Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 37(9): 653-661, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38949402

RESUMO

Effector secretion by different routes mediates the molecular interplay between host plant and pathogen, but mechanistic details in eukaryotes are sparse. This may limit the discovery of new effectors that could be utilized for improving host plant disease resistance. In fungi and oomycetes, apoplastic effectors are secreted via the conventional endoplasmic reticulum (ER)-Golgi pathway, while cytoplasmic effectors are packaged into vesicles that bypass Golgi in an unconventional protein secretion (UPS) pathway. In Magnaporthe oryzae, the Golgi bypass UPS pathway incorporates components of the exocyst complex and a t-SNARE, presumably to fuse Golgi bypass vesicles to the fungal plasma membrane. Upstream, cytoplasmic effector mRNA translation in M. oryzae requires the efficient decoding of AA-ending codons. This involves the modification of wobble uridines in the anticodon loop of cognate tRNAs and fine-tunes cytoplasmic effector translation and secretion rates to maintain biotrophic interfacial complex integrity and permit host infection. Thus, plant-fungal interface integrity is intimately tied to effector codon usage, which is a surprising constraint on pathogenicity. Here, we discuss these findings within the context of fungal and oomycete effector discovery, delivery, and function in host cells. We show how cracking the codon code for unconventional cytoplasmic effector secretion in M. oryzae has revealed AA-ending codon usage bias in cytoplasmic effector mRNAs across kingdoms, including within the RxLR-dEER motif-encoding sequence of a bona fide Phytophthora infestans cytoplasmic effector, suggesting its subjection to translational speed control. By focusing on recent developments in understanding unconventional effector secretion, we draw attention to this important but understudied area of host-pathogen interactions. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Oomicetos , Doenças das Plantas , Doenças das Plantas/microbiologia , Oomicetos/patogenicidade , Oomicetos/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Resistência à Doença/genética , Fungos/fisiologia , Fungos/patogenicidade , Interações Hospedeiro-Patógeno , Plantas/microbiologia
2.
J Exp Bot ; 74(10): 3188-3202, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36860200

RESUMO

The endoplasmic reticulum (ER) is the entry point to the secretory pathway and, as such, is critical for adaptive responses to biotic stress, when the demand for de novo synthesis of immunity-related proteins and signalling components increases significantly. Successful phytopathogens have evolved an arsenal of small effector proteins which collectively reconfigure multiple host components and signalling pathways to promote virulence; a small, but important, subset of which are targeted to the endomembrane system including the ER. We identified and validated a conserved C-terminal tail-anchor motif in a set of pathogen effectors known to localize to the ER from the oomycetes Hyaloperonospora arabidopsidis and Plasmopara halstedii (downy mildew of Arabidopsis and sunflower, respectively) and used this protein topology to develop a bioinformatic pipeline to identify putative ER-localized effectors within the effectorome of the related oomycete, Phytophthora infestans, the causal agent of potato late blight. Many of the identified P. infestans tail-anchor effectors converged on ER-localized NAC transcription factors, indicating that this family is a critical host target for multiple pathogens.


Assuntos
Oomicetos , Phytophthora infestans , Plantas/metabolismo , Fatores de Transcrição/metabolismo , Virulência , Retículo Endoplasmático/metabolismo , Doenças das Plantas
3.
New Phytol ; 233(3): 1074-1082, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34705271

RESUMO

Oomycete phytopathogens have adapted to colonise plants using effectors as their molecular weapons. Intracellular effectors, mostly proteins but also small ribonucleic acids, are delivered by the pathogens into the host cell cytoplasm where they interfere with normal plant physiology. The diverse host processes emerging as 'victims' of these 'specialised bullets' include gene transcription and RNA-mediated silencing, cell death, protein stability, protein secretion and autophagy. Some effector targets are directly involved in defence execution, while others participate in fundamental metabolisms whose alteration collaterally affects defences. Other effector targets are susceptibility factors (SFs), that is host components that make plants vulnerable to pathogens. SFs are mostly negative regulators of immunity, but some seem necessary to sustain or promote pathogen colonisation.


Assuntos
Interações Hospedeiro-Patógeno , Oomicetos , Interações Hospedeiro-Patógeno/fisiologia , Oomicetos/metabolismo , Doenças das Plantas , Imunidade Vegetal , Plantas/metabolismo , Transporte Proteico , Proteínas/metabolismo
4.
Mol Plant Microbe Interact ; 34(3): 309-318, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33258418

RESUMO

Phytophthora spp. secrete vast arrays of effector molecules during infection to aid in host colonization. The crinkling and necrosis (CRN) protein family forms an extensive repertoire of candidate effectors that accumulate in the host nucleus to perturb processes required for immunity. Here, we show that CRN12_997 from Phytophthora capsici binds a TCP transcription factor, SlTCP14-2, to inhibit its immunity-associated activity against Phytophthora spp. Coimmunoprecipitation and bimolecular fluorescence complementation studies confirm a specific CRN12_997-SlTCP14-2 interaction in vivo. Coexpression of CRN12_997 specifically counteracts the TCP14-enhanced immunity phenotype, suggesting that CRN mediated perturbation of SlTCP14-2 function. We show that SlTCP14-2 associates with nuclear chromatin and that CRN12_997 diminishes SlTCP14-2 DNA binding. Collectively, our data support a model in which SlTCP14-2 associates with chromatin to enhance immunity. The interaction between CRN12_997 and SlTCP14-2 reduces DNA binding of the immune regulator. We propose that the modulation of SlTCP14-2 chromatin affinity, caused by CRN12-997, enhances susceptibility to P. capsici.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Phytophthora , Receptores de Superfície Celular , Solanum lycopersicum , Solanum lycopersicum/parasitologia , Phytophthora/genética , Phytophthora/patogenicidade , Doenças das Plantas/parasitologia , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Virulência/genética
5.
Mol Plant Microbe Interact ; 34(2): 157-167, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33103962

RESUMO

Diseases caused by the notorious Phytophthora spp. result in enormous economic losses to crops and forests. Increasing evidence suggests that small open reading frame-encoded polypeptides (SEPs) participate in environmental responses of animals, plants, and fungi. However, it remains largely unknown whether Phytophthora pathogens produce SEPs. Here, we systematically predicted and identified 96 SEP candidates in P. capsici. Among them, three may induce stable cell death in Nicotiana benthamiana. Phytophthora-specific and conserved SEP1 facilitated P. capsici infection. PcSEP1-induced cell death is BAK1 and SOBIR1 independent and is correlated with its virulence function. Finally, PcSEP1 may be targeted to the apoplast for carrying out its functions, for which the C terminus is indispensable. Together, our results demonstrated that SEP1 is a new virulence factor, and previously unknown SEPs may act as effector proteins in Phytophthora pathogens.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Genes de Protozoários , Phytophthora , Fatores de Virulência , Genes de Protozoários/genética , Phytophthora/genética , Phytophthora/patogenicidade , Doenças das Plantas/parasitologia , Nicotiana/parasitologia , Fatores de Virulência/genética
6.
Mol Plant Microbe Interact ; 32(10): 1267-1269, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31425006

RESUMO

Phytophthora capsici is an oomycete plant pathogen with a wide host range. Worldwide, P. capsici is known for causing the principal disease of chili pepper crops. Our goal was to expand the available genome resources for this diverse pathogen by generating whole-genome sequences for six isolates of P. capsici from Mexico.


Assuntos
Genoma de Protozoário , Phytophthora , Capsicum/parasitologia , Genoma de Protozoário/genética , México , Phytophthora/genética , Doenças das Plantas/parasitologia
7.
Mol Plant Microbe Interact ; 32(12): 1574-1576, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31415224

RESUMO

Phytophthora sojae is a significant pathogen of soybean worldwide. Pathotype surveys for Phytophthora sojae are conducted to monitor resistance gene efficacy and determine if new resistance genes are needed. Valuable measurements for pathotype analysis include the distribution of susceptible reactions, pathotype complexity, pathotype frequency, and diversity indices for pathotype distributions. Previously the Habgood-Gilmour Spreadsheet (HaGiS), written in Microsoft Excel, was used for data analysis. However, the growing popularity of the R programming language in plant pathology and desire for reproducible research made HaGiS a prime candidate for conversion into an R package. Here we report on the development and use of an R package, hagis, that can be used to produce all outputs from the HaGiS Excel sheet for P. sojae or other gene-for-gene pathosystem studies.


Assuntos
Parasitologia , Phytophthora , Software , Parasitologia/métodos , Glycine max/parasitologia
8.
Mol Plant Microbe Interact ; 32(8): 986-1000, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30811314

RESUMO

Plant pathogens employ diverse secreted effector proteins to manipulate host physiology and defense in order to foster diseases. The destructive Phytophthora pathogens encode hundreds of cytoplasmic effectors, which are believed to function inside the plant cells. Many of these cytoplasmic effectors contain the conserved N-terminal RXLR motif. Understanding the virulence function of RXLR effectors will provide important knowledge of Phytophthora pathogenesis. Here, we report the characterization of RXLR effector PcAvh1 from the broad-host range pathogen Phytophthora capsici. Only expressed during infection, PcAvh1 is quickly induced at the early infection stages. CRISPR/Cas9-knockout of PcAvh1 in P. capsici severely impairs virulence while overexpression enhances disease development in Nicotiana benthamiana and bell pepper, demonstrating that PcAvh1 is an essential virulence factor. Ectopic expression of PcAvh1 induces cell death in N. benthamiana, tomato, and bell pepper. Using yeast two-hybrid screening, we found that PcAvh1 interacts with the scaffolding subunit of the protein phosphatase 2A (PP2Aa) in plant cells. Virus-induced gene silencing of PP2Aa in N. benthamiana attenuates resistance to P. capsici and results in dwarfism, suggesting that PP2Aa regulates plant immunity and growth. Collectively, these results suggest that PcAvh1 contributes to P. capsici infection, probably through its interaction with host PP2Aa.


Assuntos
Phytophthora , Doenças das Plantas , Proteínas de Protozoários , Virulência , Motivos de Aminoácidos , Capsicum/parasitologia , Phytophthora/genética , Phytophthora/patogenicidade , Doenças das Plantas/parasitologia , Imunidade Vegetal , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Nicotiana/parasitologia , Virulência/genética
9.
Genes (Basel) ; 11(3)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121150

RESUMO

Mgaloblishvili, a Vitis vinifera cultivar, exhibits unique resistance traits against Plasmopara viticola, the downy mildew agent. This offers the unique opportunity of exploring the molecular responses in compatible and incompatible plant-pathogen interaction. In this study, whole transcriptomes of Mgaloblishvili, Pinot noir (a V. vinifera susceptible cultivar), and Bianca (a resistant hybrid) leaves, inoculated and non-inoculated with the pathogen, were used to identify P. viticola effector-encoding genes and plant susceptibility/resistance genes. Multiple effector-encoding genes were identified in P. viticola transcriptome, with remarkable expression differences in relation to the inoculated grapevine cultivar. Intriguingly, five apoplastic effectors specifically associated with resistance in V. vinifera. Gene coexpression network analysis identified specific modules and metabolic changes occurring during infection in the three grapevine cultivars. Analysis of these data allowed, for the first time, the detection in V. vinifera of a putative P. viticola susceptibility gene, encoding a LOB domain-containing protein. Finally, the de novo assembly of Mgaloblishvili, Pinot noir, and Bianca transcriptomes and their comparison highlighted novel candidate genes that might be at the basis of the resistant phenotype. These results open the way to functional analysis studies and to new perspectives in molecular breeding of grapevine for resistance to P. viticola.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Transcriptoma/genética , Vitis/genética , Regulação da Expressão Gênica de Plantas/genética , Interações Hospedeiro-Patógeno/genética , Oomicetos/genética , Oomicetos/patogenicidade , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Análise de Sequência de RNA , Vitis/crescimento & desenvolvimento , Vitis/microbiologia
10.
Front Plant Sci ; 7: 1887, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066456

RESUMO

Plasmopara halstedii is an obligate biotrophic oomycete causing downy mildew disease on sunflower, Helianthus annuus, an economically important oil crop. Severe symptoms of the disease (e.g., plant dwarfism, leaf bleaching, sporulation and production of infertile flower) strongly impair seed yield. Pl resistance genes conferring resistance to specific P. halstedii pathotypes were located on sunflower genetic map but yet not cloned. They are present in cultivated lines to protect them against downy mildew disease. Among the 16 different P. halstedii pathotypes recorded in France, pathotype 710 is frequently found, and therefore continuously controlled in sunflower by different Pl genes. High-throughput sequencing of cDNA from P. halstedii led us to identify potential effectors with the characteristic RXLR or CRN motifs described in other oomycetes. Expression of six P. halstedii putative effectors, five RXLR and one CRN, was analyzed by qRT-PCR in pathogen spores and in the pathogen infecting sunflower leaves and selected for functional analyses. We developed a new method for transient expression in sunflower plant leaves and showed for the first time subcellular localization of P. halstedii effectors fused to a fluorescent protein in sunflower leaf cells. Overexpression of the CRN and of 3 RXLR effectors induced hypersensitive-like cell death reactions in some sunflower near-isogenic lines resistant to pathotype 710 and not in susceptible corresponding lines, suggesting they could be involved in Pl loci-mediated resistances.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa