Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(35): 10943-10948, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39166739

RESUMO

This paper reports a silicon-organic hybrid lattice that can lase with vortex emission and allow all-optical control. We combine an array of amorphous silicon nanodisks with gain from dye molecules in organic solvents to generate vortex lasing from bound states in the continuum under pulsed optical pumping. Irradiating the device with an additional continuous wave green laser beam can cause optical heating in silicon and lead to negative change in the refractive index of the organic solvents; meanwhile, the green laser beam can provide additional gain. Dynamic tuning of the lasing wavelength is achieved by varying the intensity of the controlling beam. Furthermore, the vortex beam lasing can be switched to single-lobed beam lasing by moving the controlling spot to break the in-plane symmetry within the pumping spot. Our findings could shed new light on active silicon topological devices.

2.
Sensors (Basel) ; 20(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905989

RESUMO

Detection of thermal activities of biological cells is important for biomedical and pharmaceutical applications because these activities are closely associated with the conformational change processes. Calorimetric measurements of biological systems using bimaterial microcantilevers (BMC) have increasingly been reported with the ultimate goal of developing highly sensitive and inexpensive techniques with real-time measurement capability techniques for the characterization of dynamic thermal properties of biological cells. BMCs have been established as highly sensitive calorimeters for the thermal analysis of cells and liquids. In this paper, we present a simulation model using COMSOL Multiphysics and a mathematical method to estimate the heat capacity of objects (treated here as a biological cell) placed on the surface of a microcantilever. By measuring the thermal time constant, which is obtained from the deflection curve of a BMC, the heat capacity of a sample can be evaluated. With this model, we can estimate the heat capacity of single biological cells using a BMC, which can potentially be used for the thermal characterization of different biological samples.


Assuntos
Técnicas Biossensoriais/instrumentação , Células/citologia , Temperatura Alta , Sistemas Microeletromecânicos , Modelos Teóricos , Fatores de Tempo
3.
Nano Lett ; 17(5): 2945-2952, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28409632

RESUMO

We propose a novel photothermal approach based on resonant dielectric nanoparticles, which possess imaginary part of permittivity significantly smaller as compared to metal ones. We show both experimentally and theoretically that a spherical silicon nanoparticle with a magnetic quadrupolar Mie resonance converts light to heat up to 4 times more effectively than similar spherical gold nanoparticle at the same heating conditions. We observe photoinduced temperature raise up to 900 K with the silicon nanoparticle on a glass substrate at moderate intensities (<2 mW/µm2) and typical laser wavelength (633 nm). The advantage of using crystalline silicon is the simplicity of local temperature control by means of Raman spectroscopy working in a broad range of temperatures, that is, up to the melting point of silicon (1690 K) with submicrometer spatial resolution. Our CMOS-compatible heater-thermometer nanoplatform paves the way to novel nonplasmonic photothermal applications, extending the temperature range and simplifying the thermoimaging procedure.

4.
Materials (Basel) ; 17(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38399143

RESUMO

Aluminum foam is a lightweight material and has excellent shock-absorbing properties. Various properties of aluminum foam can be obtained by changing the base aluminum alloy. Multi-layer aluminum foam can be fabricated by varying the alloy type of the base aluminum alloy, but with different foaming temperatures, within a single aluminum foam to achieve multiple properties. In this study, we attempted to fabricate a two-layer aluminum foam with the upper layer of a commercially pure aluminum A1050 foam and the lower layer of an Al-Si-Cu aluminum alloy ADC12 foam by using an optical heating device that can heat from both the upper and lower sides. Two types of heating methods were investigated. One is to directly stack the A1050 precursor coated with black toner on top of the ADC12 precursor and to foam it from the top and bottom by optical heating. The other is to place a wire mesh between the ADC12 precursor and the A1050 precursor and place the A1050 precursor on the wire mesh, thereby creating a space between the precursors, which is then foamed by optical heating from the top and bottom. It was shown that both precursors can be foamed and joined, and a two-layer A1050/ADC12 foam can be fabricated for both types of heating methods. In the method in which two precursors were stacked and foamed, even if the light intensity of the halogen lamps on the top and bottom were adjusted, heat conduction occurred between the stacked precursors, and the foaming of each precursor could not be controlled, resulting in tilting of the joining interface. In the method of foaming using a wire mesh with a gap between two precursors, it was found that by adjusting the light intensity, the two precursors can be foamed almost simultaneously and achieve similar pore structures. The joining interface can also be maintained horizontally.

5.
Biomed Eng Lett ; 14(4): 707-716, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38946825

RESUMO

Transdermal drug delivery has emerged as an alternative to conventional drug delivery systems as it enables painless and convenient drug administration. However, next-generation healthcare systems need to facilitate "on-demand" delivery operations and should be highly efficient to penetrate the physiological barriers in the skin. Here, we report an ultrathin dye-loaded epidermal tattoo (UDET) that allows wirelessly stimulated drug delivery with high efficiency. The UDET consists of an electrospun dye-loaded silk nanofiber mat and a covered carbon nanotube (CNT) layer. UDETs are conformally tattooed on pigskins and show stable operation under mechanical deformation. Biological fluorescence dyes such as vitamin B12, riboflavin, rhodamine B, and sodium fluorescein are applied as model drugs. Illuminating the UDET by a low-power light-emitting diode (< 34.5 mW/cm2) triggers transdermal drug delivery due to heat generation. The CNTs convert the absorbed light into heat, and then the dyes loaded on silk can be diffused through the epidermis. The CNT layer is electrically conductive and can detect the temperature by reading the resistance change (0.1917 Ω/°C). This indicates that the UDET can be used simultaneously to read temperature and deliver the loaded dye molecules, making it a promising on-demand drug delivery strategy for future medicine technology. Supplementary Information: The online version contains supplementary material available at 10.1007/s13534-024-00363-6.

6.
ACS Nano ; 17(10): 9235-9244, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36976247

RESUMO

Halide perovskites belong to an important family of semiconducting materials with electronic properties that enable a myriad of applications, especially in photovoltaics and optoelectronics. Their optical properties, including photoluminescence quantum yield, are affected and notably enhanced at crystal imperfections where the symmetry is broken and the density of states increases. These lattice distortions can be introduced through structural phase transitions, allowing charge gradients to appear near the interfaces between phase structures. In this work, we demonstrate controlled multiphase structuring in a single perovskite crystal. The concept uses cesium lead bromine (CsPbBr3) placed on a thermoplasmonic TiN/Si metasurface and enables single-, double-, and triple-phase structures to form on demand above room temperature. This approach promises application horizons of dynamically controlled heterostructures with distinctive electronic and enhanced optical properties.

7.
ACS Nano ; 17(10): 9280-9289, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37017427

RESUMO

Optical tweezers have provided tremendous opportunities for fundamental studies and applications in the life sciences, chemistry, and physics by offering contact-free manipulation of small objects. However, it requires sophisticated real-time imaging and feedback systems for conventional optical tweezers to achieve controlled motion of micro/nanoparticles along textured surfaces, which are required for such applications as high-resolution near-field characterizations of cell membranes with nanoparticles as probes. In addition, most optical tweezers systems are limited to single manipulation modes, restricting their broader applications. Herein, we develop an optothermal platform that enables the multimodal manipulation of micro/nanoparticles along various surfaces. Specifically, we achieve the manipulation of micro/nanoparticles through the synergy between the optical and thermal forces, which arise due to the temperature gradient self-generated by the particles absorbing the light. With a simple control of the laser beam, we achieve five switchable working modes [i.e., tweezing, rotating, rolling (toward), rolling (away), and shooting] for the versatile manipulation of both synthesized particles and biological cells along various substrates. More interestingly, we realize the manipulation of micro/nanoparticles on rough surfaces of live worms and their embryos for localized control of biological functions. By enabling the three-dimensional control of micro/nano-objects along various surfaces, including topologically uneven biological tissues, our multimodal optothermal platform will become a powerful tool in life sciences, nanotechnology, and colloidal sciences.

8.
ACS Appl Mater Interfaces ; 10(33): 27644-27656, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30040374

RESUMO

Herein, a novel drug photorelease system based on gold nanostars (AuNSts), coated with a mesoporous silica shell and capped with paraffin as thermosensitive molecular gate, is reported. Direct measurements of the surface temperature of a single gold nanostar irradiated using a tightly focused laser beam are performed via a heat-sensitive biological matrix. The surface temperature of a AuNSt increases by hundreds of degrees (°C) even at low laser powers. AuNSts coated with a mesoporous silica shell using a surfactant-templated synthesis are used as chemotherapeutic nanocarriers. Synthetic parameters are optimized to avoid AuNSt reshaping, and thus to obtain nanoparticles with suitable and stable plasmonic properties for near-infrared (NIR) laser-triggered cargo delivery. The mesoporous silica-coated nanostars are loaded with doxorubicin (Dox) and coated with octadecyltrimethoxysilane and the paraffin heneicosane. The paraffin molecules formed a hydrophobic layer that blocks the pores, impeding the release of the cargo. This hybrid nanosystem exhibits a well-defined photodelivery profile using NIR radiation, even at low power density, whereas the nonirradiated sample shows a negligible payload release. Dox-loaded nanoparticles displayed no cytotoxicity toward HeLa cells, until they are irradiated with 808 nm laser, provoking paraffin melting and drug release. Hence, these novel, functional, and biocompatible nanoparticles display adequate plasmonic properties for NIR-triggered drug photorelease applications.


Assuntos
Ouro/química , Sobrevivência Celular , Doxorrubicina , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Células HeLa , Humanos , Nanoestruturas , Porosidade , Dióxido de Silício
9.
ACS Nano ; 12(10): 10383-10392, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30226980

RESUMO

Optical manipulation of colloidal nanoparticles and molecules is significant in numerous fields. Opto-thermoelectric nanotweezers exploiting multiple coupling among light, heat, and electric fields enables the low-power optical trapping of nanoparticles on a plasmonic substrate. However, the management of light-to-heat conversion for the versatile and precise manipulation of nanoparticles is still elusive. Herein, we explore the opto-thermoelectric trapping at plasmonic antennas that serve as optothermal nanoradiators to achieve the low-power (∼0.08 mW/µm2) and deterministic manipulation of nanoparticles. Specifically, precise optical manipulation of nanoparticles is achieved via optical control of the subwavelength thermal hot spots. We employ a femtosecond laser beam to further improve the heat localization and the precise trapping of single ∼30 nm semiconductor quantum dots at the antennas where the plasmon-exciton coupling can be tuned. With its low-power, precise, and versatile particle control, the opto-thermoelectric manipulation can have applications in photonics, life sciences, and colloidal sciences.

10.
ACS Nano ; 11(8): 7915-7924, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28727409

RESUMO

Metallodielectric multishell nanoparticles are capable of hosting collective plasmon oscillations distributed among different metallic layers, which result in large near-field enhancement at specific regions of the structure, where light absorption is maximized. We exploit this capability of multishell nanoparticles, combined with thermal boundary resistances and spatial tailoring of the optical near fields, to design plasmonic nano-ovens capable of achieving high temperatures at the core region using moderate illumination intensities. We find a large optical intensity enhancement of ∼104 over a relatively broad core region with a simple design consisting of three metal layers. This provides an unusual thermal environment, which together with the high pressures of ∼105 atm produced by concatenated curved layers holds great potential for exploring physical and chemical processes under extreme optical/thermal/pressure conditions in confined nanoscale spaces, while the outer surface of the nano-oven is close to ambient conditions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa