 1-24, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35917117

RESUMO

Plants store triacylglycerols in the form of oil bodies (OBs) as an energy source for germination and subsequent seedling growth. The interfacial biomaterials from these OBs are called OB membrane materials (OBMMs) and have several applications in foods, e.g., as emulsifiers. OBMMs are preferred, compared with their synthetic counterparts, in food applications as emulsifiers because they are natural, i.e., suitable for clean label, and may stabilize bioactive components during storage. This review focuses mainly on the extraction technologies for plant OBMMs, the functionality of these materials, and the interaction of OB membranes with other food components. Different sources of OBs are evaluated and the challenges during the extraction and use of these OBMMs for food applications are addressed.

3.
J Exp Bot ; 71(10): 2854-2861, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32080724

RESUMO

Autophagy is a universal mechanism that facilitates the degradation of unwanted cytoplasmic components in eukaryotic cells. In this review, we highlight recent developments in the investigation of the role of autophagy in lipid homeostasis in plants by comparison with algae, yeast, and animals. We consider the storage compartments that form the sources of lipids in plants, and the roles that autophagy plays in the synthesis of triacylglycerols and in the formation and maintenance of lipid droplets. We also consider the relationship between lipids and the biogenesis of autophagosomes, and the role of autophagy in the degradation of lipids in plants.


Assuntos
Autofagia , Gotículas Lipídicas , Animais , Autofagossomos , Lipídeos , Plantas
4.
Curr Res Food Sci ; 8: 100682, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304001

RESUMO

This study aimed to increase the physical stability of native sunflower oleosomes to expand their range of applications in food. The first objective was to increase the stability and functionality of oleosomes to lower pH since most food products require a pH of 5.5 or lower for microbial stability. Native sunflower oleosomes had a pI of 6.2. One particularly effective strategy for long-term stabilization, both physical and microbial, was the addition of 40% (w/w) glycerol to the oleosomes plus homogenization, which decreased the pI to 5.3 as well as decreasing oleosome size, narrowing the size distribution and increasing colloidal stability. Interfacial engineering of oleosomes by coating them with lecithin and the polysaccharides xanthan and gellan, effectively increased stability, and lowered their pI to 3.0 for lecithin and lower than 3.0 for xanthan. Coating oleosomes also caused a greater absolute value of the ζ-potential; for example, this amount was shifted to -20 mV at pH 4.0 for xanthan and to -28 mV at pH 4.0 for lecithin, which provides electrostatic stabilization. Polysaccharides also provide steric stabilization, which is superior. A significant increase in the diameter of coated oleosomes was observed with lecithin, xanthan and gellan. The oleosome sample with 40% glycerol showed high storage stability at 4 °C (over three months). The addition of glycerol also decreased the water activity of the oleosome suspension to 0.85, which could prevent microbial growth.

5.
J Colloid Interface Sci ; 657: 352-362, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38043237

RESUMO

Oleosins are proteins with a unique central hydrophobic hairpin designed to stabilize lipid droplets (oleosomes) in plant seeds. For efficient droplet stabilization, the hydrophobic hairpin with a strong affinity for the apolar droplet core is flanked by hydrophilic arms on each side. This gives oleosins a unique surfactant-like shape making them a very interesting protein. In this study, we tested if isolated oleosins retain their ability to stabilize oil-in-water emulsions, and investigated the underlying stabilization mechanism. Due to their surfactant-like shape, oleosins when dispersed in aqueous buffers associated to micelle-like nanoparticles with a size of ∼33 nm. These micelles, in turn, clustered into larger aggregates of up to 20 µm. Micelle aggregation was more extensive when oleosins lacked charge. During emulsification, oleosin micelles and micelle aggregates dissociated and mostly individual oleosins adsorbed on the oil droplet interface. Oleosins prevented the coalescence of the oil droplets and if sufficiently charged, droplet flocculation as well.


Assuntos
Micelas , Proteínas de Plantas , Proteínas de Plantas/química , Tensoativos/metabolismo , Sementes/química
6.
Int J Biol Macromol ; 264(Pt 1): 130369, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428775

RESUMO

This research aimed to extract oleosome from the Bene kernel as a carrier of beta-carotene (3, 5, and 10 % w/w) and then use oleosomes in the Quince seed gum (QSG) electrosprayed nanoparticles for the sustained release of beta-carotene in food simulant. Oleosomes loaded with 5 % w/w beta-carotene had the highest encapsulation efficiency (94.53 % ± 1.23 %) and were used at 1, 3, and 5 % w/w in the QSG electrosprayed nanoparticles. Electrospray feed solutions containing 5 % oleosomes loaded with beta-carotene had the highest zeta potential (-34.45 ± 0.58 mV) and the lowest surface tension (23.47 ± 1.10 mN/m). FESEM images showed that with the increase of oleosomes up to 3 % w/w, the average size of the electrosprayed particles decreases. The Fourier transform infrared (FTIR) test proved the presence of protein in the oleosomes and their successful extraction from Bene seeds. Differential scanning calorimetry (DSC) and FTIR proved the successful entrapment of beta-carotene in the oleosomes structure and the successful placement of oleosomes containing beta-carotene in the electrosprayed nanoparticles. The predominant driving force involving the release of beta-carotene from the designed structures in food simulants was the Fickian release mechanism. The Peleg model was introduced as the best model describing the beta-carotene release.


Assuntos
Rosaceae , beta Caroteno , beta Caroteno/química , Gotículas Lipídicas , Sementes/química , Coloides
7.
Curr Res Food Sci ; 6: 100465, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891546

RESUMO

This study aimed to increase the physical stability of native sunflower oleosomes to expand their range of applications in food. The first objective was to increase the stability and functionality of oleosomes to lower pH since most food products require a pH of 5.5 or lower for microbial stability. Native sunflower oleosomes had a pI of 6.2. One particularly effective strategy for long-term stabilization, both physical and microbial, was the addition of 40% (w/w) glycerol to the oleosomes plus homogenization, which decreased the pI to 5.3 as well as decreasing oleosome size, narrowing the size distribution and increasing colloidal stability. Interfacial engineering of oleosomes by coating them with lecithin and the polysaccharides xanthan and gellan, effectively increased stability, and lowered their pI to 3.0 for lecithin and lower than 3.0 for xanthan. Coating oleosomes also caused a greater absolute value of the ζ-potential; for example, this amount was shifted to -20 mV at pH 4.0 for xanthan and to -28 mV at pH 4.0 for lecithin, which provides electrostatic stabilization. Polysaccharides also provide steric stabilization, which is superior. A significant increase in the diameter of coated oleosomes was observed with lecithin, xanthan and gellan. The oleosome sample with 40% glycerol showed high storage stability at 4 °C (over three months). The addition of glycerol also decreased the water activity of the oleosome suspension to 0.85, which could prevent microbial growth.

8.
Gels ; 9(10)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37888348

RESUMO

In this study, the protein and oleosomes of sesame seeds were extracted individually and used to prepare a gel composed of gelatin, protein, and oleosomes. Mixtures of gelatin and sesame seeds protein were prepared, and oleosomes with different percentages (0, 10, 20 and 30% of their weight) were used. Different amounts of oleosomes in the composite gel samples were examined for their morphological, rheological, and textural properties. The results of the viscoelastic properties of different composite gel samples indicated that a higher percentage of oleosomes would increase the storage modulus (G'), loss modulus (G″), and complex viscosity (η*). The storage modulus of all gel samples was greater than the loss modulus, suggesting a solid behavior. So, in the sample with 30% oleosome, the storage modulus and the loss modulus reached 143,440 Pascals and 44,530 Pascals. The hardness and breaking force in samples containing 30% oleosome reached 1.29 ± 0.02 and 0.17 ± 0.02, respectively. In general, it can be said that composite gels based on gelatin-sesame seed protein modified with oleosome can be used as a part of food components in various dairy products, gelatin desserts, lean meat products and the production of useful products.

9.
Arch Dermatol Res ; 316(1): 26, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38060028

RESUMO

Safflower (Carthamus tinctorius) oleosomes are unique organelles that house triglycerides and fatty acids and demonstrate a natural resilience to environmental stresses. There is recent growing interest in safflower oleosomes due to their potential applications in dermatology, especially as a carrier technology to improve drug penetration through the skin. This paper explores various aspects of safflower oleosomes, including their production, safety, absorption, and applications in photoprotection and epidermal remodeling. Oleosomes have shown encouraging results in targeted drug delivery in in vitro and in vivo animal models; however, human clinical research is required to determine their efficacy and safety in dermatology. Oleosomes are comprise a novel biotechnology that has the potential to transform sustainable and natural treatments in dermatology by utilizing their unique structure. Safflower oleosomes are stable lipid molecules that can deliver small and large molecules with high efficacy. This review will examine the current research findings and prospective future applications of oleosomes.


Assuntos
Carthamus tinctorius , Animais , Humanos , Carthamus tinctorius/química , Gotículas Lipídicas/química , Pele , Epiderme
10.
Food Res Int ; 173(Pt 1): 113197, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803532

RESUMO

Natural oil-in-water emulsions containing plant oil bodies (OBs), also called oleosomes, rich in health-promoting omega-3 polyunsaturated fatty acids (ω3 PUFA) are of increasing interest for food applications. In this study, we focused on walnut kernel OBs (WK-OBs) and explored their microstructure, composition and physical stability in ionic environments as well as the impact of homogenization. A green process involving aqueous extraction by grinding of WK allowed the co-extraction of OBs and proteins, and centrifugation was used to recover the WK-OBs. Confocal laser scanning microscopy images showed the spherical shape of WK-OBs with an oil core envelopped by a layer of phospholipids (0.16 % of lipids) and embedded proteins. Their mean diameter was 5.1 ± 0.3 µm. The WK-OBs contained 70.1 % PUFA with 57.8 % ω6 linoleic acid and 12.3 % ω3 α-linolenic acid representing 68 % and 11.6 % of the total fatty acids in the sn-2 position of the triacylglycerols (TAG), respectively. Trilinolein was the main TAG (23.1 %). The WK-OBs also contained sterols (1223 ± 33 mg/kg lipids; 86 % ß-sitosterol), carotenoids (0.62 ± 0.01 mg/kg lipids; 49.2 % ß-carotene), and tocopherols (322.7 ± 7.7 mg/kg lipids; 89 % γ-tocopherol), confirming their interest as health-promoting ingredients. The decrease in the size of WK-OBs under high-pressure homogenization avoided phase separation upon storage. The anionic WK-OB surface at neutral pH was affected by stressful ionic environments (pH, NaCl, CaCl2), that induced aggregation of WK-OBs and decreased the physical stability of the emulsions. Emulsions containing WK-OBs are promising to diversify the market of the ω3-rich plant-based food products and beverages.


Assuntos
Ácidos Graxos Ômega-3 , Juglans , Juglans/química , Gotículas Lipídicas/química , Emulsões/química , Cloreto de Sódio/análise , Óleos de Plantas/química , Ácidos Graxos Ômega-3/química , Íons , Água/análise , Concentração de Íons de Hidrogênio
11.
Food Chem ; 369: 130921, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34461512

RESUMO

Sea buckthorn berries contain lipids rich in palmitoleic acid, carotenoids, tocols and sterols, but their composition varies greatly depending on the cultivar and region of cultivation. Therefore, the current study presents the chemical composition of fruit flesh oils of cultivars grown in Poland and compares them with plants grown worldwide. Among tested cultivars, the highest shares of palmitoleic acid were determined in Golden Rain and Luczystaja cvs. Ten grams of sea buckthorn flesh oil provides at least 28% of vitamin A, 50% of vitamin E and 5% of sterols of the recommended dietary allowance (RDA) values for adults. The final part of this study is dedicated to a preliminary study of the optimization of the oleosome yield by the centrifugation method. The maximum oleosome yield can be obtained at a relatively low centrifugal force (below 8000×g), while optimal temperature and time should be laboratory determined for each cultivar.


Assuntos
Hippophae , Carotenoides/análise , Frutas/química , Gotículas Lipídicas/química , Polônia
12.
Front Chem ; 8: 564021, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102443

RESUMO

Consumers are demanding more natural, healthy, and high-quality products. The addition of health-promoting substances, such as bioactive compounds, to foods can boost their therapeutic effect. However, the incorporation of bioactive substances into food products involves several technological challenges. They may have low solubility in water or poor stability in the food environment and/or during digestion, resulting in a loss of their therapeutic properties. Over recent years, the encapsulation of bioactive compounds into laboratory-engineered colloidal structures has been successful in overcoming some of these hurdles. However, several nature-assembled colloidal structures could be employed for this purpose and may offer many advantages over laboratory-engineered colloidal structures. For example, the casein micelles and milk fat globules from milk and the oil bodies from seeds were designed by nature to deliver biological material or for storage purposes. These biological functional properties make them good candidates for the encapsulation of bioactive compounds to aid in their addition into foods. This review discusses the structure and biological function of different nature-assembled carriers, preparation/isolation methods, some of the advantages and challenges in their use as bioactive compound delivery systems, and their behavior during digestion.

13.
J Oleo Sci ; 68(1): 87-94, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30542010

RESUMO

Studies on avocado oil have focused on the most common commercial cultivars, Hass, Fuerte, and Bacon, rather than the less common varieties, P. americana var. drymifolia and P. americana var. americana, even though the drymifolia variety has a higher oil content and the americana variety is the most common avocado grown in the tropics. The most abundant storage structures for plant oils are the oleosomes, and the aim of this study was to determine the oleosome size, oil yield, and fatty acid composition of the americana and drymifolia varieties, using the Hass cultivar as a reference. Differences were found between the three avocado types for 1) oil yield, with drymifolia having higher and americana lower oil content (p < 0.05%), 2) oleosome size, with Hass having a larger (41.53 µm) and americana a smaller (11.96 µm) size, and 3) fatty acid composition, with the americana and drymifolia varieties showing less monounsaturated fatty acids (oleic) and more polyunsaturated fatty acids (linoleic) and saturated fatty acids (palmitic); while Hass had a high level (60%) of monounsaturated fatty acids. Small but significant differences were also found between oleosome and mesocarp oils isolated from the drymifolia and Hass types.


Assuntos
Ácidos Graxos Insaturados/análise , Gotículas Lipídicas/química , Persea/química , Óleos de Plantas/análise , Ácidos Graxos Insaturados/isolamento & purificação , Persea/classificação , Óleos de Plantas/isolamento & purificação , Triglicerídeos/análise , Triglicerídeos/isolamento & purificação
14.
ACS Appl Mater Interfaces ; 10(11): 9301-9309, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29488744

RESUMO

In the present study, we fabricated magnetic oleosomes functionalized with recombinant proteins as a new carrier for oil-based lipophilic drugs for cancer treatment. The bioengineered oleosome is composed of neutral lipids surrounded by a phospholipid monolayer with embedded oleosin fusion proteins. The oleosin was genetically fused to a nanobody of a green fluorescent protein (GFP). A recombinant protein consisting of immunoglobulin-binding protein LG fused to GFP was used to couple the oleosome to an antibody for targeted delivery to breast cancer cells. The lipid core of the oleosome was loaded with magnetic nanoparticles and carmustine as the lipophilic drug. The magnetic oleosome was characterized using transmission electron microscopy and dynamic light scattering. Moreover, the specific delivery of oleosome into the target cancer cell was investigated via confocal microscopy. To examine the cell viability of the delivered oleosome, a conventional 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was carried out. Furthermore, an animal study was conducted to confirm the effect resulting from the delivery of the anticancer drug-loaded oleosomes. Taken together, the fabricated lipophilic drug-loaded magnetic oleosome can be a powerful tool for oil-based drug delivery agent for cancer therapy.


Assuntos
Gotículas Lipídicas , Animais , Antineoplásicos , Linhagem Celular Tumoral , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Nanopartículas
15.
Food Res Int ; 100(Pt 1): 551-557, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28873720

RESUMO

The understanding of the behavior of natural oleosomes is very important for leading to advancements in liposome manufacturing. Thus, the aims of this work was to evaluate the stable behaviors of oleosomes with regards to a wide pH range (2.0-11.0) using soybean oleosomes. The conformation changes and surface hydrophobicity of soybean oleosome-associated protein, and as well as ζ-potential and particle size distribution of oleosome were investigated. The particle size and ζ-potential of oleosomes, and surface hydrophobicity of oleosome-associated proteins were found to be readily affected by pHs. The secondary structure of oleosome-associated proteins was more susceptible to alkaline treatment than acidic treatment. The most stable oleosomes suspension was occurred at pH9.0. The electrostatic repulsion and hydrophobic interaction simultaneously affected the stability of oleosome. At pH2.0 to 6.0, acidic treatment did not significantly change the secondary structure of oleosome-associated proteins. With an increased treatment pH of 8.0-11.0, the contents of α-helix and random coil structures of oleosome-associated proteins decreased, while the amount of ß-sheet structures increased. Results highlighted the interesting fact that the aggregation of oleosomes occurring at different pHs was attributed to the synergistic effects between conformation changes and interaction properties of oleosome-associated proteins.


Assuntos
Gotículas Lipídicas/química , Proteínas de Soja/análise , Proteínas de Soja/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Gotículas Lipídicas/metabolismo , Modelos Moleculares , Tamanho da Partícula , Conformação Proteica , Estabilidade Proteica , Proteínas de Soja/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa