Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35214534

RESUMO

Lumbar spine stenosis (LSS) typically manifests with neurogenic claudication, altering patients' gait. The use of optoelectronic systems has allowed clinicians to perform 3D quantitative gait analysis to quantify and understand these alterations. Although several authors have presented analysis of spatiotemporal gait parameters, data concerning kinematic parameters is lacking. Fifteen patients with LSS were matched with 15 healthy controls. Quantitative gait analysis utilizing optoelectronic techniques was performed for each pair of subjects in a specialized laboratory. Statistical comparison of patients and controls was performed to determine differences in spatiotemporal parameters and the Gait Profile Score (GPS). Statistically significant differences were found between patient and control groups for all spatiotemporal parameters. Patients had significantly different overall GPS (p = 0.004) and had limited internal/external pelvic rotation (p < 0.001) and cranial/caudal movement (p = 0.034), limited hip extension (p = 0.012) and abduction/adduction (p = 0.012) and limited ankle plantar flexion (p < 0.001). In conclusion, patients with LSS have significantly altered gait patterns in three regions (pelvis, hip and ankle) compared to healthy controls. Analysis of kinematic graphs has given insight into gait pathophysiology of patients with LSS and the use of GPS will allow us to quantify surgical results in the future.


Assuntos
Estenose Espinal , Fenômenos Biomecânicos , Marcha , Análise da Marcha , Humanos , Pelve , Estenose Espinal/cirurgia
2.
Sports Biomech ; : 1-33, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34320904

RESUMO

The first objective was to test the validity, reliability and accuracy of paired inertial measurement units (IMUs) to assess absolute angles relative to Vicon and OptiTrack systems. The potential impacts of slow vs. rapid and intermittent vs. continuous movements were tested during 2D laboratory analyses and 3D ecological context analysis. The second objective was to test the IMUs alone in an ecological activity (i.e., front crawl) that encompassed the previous independent variables to quantify inter-cyclic variability. Slow and intermittent motion ensured high to reasonable validity, reliability and accuracy. Rapid motion revealed an out-of-phase pattern for temporal reliability and lower validity, which was also visible in 3D. Also, spatial reliability and accuracy decreased in 3D, mainly due to discrepancies in local maximums, whereas temporal reliability remained in-phase. For the second objective, inter-cyclic variability did not exceed 12° based on root mean square error (RMSE). Therefore, IMUs should be considered valuable supplements to optoelectronic systems if users carefully position the sensors in rigid clusters and calibrate them to integrate potential offsets. Drift correction by spline interpolation or normalisation of the absolute data should also be considered as additional techniques that increase IMU performance in ecological contexts of performance.

3.
Top Stroke Rehabil ; 26(6): 464-472, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31064281

RESUMO

Background and purpose: To review the methods used to analyze the kinematics of upper limbs (ULs) of healthy and poststroke adults, namely the motion capture systems and kinematic metrics. Summary of review: A database of articles published in the last decade was compiled using the following search terms combinations: ("upper extremity" OR "upper limb" OR arm) AND (kinematic OR motion OR movement) AND (analysis OR assessment OR measurement). The articles included in this review: (1) had the purpose to analyze objectively three-dimension kinematics of ULs, (2) studied functional movements or activities of daily living involving ULs, and (3) studied healthy and/or poststroke adults. Fourteen articles were included (four studied a healthy sample, three analyzed poststroke patients, and seven examined both poststroke and healthy participants). Conclusion: Most articles used optoelectronic systems with markers; however, the presentation of laboratory and task-specific errors is missing. Markerless systems, used in some studies, seem to be promising alternatives for implementation of kinematic analysis in hospitals and clinics, but the literature proving their validity is scarce. Most articles analyzed "joint kinematics" and "end-point kinematics," mainly related with reaching. The different stroke locations of the samples were not considered in their analysis and only three articles described their psychometric properties. Implication of key findings: Future research should validate portable motion capture systems, document their specific error at the acquisition place and for the studied task, include grasping and manipulation analysis, and describe psychometric properties.


Assuntos
Fenômenos Biomecânicos/fisiologia , Monitorização Fisiológica/instrumentação , Acidente Vascular Cerebral/fisiopatologia , Extremidade Superior/fisiopatologia , Humanos
4.
Arch Physiother ; 5: 8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-29340177

RESUMO

BACKGROUND: The analysis of joints kinematics is important in clinical practice and in research. Nowadays it is possible to evaluate the mobility of joints in vivo with different motion capture techniques available in the market. Optical systems use infrared cameras and reflective markers to evaluate body movements, while other systems use electromagnetic fields to detect position and orientation of sensors. The aim of this study was the evaluation of two motion capture systems based on different technologies (optical and electromagnetic) by comparing the distribution of finite helical axis (FHA) of rotation during controlled rotations of an object in different positions. METHODS: The distribution of position and angle errors of the FHA were extracted by optical and electromagnetic system recordings during a controlled rotation of a low friction stool in different positions in a controlled environment. RESULTS: The optical motion capture system showed lower angle and position errors in the distribution of FHA while the electromagnetic system had higher errors that increased with increasing distance from the antenna. CONCLUSIONS: The optical system showed lower errors in the estimation of FHA that could make it preferable with respect to electromagnetic systems during joint kinematics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa