Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34795057

RESUMO

Numerous plants protect themselves from attackers by using specialized metabolites. The biosynthesis of these deterrent, often toxic metabolites is costly, as their synthesis diverts energy and resources on account of growth and development. How plants diversify investments into growth and defense is explained by the optimal defense theory. The central prediction of the optimal defense theory is that plants maximize growth and defense by concentrating specialized metabolites in tissues that are decisive for fitness. To date, supporting physiological evidence relies on the correlation between plant metabolite presence and animal feeding preference. Here, we use glucosinolates as a model to examine the effect of changes in chemical defense distribution on feeding preference. Taking advantage of the uniform glucosinolate distribution in transporter mutants, we show that high glucosinolate accumulation in tissues important to fitness protects them by guiding larvae of a generalist herbivore to feed on other tissues. Moreover, we show that the mature leaves of Arabidopsis thaliana supply young leaves with glucosinolates to optimize defense against herbivores. Our study provides physiological evidence for the central hypothesis of the optimal defense theory and sheds light on the importance of integrating glucosinolate biosynthesis and transport for optimizing plant defense.


Assuntos
Comportamento Alimentar/fisiologia , Herbivoria/fisiologia , Defesa das Plantas contra Herbivoria/fisiologia , Plantas/metabolismo , Animais , Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Larva/metabolismo , Folhas de Planta/metabolismo
2.
Am J Bot ; 108(11): 2174-2182, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34618356

RESUMO

PREMISE: The optimal defense theory (ODT) predicts that the allocation of chemical defenses in plants will be concentrated in parts or tissues that are of higher fitness value for the individuals that produce them. Chemicals are known to be allocated to certain parts of aquatic plants, and the morphological architecture of Nymphoides humboldtiana, a species that exposes its parts to different environmental factors and consumers, may be an excellent model to evaluate within-plant susceptibility to consumers according to the ODT. METHODS: Under laboratory experimental conditions, we evaluated the defensive properties of extracts from vegetative (leaves, rhizomes, roots) and reproductive (long stem internodes, flowers, fruits) parts of N. humboldtiana against consumption by the generalist herbivorous gastropod Biomphalaria glabrata. Extracts were also subjected to chemical analysis by high-performance liquid chromatography, principal component analysis, and analysis of their relationships to defensive actions. RESULTS: Extracts of all vegetative and internode (reproductive) parts of N. humboldtiana exhibited defensive properties against B. glabrata, but the long stem internodes exhibited the highest percentage of inhibition. Chemical profiles of these parts were qualitatively and quantitatively different, but a major unidentified compound is presumably responsible for the higher defensive property found in internodes. CONCLUSIONS: Our results support the ODT, since chemical defense was more effective in long stem internodes, which have a high fitness value for N. humboldtiana to keep the flowers emerged on the water surface in response to the rapid and dynamic changes in water levels typical of freshwater environments.


Assuntos
Herbivoria , Magnoliopsida , Flores , Folhas de Planta , Raízes de Plantas
3.
J Chem Ecol ; 46(2): 206-216, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31907751

RESUMO

Plants are chemically-complex organisms; each individual contains diverse tissue-types, has the ability to differentially allocate secondary metabolites to these tissues and can change this allocation through time. The interaction of variation in chemical defense of different tissue types and variation in chemical defense through time, however, is rarely examined and has not been studied for iridoid glycoside-producing woody plants. In this study, we quantified allocation of iridoid glycosides (IGs) to the leaves, flowers, fruits, and seeds of 25 individuals of a long-lived shrub (Lonicera x bella Zabel, Caprifoliaceae), at five important phenological timepoints (leaf-out, flowering, fruit appearance, fruit ripening, and fruit dispersal) throughout a growing season. We found that leaves had 2x higher IG concentrations during flowering and fruiting than earlier in the season (after leaf-out), and later in the season (after fruit dispersal). The individual IG driving this increase in leaves during reproduction, secologanin, was also the most abundant IG in semiripe fruits. Flowers and seeds were composed of different proportions of individual IGs than fruits or leaves, but did not change across time and had overall low concentrations of IGs. In L. x bella, phenological events such as flowering and fruiting lead to an increase in leaf chemical defense that is likely to influence interactions with leaf-feeders. Our results stress the importance of considering phenology when sampling plants for the quantification of chemical defenses.


Assuntos
Glicosídeos Iridoides/análise , Lonicera/química , Flores/química , Flores/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Glicosídeos Iridoides/metabolismo , Lonicera/crescimento & desenvolvimento , Lonicera/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Estações do Ano , Sementes/química , Sementes/metabolismo
4.
Am J Bot ; 106(5): 643-655, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31046151

RESUMO

PREMISE: Optimal defense theory predicts that selection should drive plants to disproportionally allocate resources for herbivore defense to tissues with high fitness values. Because pollen's primary role is the transport of gametes, plants may be expected to defend it from herbivory. However, for many animal-pollinated plants, pollen serves a secondary role as a pollinator reward. These dual roles may present a conflict between selection to defend pollen from herbivores and selection to reward pollinators. Here, we investigate whether pollen secondary chemistry in three pollen-rewarding Lupinus species better reflects the need to defend pollen or reward pollinators. METHODS: Lupinus (Fabaceae) species are nectarless, pollen-rewarding, and produce defensive quinolizidine and/or piperidine alkaloids throughout their tissues. We used gas chromatography to identify and quantitate the alkaloids in four aboveground tissues (pollen, flower, leaf, stem) of three western North American lupines, L. argenteus, L. bakeri, and L. sulphureus, and compared alkaloid concentrations and composition among tissues within individuals. RESULTS: In L. argenteus and L. sulphureus, pollen alkaloid concentrations were 11-35% of those found in other tissues. We detected no alkaloids in L. bakeri pollen, though they were present in other tissues. Alkaloid concentrations were not strongly correlated among tissues within individuals. We detected fewer alkaloids in pollen compared to other tissues, and pollen contained no unique alkaloids. CONCLUSIONS: Our results are consistent with the hypothesis that, in these pollen-rewarding species, pollen secondary chemistry may reflect the need to attract and reward pollinators more than the need to defend pollen from herbivory.


Assuntos
Alcaloides/análise , Flores/química , Lupinus/química , Folhas de Planta/química , Caules de Planta/química , Pólen/química , Cromatografia Gasosa , Polinização
5.
Ecology ; 98(4): 1036-1048, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28074474

RESUMO

The latitudinal herbivory defense hypothesis (LHDH) postulates that the prevalence of species interactions, including herbivory, is greater at lower latitudes, leading to selection for increased levels of plant defense. While latitudinal defense clines may be caused by spatial variation in herbivore pressure, optimal defense theory predicts that clines could also be caused by ecogeographic variation in the cost of defense. For instance, allocation of resources to defense may not increase plant fitness when growing seasons are short and plants must reproduce quickly. Here we use a common garden experiment to survey genetic variation for constitutive and induced phenylpropanoid glycoside (PPG) concentrations across 35 Mimulus guttatus populations over a ~13° latitudinal transect. Our sampling regime is unique among studies of the LHDH in that it allows us to disentangle the effects of growing season length from those of latitude, temperature, and elevation. For five of the seven PPGs surveyed, we find associations between latitude and plant defense that are robust to population structure. However, contrary to the LHDH, only two PPGs were found at higher levels in low latitude populations, and total PPG concentrations were higher at higher latitudes. PPG levels are strongly correlated with growing season length, with higher levels of PPGs in plants from areas with longer growing seasons. Further, flowering time is positively correlated with the concentration of nearly all PPGs, suggesting that there may be a strong trade-off between development time and defense production. Our results reveal that ecogeographic patterns in plant defense may reflect variation in the cost of producing defense compounds in addition to variation in herbivore pressure. Thus, the biogeographic pattern predicted by the LHDH may not be accurate because the underlying factors driving variation in defense, in this case, growing season length, are not always associated with latitude in the same manner. Given these results, we conclude that LHDH cannot be interpreted without considering life history, and we recommend that future work on the LHDH move beyond solely testing the core LHDH prediction and place greater emphasis on isolating agents of selection that generate spatial variation in defense and herbivore pressure.


Assuntos
Variação Genética , Herbivoria , Plantas/genética , Estações do Ano
6.
J Plant Res ; 129(4): 659-666, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27056097

RESUMO

Plants can respond to insect herbivory in various ways to avoid reductions in fitness. However, the effect of herbivory on plant performance can vary depending on the seasonal timing of herbivory. We investigated the effects of the seasonal timing of herbivory on the performance of sagebrush (Artemisia tridentata). Sagebrush is known to induce systemic resistance by receiving volatiles emitted from clipped leaves of the same or neighboring plants, which is called volatile communication. Resistance to leaf herbivory is known to be induced most effectively after volatile communication in spring. We experimentally clipped 25 % of leaves of sagebrush in May when leaves were expanding, or in July when inflorescences were forming. We measured the growth and flower production of clipped plants and neighboring plants which were exposed to volatiles emitted from clipped plants. The treatment conducted in spring reduced the growth of clipped plants. This suggests that early season leaf herbivory is detrimental because it reduces the opportunities for resource acquisition after herbivory, resulting in strong induction of resistance in leaves. On the other hand, the late season treatment increased flower production in plants exposed to volatiles, which was caused mainly by the increase in the number of inflorescences. Because the late season treatment occurred when sagebrush produces inflorescences, sagebrush may respond to late herbivory by increasing compensation ability and/or resistance in inflorescences rather than in leaves. Our results suggest that sagebrush can change responses to herbivory and subsequent volatile communication seasonally and that the seasonal variation in responses may reduce the cost of induced resistance.


Assuntos
Artemisia/fisiologia , Herbivoria/fisiologia , Estações do Ano , Compostos Orgânicos Voláteis/análise , Animais , Afídeos/fisiologia , Biomassa , Inflorescência/fisiologia
7.
Am J Bot ; 102(1): 58-66, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25587148

RESUMO

UNLABELLED: • PREMISE OF THE STUDY: Extrafloral nectar (EFN) mediates food for protection mutualisms between plants and defensive insects. Understanding sources of variation in EFN production is important because such variations may affect the number and identity of visitors and the effectiveness of plant defense. We investigated the influence of plant developmental stage, time of day, leaf age, and leaf damage on EFN production in Senna mexicana var. chapmanii. The observed patterns of variation in EFN production were compared with those predicted by optimal defense theory.• METHODS: Greenhouse experiments with potted plants were conducted to determine how plant age, time of day, and leaf damage affected EFN production. A subsequent field study was conducted to determine how leaf damage, and the resulting increase in EFN production, affected ant visitation in S. chapmanii.• KEY RESULTS: More nectar was produced at night and by older plants. Leaf damage resulted in increased EFN production, and the magnitude of the response was greater in plants damaged in the morning than those damaged at night. Damage to young leaves elicited a stronger defensive response than damage to older leaves, in line with optimal defense theory. Damage to the leaves of S. chapmanii also resulted in significantly higher ant visitation in the field.• CONCLUSIONS: Extrafloral nectar is an inducible defense in S. chapmanii. Developmental variations in its production support the growth differentiation balance hypothesis, while within-plant variations and damage responses support optimal defense theory.


Assuntos
Formigas/fisiologia , Folhas de Planta/fisiologia , Néctar de Plantas/biossíntese , Senna/fisiologia , Animais , Florida , Flores/fisiologia , Cadeia Alimentar , Herbivoria , Senna/crescimento & desenvolvimento
8.
New Phytol ; 204(3): 671-681, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25039644

RESUMO

The domestication of crops is among the most important innovations in human history. Here, we test the hypothesis that cultivation and artificial selection for increased productivity of crops reduced plant defenses against herbivores. We compared the performance of two economically important generalist herbivores - the leaf-chewing beet armyworm (Spodoptera exigua) and the phloem-feeding green peach aphid (Myzus persicae) - across 29 crop species and their closely related wild relatives. We also measured putative morphological and chemical defensive traits and correlated them with herbivore performance. We show that, on average, domestication significantly reduced resistance to S. exigua, but not M. persicae, and that most independent domestication events did not cause differences in resistance to either herbivore. In addition, we found that multiple plant traits predicted resistance to S. exigua and M. persicae, and that domestication frequently altered the strength and direction of correlations between these traits and herbivore performance. Our results show that domestication can alter plant defenses, but does not cause strong allocation tradeoffs as predicted by plant defense theory. These results have important implications for understanding the evolutionary ecology of species interactions and for the search for potential resistance traits to be targeted in crop breeding.


Assuntos
Afídeos/fisiologia , Produtos Agrícolas/fisiologia , Produtos Agrícolas/parasitologia , Herbivoria , Mariposas/fisiologia , Agricultura , Animais , Produtos Agrícolas/genética , Variação Genética , Larva/fisiologia , Filogenia
9.
Tree Physiol ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795340

RESUMO

Plants emit diverse volatile organic compounds (VOCs) from their leaves and roots for protection against biotic and abiotic stress. An important signaling cascade activated by aboveground herbivory is the jasmonic acid (JA) pathway that stimulates the production of VOCs. So far it remains unclear if the activation of this pathway also leads to enhanced VOC emissions from conifer roots, and how the interplay of above- and belowground defenses in plants are affected by multiple stressors. Therefore, we simultaneously analyzed needle and root VOC emissions of Picea abies saplings, as well as CO2 and H2O fluxes in response to aboveground JA treatment, heat stress and their interaction in a controlled climate chamber experiment. Continuous online VOC measurements by PTR-TOF-MS showed an inverse pattern of total needle and root VOC emissions, when plants were treated with JA and heat. While needle sesquiterpene emissions increased nine-fold one day after JA application, total root VOC emissions decreased. This was mainly due to reduced emissions of acetone and monoterpenes by roots. In response to aboveground JA treatment, root total carbon emitted as VOCs decreased from 31% to only 4%. While VOC emissions aboveground increased, net CO2 assimilation strongly declined due to JA treatment, resulting in net respiration during the day. Interestingly, root respiration was not affected by aboveground JA application. Under heat the effect of JA on VOC emissions of needles and roots was less pronounced. The buffering effect of heat on VOC emissions following JA treatment points towards an impaired defense reaction of the plants under multiple stress. Our results indicate efficient resource allocation within the plant to protect threatened tissues by a rather local VOC release. Roots may only be affected indirectly by reduced belowground carbon allocation, but are not involved directly in the JA-induced stress response.

10.
Plant Sci ; 331: 111690, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36965631

RESUMO

The Optimal Defense Theory (ODT) predicts that the distribution of defenses within a plant should mirror the value and vulnerability of each tissue. Although the ODT has received much experimental support, very few studies have examined defense allocation among reproductive tissues and none assessed simultaneously how these defenses evolve with age. We quantified glucosinolates in perianths, anthers and pistils at different bud maturity stages (i.e., intermediate flower buds, old flower buds and flowers) of undamaged and mechanically damaged plants of an annual brassicaceous species. The youngest leaf was used as a reference for vegetative organs, since it is predicted to be one of the most defended. In line with ODT predictions, reproductive tissues were more defended than vegetative tissues constitutively, and within the former, pistils and anthers more defended than perianths. No change in the overall defense level was found between bud maturity stages, but a significant temporal shift was observed between pistils and anthers. Contrary to ODT predictions, mechanical damage did not induce systemic defenses in leaves but only in pistils. Our results show that defense allocation in plant reproductive tissues occurs at fine spatial and temporal scales, extending the application framework of the ODT. They also demonstrate interactions between space and time in fine-scale defense allocation.


Assuntos
Glucosinolatos , Folhas de Planta , Flores , Fatores Etários
11.
Plants (Basel) ; 9(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935813

RESUMO

Lichens are slow-growing organisms supposed to synthetize specialized metabolites to protect themselves against diverse grazers. As predicted by the optimal defense theory (ODT), lichens are expected to invest specialized metabolites in higher levels in reproductive tissues compared to thallus. We investigated whether Laser Desorption Ionization coupled to Mass Spectrometry Imaging (LDI-MSI) could be a relevant tool for chemical ecology issues such as ODT. In the present study, this method was applied to cross-sections of thalli and reproductive tissues of the lichen Pseudocyphellaria crocata. Spatial mapping revealed phenolic families of metabolites. A quantification of these metabolites was carried out in addition to spatial imaging. By this method, accumulation of specialized metabolites was observed in both reproductive parts (apothecia and soralia) of P. crocata, but their nature depended on the lichen organs: apothecia concentrated norstictic acid, tenuiorin, and pulvinic acid derivatives, whereas soralia mainly contained tenuiorin and pulvinic acid. Stictic acid, tenuiorin and calycin, tested in no-choices feeding experiments, were deterrent for N. hookeri while entire thalli were consumed by the snail. To improve better knowledge in relationships between grazed and grazing organisms, LDI-MSI appears to be a complementary tool in ecological studies.

12.
Ecology ; 101(12): e03192, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32892339

RESUMO

Deciphering the ecological roles of plant secondary metabolites requires integrative studies that assess both the allocation patterns of compounds and their bioactivity in ecological interactions. Secondary metabolites have been primarily studied in leaves, but many are unique to fruits and can have numerous potential roles in interactions with both mutualists (seed dispersers) and antagonists (pathogens and predators). We described 10 alkenylphenol compounds from the plant species Piper sancti-felicis (Piperaceae), quantified their patterns of intraplant allocation across tissues and fruit development, and examined their ecological role in fruit interactions. We found that unripe and ripe fruit pulp had the highest concentrations and diversity of alkenylphenols, followed by flowers; leaves and seeds had only a few compounds at detectable concentrations. We observed a nonlinear pattern of alkenylphenol allocation across fruit development, increasing as flowers developed into unripe pulp then decreasing as pulp ripened. This pattern is consistent with the hypothesis that alkenylphenols function to defend fruits from pre-dispersal antagonists and are allocated based on the contribution of the tissue to the plant's fitness, but could also be explained by non-adaptive constraints. To assess the impacts of alkenylphenols in interactions with antagonists and mutualists, we performed fungal bioassays, field observations, and vertebrate feeding experiments. In fungal bioassays, we found that alkenylphenols had a negative effect on the growth of most fungal taxa. In field observations, nocturnal dispersers (bats) removed the majority of infructescences, and diurnal dispersers (birds) removed a larger proportion of unripe infructescences. In feeding experiments, bats exhibited an aversion to alkenylphenols, but birds did not. This observed behavior in bats, combined with our results showing a decrease in alkenylphenols during ripening, suggests that alkenylphenols in fruits represent a trade-off (defending against pathogens but reducing disperser preference). These results provide insight into the ecological significance of a little studied class of secondary metabolites in seed dispersal and fruit defense. More generally, documenting intraplant spatiotemporal allocation patterns in angiosperms and examining mechanisms behind these patterns with ecological experiments is likely to further our understanding of the evolutionary ecology of plant chemical traits.


Assuntos
Frutas , Dispersão de Sementes , Animais , Aves , Folhas de Planta , Sementes
13.
Front Plant Sci ; 10: 1653, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998341

RESUMO

The optimal defense theory predicts that plants invest most energy in those tissues that have the highest value, but are most vulnerable to attacks. In Brassica species, root-herbivory leads to the accumulation of glucosinolates (GSLs) in the taproot, the most valuable belowground plant organ. Accumulation of GSLs can result from local biosynthesis in response to herbivory. In addition, transport from distal tissues by specialized GSL transporter proteins can play a role as well. GSL biosynthesis and transport are both inducible, but the role these processes play in GSL accumulation during root-herbivory is not yet clear. To address this issue, we performed two time-series experiments to study the dynamics of transport and biosynthesis in local and distal tissues of Brassica rapa. We exposed roots of B. rapa to herbivory by the specialist root herbivore Delia radicum for 7 days. During this period, we sampled above- and belowground plant organs 12 h, 24 h, 3 days and 7 days after the start of herbivory. Next, we measured the quantity and composition of GSL profiles together with the expression of genes involved in GSL biosynthesis and transport. We found that both benzyl and indole GSLs accumulate in the taproot during root-herbivory, whereas we did not observe any changes in aliphatic GSL levels. The rise in indole GSL levels coincided with increased local expression of biosynthesis and transporter genes, which suggest that both biosynthesis and GSL transport play a role in the accumulation of GSLs during root herbivory. However, we did not observe a decrease in GSL levels in distal tissues. We therefore hypothesize that GSL transporters help to retain GSLs in the taproot during root-herbivory.

14.
Front Plant Sci ; 8: 234, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28270830

RESUMO

In its defense against herbivores, cotton (Gossypium sp.) relies in part on the production of a set of inducible, non-volatile terpenoids. Under uniform damage levels, in planta allocation of induced cotton terpenoids has been found to be highest in youngest leaves, supporting assumptions of the optimal defense theory (ODT) which predicts that plants allocate defense compounds to tissues depending on their value and the likelihood of herbivore attack. However, our knowledge is limited on how varying, and thus more realistic, damage levels might affect cotton defense organization. We hypothesized that the allocation of terpenoids and densities of terpenoid-storing glands in leaves aligns with assumptions of the ODT, even when plants are subjected to temporally, spatially and quantitatively varying caterpillar (Heliothis virescens) damage. As expected, cotton plants allocated most of their defenses to their youngest leaves regardless of damage location. However, defense induction in older leaves varied with damage location. For at least 14 days after damage treatments ended, plants reallocated defense resources from previously young leaves to newly developed leaves. Furthermore, we observed a positive hyperbolic relationship between leaf damage area and both terpenoid concentrations and gland densities, indicating that cotton plants can fine-tune defense allocation. Although it appears that factors like vascular constraints and chemical properties of individual defense compounds can affect defense levels, our results overall demonstrate that induced defense organization of cotton subjected to varying damage treatments is in alignment with key assumptions of the ODT.

15.
Plant Sci ; 252: 367-373, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27717473

RESUMO

Plants synthesize specialized metabolites which possess extremely important ecological functions including direct defense, indirect defense, and signaling. The optimal defense theory (ODT) proposes that defensive metabolites are preferentially allocated to the tissues with high fitness value or in locations that are easily injured. In our present study, using the model plant Nicotiana benthamiana, we found that direct defense of N. benthamiana against Spodoptera litura (Fabricius) larvae showed spatial differences in the sites producing defensive chemicals. The upper leaves possessed significantly stronger direct defense ability than the middle and lower leaves. Interestingly, the strong defense ability of the upper leaves was not due to occurrences of well-known defensive metabolites such as nicotine and chlorogenic acid. After damage, the middle and lower leaves emitted higher amounts of (Z)-3-hexen-1-ol than the upper leaves, which could both attract larvae and significantly increase the amount of middle and lower leaf eaten by the larvae. The spatial difference in (Z)-3-hexen-1-ol emission may be due to spatial differences in expression of lipoxygenase (NbLOX2), which is responsible for the formation and emission of (Z)-3-hexen-1-ol. This study provided new insight into ODT, showing that plants effectively protect easily injured tissues through reduction in concentration of herbivore-feeding stimulant in the tissues.


Assuntos
Herbivoria/efeitos dos fármacos , Hexanóis/farmacologia , Nicotiana/fisiologia , Spodoptera/efeitos dos fármacos , Animais , Hexanóis/metabolismo , Larva/efeitos dos fármacos , Larva/fisiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , RNA de Plantas/metabolismo , Spodoptera/fisiologia , Nicotiana/genética , Nicotiana/metabolismo
16.
Biota Neotrop. (Online, Ed. ingl.) ; 20(3): e20200992, 2020. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1131939

RESUMO

Abstract Different profiles of secondary compounds are released by plants after herbivore attack. Many of these compounds are used by predators and parasitoids to locate herbivores that are damaging leaves. Such an induced indirect defense was tested with the Caryocar brasiliense-ant system in the dry season, when C. brasiliense has old leaves, and in the rainy season, when C. brasiliense has new leaves. A total of 20 plants were analyzed per season. Two opposite leaves of the same branch were selected for each plant. Approximately 40% of the area of one leaf was removed (treatment leaf) while the other leaf remained intact (control). The number of ants that visited each leaf was counted simultaneously for a period of 15 minutes and the mean difference in ant number was tested by paired t-test. The mean number of ants differed significantly between treatment and control only in the rainy season (t = 3.004, df = 19, p = 0.007). This finding suggests the presence of induced defense in this system only when the leaves are young. The study supports the Optimal Defense Theory since young leaves of C. brasiliense with artificial damage attracted significantly more ants than leaves without damage and represents the first evidence of an induced defense mechanism in the C. brasiliense-ant system.


Resumo Diferentes compostos químicos são liberados pelas plantas após o ataque dos herbívoros. Muitos desses compostos são usados por predadores e parasitoides para localizar os herbívoros que estão injuriando as plantas. Esse tipo de defesa induzida indireta foi testada no sistema Caryocar brasiliense e formigas em duas estações: seca (quando C. brasiliense está com folhas maduras) e chuvosa (quando C. brasiliense está com folhas jovens). Nós analisamos 20 plantas por estação do ano. Em cada planta nós selecionamos duas folhas opostas de um mesmo ramo. Nós removemos cerca de 40% da área de uma das folhas, deixando a outra folha intacta. Nós mensuramos simultaneamente o número de formigas que visitaram cada tipo de folha por 15 min e analisamos a diferença entre o número de formigas em cada tipo de folha através de teste t pareado. Nós observamos diferença significativa no número de formigas que patrulham as folhas tratamento (com herbivoria artificial) e controle (sem hervivoria artificial) apenas na estação chuvosa (t = 3,004, df = 19, p = 0,007). Isso sugere que existe defesa induzida nesse sistema somente quando as folhas são jovens. Nosso estudo corrobora a Teoria de Defesa Ótima já que apenas as folhas jovens de C. brasiliense com dano artificial atraíram significativamente mais formigas do que as folhas sem danos. Esta é a primeira vez que mecanismos de defesa induzida são observados no sistema C. brasiliense-formigas.

17.
Oecologia ; 122(3): 371-379, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28308288

RESUMO

Many plants employ induced responses against generalist herbivores. Specialist herbivores, however, may employ several mechanisms to overcome the negative effects of induced plant defenses. Here we test how the behavior and development of specialist Manduca sexta larvae are affected by induced responses in their natural host plant Nicotiana attenuata. On a spatial scale relevant to both the plant and the herbivore, we first determined how methyl jasmonate (MeJA)-induced responses, such as increased nicotine production, affect the tendency of larvae to leave induced plants. When larvae were allowed to move between two plants planted in one pot, they left an MeJA-treated plant faster than a control plant. When both plants in the pot were MeJA-treated, the larvae developed more slowly than when both plants were uninduced, or when the larvae had the opportunity to move to an uninduced neighbor. The sooner larvae moved from an MeJA-treated plant to an untreated neighbor, the larger the body mass they attained. This demonstrates that M. sexta larvae can compensate behaviorally for the deleterious effects of induced plant responses. These effects were observed in plants grown under both low and high N supply rates, though the effects were more pronounced under high N. To examine the consequences of the timing and the direction of the host plant switching behavior for larval development, neonate larvae were fed leaves excised from induced and uninduced plants. Larvae confined to MeJA-treated leaves had higher mortality rates and grew slower than larvae fed only control leaves. This demonstrates that MeJA-induced responses decrease growth and development of specialist herbivores that do not have the behavioral option of moving to an uninduced plant. The sooner the larvae were switched to MeJA-treated leaves, the slower their development compared to larvae fed only uninduced leaves. In contrast, the sooner larvae fed MeJA-treated leaves were switched to control leaves, the faster they developed. Again the effects of MeJA treatment were stronger in plants grown under high N supply. We propose that induced plants growing in close competition with an uninduced conspecific may offset the fitness costs of these induced responses and perhaps obtain a fitness benefit by motivating herbivores to move to their neighboring competitors.

18.
Plant Sci ; 225: 77-85, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25017162

RESUMO

Optimal defense theory predicts that induction of defensive secondary metabolites in plants will be inversely correlated with constitutive expression of those compounds. Here, we asked whether camalexin, an important defense against fungal and bacterial pathogens, support this prediction in structured natural populations of Arabidopsis thaliana from the Iberian Peninsula. In common garden experiments, we found that genotypes from the VIE population constitutively hyper-accumulated camalexin. Camalexin concentrations were not induced significantly when plants were exposed to a temperature of 10°C for 48h. However, they were induced when plants were exposed to 48h of infection by the virulent bacterial pathogen, Pseudomonas syringae pv. tomato DC3000. Genotypes from the VIE population with the hyper-accumulation of camalexin were significantly more resistant to bacterial growth. Induction of camalexin was negatively correlated with constitutive camalexin concentrations following log transformation and two different corrections for autocorrelation, thus supporting the tradeoff predicted by optimal defense theory. Constitutive overexpression of camalexin was not explained by the only known natural genetic polymorphism at the Accelerated Cell Death 6, ACD6, locus. Collectively, the results support an important role of camalexin in defense against P. syringae as well as significant structured variation in defense levels within wild populations.


Assuntos
Arabidopsis/genética , Resistência à Doença/genética , Variação Genética , Indóis/metabolismo , Doenças das Plantas/genética , Pseudomonas syringae , Estresse Fisiológico/genética , Tiazóis/metabolismo , Anquirinas/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Sequência de Bases , Genótipo , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , Polimorfismo Genético , Temperatura
19.
Phytochemistry ; 94: 99-107, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23773298

RESUMO

The typical defense compounds of Plantaginaceae are the iridoid glycosides, which retard growth and/or enhance mortality of non-adapted herbivores. In plants, glycosidic defense compounds and hydrolytic enzymes often form a dual defense system, in which the glycosides are activated by the enzymes to exert biological effects. Yet, little is known about the activating enzymes in iridoid glycoside-containing plants. To examine the role of plant-derived ß-glucosidases in the dual defense system of two common plantain species, Plantago lanceolata and Plantago major, we determined the concentration of iridoid glycosides as well as the ß-glucosidase activity in leaves of different age. To investigate the presence of other leaf metabolites potentially involved in plant defense, we used a metabolic fingerprinting approach with ultra-high performance liquid chromatography coupled with time-of-flight-mass spectrometry. According to the optimal defense hypothesis, more valuable parts such as young leaves should be better protected than less valuable parts. Therefore, we expected that both, the concentrations of defense compounds as well as the ß-glucosidase activity, should be highest in younger leaves and decrease with increasing leaf age. Both species possessed ß-glucosidase activity, which hydrolyzed aucubin, one of the two most abundant iridoid glycosides in both plant species, with high activity. In line with the optimal defense hypothesis, the ß-glucosidase activity in both Plantago species as well as the concentration of defense-related metabolites such as iridoid glycosides correlated negatively to leaf age. When leaf extracts were incubated with bovine serum albumin and aucubin, SDS-PAGE revealed a protein-denaturing effect of the leaf extracts of both plantain species, suggesting that iridoid glycosides and plant ß-glucosidase interact in a dual defense system.


Assuntos
Glicosídeos Iridoides/metabolismo , Proteínas de Plantas/metabolismo , Plantago/metabolismo , beta-Glucosidase/metabolismo , Animais , Bovinos , Cromatografia Líquida de Alta Pressão/métodos , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Hidrólise , Glucosídeos Iridoides/metabolismo , Espectrometria de Massas/métodos , Extratos Vegetais/metabolismo , Folhas de Planta/química , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Plantago/classificação , Plantago/enzimologia , Análise de Componente Principal , Soroalbumina Bovina/metabolismo , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa