Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Magn Reson Med ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39323069

RESUMO

PURPOSE: To investigate microstructural alterations induced by perfusion fixation in brain tissues using advanced diffusion MRI techniques and estimate their potential impact on the application of ex vivo models to in vivo microstructure. METHODS: We used oscillating gradient spin echo (OGSE) and b-tensor encoding diffusion MRI to examine in vivo and ex vivo microstructural differences in the marmoset brain. OGSE was used to shorten effective diffusion times, whereas b-tensor encoding allowed for the differentiation of isotropic and anisotropic kurtosis. Additionally, we performed Monte Carlo simulations to estimate the potential microstructural changes in the tissues. RESULTS: We report large changes (˜50%-60%) in kurtosis frequency dispersion (OGSE) and in both anisotropic and isotropic kurtosis (b-tensor encoding) after perfusion fixation. Structural MRI showed an average volume reduction of about 10%. Monte Carlo simulations indicated that these alterations could likely be attributed to extracellular fluid loss possibly combined with axon beading and increased dot compartment signal fraction. Little evidence was observed for reductions in axonal caliber. CONCLUSION: Our findings shed light on advanced MRI parameter changes that are induced by perfusion fixation and potential microstructural sources for these changes. This work also suggests that caution should be exercised when applying ex vivo models to infer in vivo tissue microstructure, as significant differences may arise.

2.
Magn Reson Med ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164611

RESUMO

PURPOSE: This study aims to assess how T2 heterogeneity biases IMPULSED-derived metrics of tissue microstructure in solid tumors and evaluate the potential of estimating multi-compartmental T2 and microstructural parameters simultaneously. METHODS: This study quantifies the impact of T2 relaxation on IMPULSED-derived microstructural parameters using computer simulations and in vivo multi-TE IMPULSED MRI in five tumor models, including brain, breast, prostate, melanoma, and colon cancer. A comprehensive T2 + IMPULSED method was developed to fit multi-compartmental T2 and microstructural parameters simultaneously. A Bayesian model selection approach was carried out voxel-wisely to determine if the T2 heterogeneity needs to be included in IMPULSED MRI in cancer. RESULTS: Simulations suggest that T2 heterogeneity has a minor effect on the estimation of d in tissues with intermediate or high cell density, but significantly biases the estimation of v in $$ {v}_{in} $$ with low cell density. For the in vivo animal experiments, all IMPULSED metrics except v in $$ {v}_{in} $$ are statistically independent on TE. For B16 tumors, the IMPULSED-derived v in $$ {v}_{in} $$ exhibited a notable increase with longer TEs. For MDA-MB-231 tumors, IMPULSED-derived v in $$ {v}_{in} $$ showed a significant increase with increasing TEs. The T2 + IMPULSED-derived T 2 in $$ {T}_2^{in} $$ of all five tumor models are consistently smaller than T 2 ex $$ {T}_2^{ex} $$ . CONCLUSIONS: The findings from this study highlight two key observations: (i) TE has a negligible impact on IMPULSED-derived cell sizes, and (ii) the TE-dependence of IMPULSED-derived intracellular volume fractions used in T2 + IMPULSED modeling to estimate T 2 in $$ {T}_2^{in} $$ and T 2 ex $$ {T}_2^{ex} $$ . These insights contribute to the ongoing development and refinement of non-invasive MRI techniques for measuring cell sizes.

3.
J Magn Reson Imaging ; 59(2): 575-584, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37218596

RESUMO

BACKGROUND: Breast cancer treatment response evaluation using the response evaluation criteria in solid tumors (RECIST) guidelines, based on tumor volume changes, has limitations, prompting interest in novel imaging markers for accurate therapeutic effect determination. PURPOSE: To use MRI-measured cell size as a new imaging biomarker for assessing chemotherapy response in breast cancer. STUDY TYPE: Longitudinal; animal model. STUDY POPULATION: Triple-negative human breast cancer cell (MDA-MB-231) pellets (4 groups, n = 7) treated with dimethyl sulfoxide (DMSO) or 10 nM of paclitaxel for 24, 48, and 96 hours, and 29 mice with MDA-MB-231 tumors in right hind limbs treated with paclitaxel (n = 16) or DMSO (n = 13) twice weekly for 3 weeks. FIELD STRENGTH/SEQUENCE: Oscillating gradient spin echo and pulsed gradient spin echo sequences at 4.7 T. ASSESSMENT: MDA-MB-231 cells were analyzed using flowcytometry and light microscopy to assess cell cycle phases and cell size distribution. MDA-MB-231 cell pellets were MR imaged. Mice were imaged weekly, with 9, 6, and 14 being sacrificed for histology after MRI at weeks 1, 2, and 3, respectively. Microstructural parameters of tumors/cell pellets were derived by fitting diffusion MRI data to a biophysical model. STATISTICAL TESTS: One-way ANOVA compared cell sizes and MR-derived parameters between treated and control samples. Repeated measures 2-way ANOVA with Bonferroni post-tests compared temporal changes in MR-derived parameters. A P-value <0.05 was considered statistically significant. RESULTS: In vitro experiments showed that the mean MR-derived cell sizes of paclitaxel-treated cells increased significantly with a 24-hours treatment and decreased (P = 0.06) with a 96-hour treatment. For in vivo xenograft experiments, the paclitaxel-treated tumors showed significant decreases in cell size at later weeks. MRI observations were supported by flowcytometry, light microscopy, and histology. DATA CONCLUSIONS: MR-derived cell size may characterize the cell shrinkage during treatment-induced apoptosis, and may potentially provide new insights into the assessment of therapeutic response. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 4.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Feminino , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Dimetil Sulfóxido/uso terapêutico , Linhagem Celular Tumoral , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Imageamento por Ressonância Magnética/métodos , Tamanho Celular
4.
J Magn Reson Imaging ; 59(3): 929-938, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37366349

RESUMO

BACKGROUND: Apparent diffusion coefficient is not specifically sensitive to tumor microstructure and therapy-induced cellular changes. PURPOSE: To investigate time-dependent diffusion imaging with the short-time-limit random walk with barriers model (STL-RWBM) for quantifying microstructure parameters and early cancer cellular response to therapy. STUDY TYPE: Prospective. POPULATION: Twenty-seven patients (median age of 58 years and 7.4% of females) with p16+/p16- oropharyngeal/oral cavity squamous cell carcinomas (OPSCC/OCSCC) underwent MRI scans before therapy, of which 16 patients had second scans at 2 weeks of the 7-weeks chemoradiation therapy (CRT). FIELD STRENGTH/SEQUENCE: 3-T, diffusion sequence with oscillating gradient spine echo (OGSE) and pulse gradient spin echo (PGSE). ASSESSMENT: Diffusion weighted images were acquired using OGSE and PGSE. Effective diffusion times were derived for the STL-RWBM to estimate free diffusion coefficient D0 , volume-to-surface area ratio of cellular membranes V/S, and cell membrane permeability κ. Mean values of these parameters were calculated in tumor volumes. STATISTICAL TESTS: Tumor microstructure parameters were compared with clinical stages of p16+ I-II OPSCC, p16+ III OPSCC, and p16- IV OCSCC by Spearman's rank correlation and with digital pathological analysis of a resected tissue sample. Tumor microstructure parameter responses during CRT in the 16 patients were assessed by paired t-tests. A P-value of <0.05 was considered statistically significant. RESULTS: The derived effective diffusion times affected estimated values of V/S and κ by 40%. The tumor V/S values were significantly correlated with clinical stages (r = 0.47) as an increase from low to high clinical stages. The in vivo estimated cell size agreed with one from pathological analysis of a tissue sample. Early tumor cellular responses showed a significant increase in D0 (14%, P = 0.03) and non-significant increases in κ (56%, P = 0.6) and V/S (10%, P = 0.1). DATA CONCLUSION: Effective diffusion time estimation might impact microstructure parameter estimation. The tumor V/S was correlated with OPSCC/OCSCC clinical stages. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Feminino , Humanos , Pessoa de Meia-Idade , Carcinoma de Células Escamosas de Cabeça e Pescoço , Estudos Prospectivos , Imageamento por Ressonância Magnética , Imagem de Difusão por Ressonância Magnética/métodos
5.
Neuroimage ; 279: 120328, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37586445

RESUMO

Measuring the time/frequency dependence of diffusion MRI is a promising approach to distinguish between the effects of different tissue microenvironments, such as membrane restriction, tissue heterogeneity, and compartmental water exchange. In this study, we measure the frequency dependence of diffusivity (D) and kurtosis (K) with oscillating gradient diffusion encoding waveforms and a diffusion kurtosis imaging (DKI) model in human brains using a high-performance, head-only MAGNUS gradient system, with a combination of b-values, oscillating frequencies (f), and echo time that has not been achieved in human studies before. Frequency dependence of diffusivity and kurtosis are observed in both global and local white matter (WM) and gray matter (GM) regions and characterized with a power-law model ∼Λ*fθ. The frequency dependences of diffusivity and kurtosis (including changes between fmin and fmax, Λ, and θ) vary over different WM and GM regions, indicating potential microstructural differences between regions. A trend of decreasing kurtosis over frequency in the short-time limit is successfully captured for in vivo human brains. The effects of gradient nonlinearity (GNL) on frequency-dependent diffusivity and kurtosis measurements are investigated and corrected. Our results show that the GNL has prominent scaling effects on the measured diffusivity values (3.5∼5.5% difference in the global WM and 6∼8% difference in the global cortex) and subsequently affects the corresponding power-law parameters (Λ, θ) while having a marginal influence on the measured kurtosis values (<0.05% difference) and power-law parameters (Λ, θ). This study expands previous OGSE studies and further demonstrates the translatability of frequency-dependent diffusivity and kurtosis measurements to human brains, which may provide new opportunities to probe human brain microstructure in health and disease.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Humanos , Imagem de Tensor de Difusão/métodos , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem
6.
Magn Reson Med ; 90(5): 1789-1801, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37335831

RESUMO

PURPOSE: We hypothesized that the time-dependent diffusivity at short diffusion times, as measured by oscillating gradient spin echo (OGSE) diffusion MRI, can characterize tissue microstructures in glioma patients. THEORY AND METHODS: Five adult patients with known diffuse glioma, including two pre-surgical and three with new enhancing lesions after treatment for high-grade glioma, were scanned in an ultra-high-performance gradient 3.0T MRI system. OGSE diffusion MRI at 30-100 Hz and pulsed gradient spin echo diffusion imaging (approximated as 0 Hz) were obtained. The ADC and trace-diffusion-weighted image at each acquired frequency were calculated, that is, ADC (f) and TraceDWI (f). RESULTS: In pre-surgical patients, biopsy-confirmed solid enhancing tumor in a high-grade glioblastoma showed higher ADC ( f ) ADC ( 0 Hz ) $$ \frac{\mathrm{ADC}\ (f)}{\mathrm{ADC}\ \left(0\ \mathrm{Hz}\right)} $$ and lower TraceDWI ( f ) TraceDWI ( 0 Hz ) $$ \frac{\mathrm{TraceDWI}\ (f)}{\mathrm{TraceDWI}\ \left(0\ \mathrm{Hz}\right)} $$ , compared to that at same OGSE frequency in a low-grade astrocytoma. In post-treatment patients, the enhancing lesions of two patients who were diagnosed with tumor progression contained more voxels with high ADC ( f ) ADC ( 0 Hz ) $$ \frac{\mathrm{ADC}\ (f)}{\mathrm{ADC}\ \left(0\ \mathrm{Hz}\right)} $$ and low TraceDWI ( f ) TraceDWI ( 0 Hz ) $$ \frac{\mathrm{TraceDWI}\left(\mathrm{f}\right)}{\mathrm{TraceDWI}\left(0\ \mathrm{Hz}\right)} $$ , compared to the enhancing lesions of a patient who was diagnosed with treatment effect. Non-enhancing T2 signal abnormality lesions in both the pre-surgical high-grade glioblastoma and post-treatment tumor progressions showed regions with high ADC ( f ) ADC ( 0 Hz ) $$ \frac{\mathrm{ADC}\ (f)}{\mathrm{ADC}\ \left(0\ \mathrm{Hz}\right)} $$ and low TraceDWI ( f ) TraceDWI ( 0 Hz ) $$ \frac{\mathrm{TraceDWI}\ \left(\mathrm{f}\right)}{\mathrm{TraceDWI}\ \left(0\ \mathrm{Hz}\right)} $$ , consistent with infiltrative tumor. The solid tumor of the glioblastoma, the enhancing lesions of post-treatment tumor progressions, and the suspected infiltrative tumors showed high diffusion time-dependency from 30 to 100 Hz, consistent with high intra-tumoral volume fraction (cellular density). CONCLUSION: Different characteristics of OGSE-based time-dependent diffusivity can reveal heterogenous tissue microstructures that indicate cellular density in glioma patients.


Assuntos
Glioblastoma , Glioma , Adulto , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/cirurgia , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Difusão
7.
Magn Reson Med ; 89(6): 2432-2440, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36740894

RESUMO

PURPOSE: To quantify the variations of the power-law dependences on diffusion time t or gradient frequency f $$ f $$ of extracellular water diffusion measured by diffusion MRI (dMRI). METHODS: Model cellular systems containing only extracellular water were used to investigate the t / f $$ t/f $$ dependence of D ex $$ {D}_{ex} $$ , the extracellular diffusion coefficient. Computer simulations used a randomly packed tissue model with realistic intracellular volume fractions and cell sizes. DMRI measurements were performed on samples consisting of liposomes containing heavy water(D2 O, deuterium oxide) dispersed in regular water (H2 O). D ex $$ {D}_{ex} $$ was obtained over a broad t $$ t $$ range (∼1-1000 ms) and then fit power-law equations D ex ( t ) = D const + const · t - ϑ t $$ {D}_{ex}(t)={D}_{\mathrm{const}}+\mathrm{const}\cdotp {t}^{-{\vartheta}_t} $$ and D ex ( f ) = D const + const · f ϑ f $$ {D}_{ex}(f)={D}_{\mathrm{const}}+\mathrm{const}\cdotp {f}^{\vartheta_f} $$ . RESULTS: Both simulated and experimental results suggest that no single power-law adequately describes the behavior of D ex $$ {D}_{ex} $$ over the range of diffusion times of most interest in practical dMRI. Previous theoretical predictions are accurate over only limited t $$ t $$ ranges; for example, θ t = θ f = - 1 2 $$ {\theta}_t={\theta}_f=-\frac{1}{2} $$ is valid only for short times, whereas θ t = 1 $$ {\theta}_t=1 $$ or θ f = 3 2 $$ {\theta}_f=\frac{3}{2} $$ is valid only for long times but cannot describe other ranges simultaneously. For the specific t $$ t $$ range of 5-70 ms used in typical human dMRI measurements, θ t = θ f = 1 $$ {\theta}_t={\theta}_f=1 $$ matches the data well empirically. CONCLUSION: The optimal power-law fit of extracellular diffusion varies with diffusion time. The dependency obtained at short or long t $$ t $$ limits cannot be applied to typical dMRI measurements in human cancer or liver. It is essential to determine the appropriate diffusion time range when modeling extracellular diffusion in dMRI-based quantitative microstructural imaging.


Assuntos
Imagem de Difusão por Ressonância Magnética , Neoplasias , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Difusão , Modelos Biológicos , Simulação por Computador
8.
Magn Reson Med ; 89(2): 756-766, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36198030

RESUMO

PURPOSE: Oscillating gradient spin-echo (OGSE) sequences have demonstrated an ability to probe time-dependent microstructural features, although they often suffer from low SNR due to increased TEs. In this work we introduce frequency-tuned bipolar (FTB) gradients as a variation of oscillating gradients with reduced TE and demonstrate their utility by mapping the frequency dispersion of kurtosis in human subjects. METHODS: An FTB oscillating gradient waveform is presented that provides encoding of 1.5 net oscillation periods, thereby reducing the TE of the acquisition. Simulations were performed to determine an optimal protocol based on the SNR of kurtosis frequency dispersion-defined as the difference in kurtosis between pulsed and oscillating gradient acquisitions. Healthy human subjects were scanned at 7T using pulsed gradient and an optimized 23 Hz FTB protocol, which featured a maximum b-value of 2500 s/mm2 . In addition, to directly compare existing methods, measurements using traditional cosine OGSE were also acquired. RESULTS: FTB oscillating gradients demonstrated equivalent frequency-dependent diffusion measurements compared with cosine-modulated OGSE while enabling a significant reduction in TE. Optimization and in vivo results suggest that FTB gradients provide increased SNR of kurtosis dispersion maps compared with traditional cosine OGSE. The optimized FTB gradient protocol demonstrated consistent reductions in apparent kurtosis values and increased diffusivity in generated frequency dispersion maps. CONCLUSIONS: This work presents an alternative to traditional cosine OGSE sequences, enabling more time-efficient acquisitions of frequency-dependent diffusion quantities as demonstrated through in vivo kurtosis frequency dispersion maps.


Assuntos
Encéfalo , Imagem de Difusão por Ressonância Magnética , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Difusão
9.
J Magn Reson Imaging ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37886909

RESUMO

BACKGROUND: Oscillating gradient diffusion-weighted imaging (DWI) enables elucidation of microstructural characteristics in cancers; however, there are limited data to evaluate its utility in patients with endometrial cancer. PURPOSE: To investigate the utility of oscillating gradient DWI for risk stratification in patients with uterine endometrial cancer compared with conventional pulsed gradient DWI. STUDY TYPE: Retrospective. SUBJECTS: Sixty-three women (mean age: 58 [range: 32-85] years) with endometrial cancer. FIELD STRENGTH/SEQUENCE: 3 T MRI including DWI using oscillating gradient spin-echo (OGSE) and pulsed gradient spin-echo (PGSE) research sequences. ASSESSMENT: Mean value of the apparent diffusion coefficient (ADC) values for OGSE (ADCOGSE ) and PGSE (ADCPGSE ) as well as the ADC ratio (ADCOGSE /ADCPGSE ) within endometrial cancer were measured using regions of interest. Prognostic factors (histological grade, deep myometrial invasion, lymphovascular invasion, International Federation of Gynecology and Obstetrics [FIGO] stage, and prognostic risk classification) were tabulated. STATISTICAL TESTS: Interobserver agreement was analyzed by calculating the intraclass correlation coefficient. The associations of ADCOGSE , ADCPGSE , and ADCOGSE /ADCPGSE with prognostic factors were examined using the Kendall rank correlation coefficient, Mann-Whitney U test, and receiver operating characteristic (ROC) curve. A P value of <0.05 was statistically significant. RESULTS: Compared with ADCOGSE and ADCPGSE , ADCOGSE /ADCPGSE was significantly and strongly correlated with histological grade (observer 1, τ = 0.563; observer 2, τ = 0.456), FIGO stage (observer 1, τ = 0.354; observer 2, τ = 0.324), and prognostic risk classification (observer 1, τ = 0.456; observer 2, τ = 0.385). The area under the ROC curves of ADCOGSE /ADCPGSE for histological grade (observer 1, 0.92, 95% confidence intervals [CIs]: 0.83-0.98; observer 2, 0.84, 95% CI: 0.73-0.92) and prognostic risk (observer 1, 0.80, 95% CI: 0.68-0.89; observer 2, 0.76, 95% CI: 0.63-0.86) were significantly higher than that of ADCOGSE and ADCPGSE . DATA CONCLUSION: The ADC ratio obtained via oscillating gradient and pulsed gradient DWIs might be useful imaging biomarkers for risk stratification in patients with endometrial cancer. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

10.
J Magn Reson Imaging ; 57(2): 446-453, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35723048

RESUMO

BACKGROUND: Oscillating gradient diffusion MRI (dMRI) enables measurements at a short diffusion-time (td ), but it is challenging for clinical systems. Particularly, the low b-value and low resolution may give rise to cerebrospinal fluid (CSF) contamination. PURPOSE: To assess the effect of CSF partial volume on td -dMRI measurements and efficacy of inversion-recovery (IR) prepared oscillating and pulsed gradient dMRI sequence to improve td -dMRI measurements in the human brain. STUDY TYPE: Prospective. SUBJECTS: Ten normal volunteers and six glioma patients. FIELD STRENGTH/SEQUENCE: A 3 T; three-dimensional (3D) IR-prepared oscillating gradient-prepared gradient spin-echo (GRASE) and two-dimensional (2D) IR-prepared oscillating gradient echo-planar imaging (EPI) sequences. ASSESSMENT: We assessed the td -dependent patterns of apparent diffusion coefficient (ADC) in several gray and white matter structures, including the hippocampal subfields (head, body, and tail), cortical gray matter, thalamus, and posterior white matter in normal volunteers. Pulsed gradient (0 Hz) and oscillating gradients at frequencies of 20 Hz, 40 Hz, and 60 Hz dMRI were acquired with GRASE and EPI sequences with or without the IR module. We also tested the td -dependency patterns in glioma patients using the EPI sequence with or without the IR module. STATISTICAL TESTS: The differences in ADC across the different td s were compared by one-way ANOVA followed by post hoc pairwise t-tests with Bonferroni correction. RESULTS: In the healthy subjects, brain regions that were possibly contaminated by CSF signals, such as the hippocampus (head, body, and tail) and cortical gray matter, td -dependent ADC changes were only significant with the IR-prepared 2D and 3D sequences but not with the non-IR sequences. In brain glioblastomas patients, significantly higher td -dependence was observed in the tumor region with the IR module than that without IR (slope = 0.0196 µm2 /msec2 vs. 0.0034 µm2 /msec2 ). CONCLUSION: The IR-prepared sequence effectively suppressed the CSF partial volume effect and significantly improved the td -dependent measurements in the human brain. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Estudos Prospectivos , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem
11.
Neuroimage ; 227: 117619, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33301942

RESUMO

Noninvasive estimation of mean axon diameter presents a new opportunity to explore white matter plasticity, development, and pathology. Several diffusion-weighted MRI (DW-MRI) methods have been proposed to measure the average axon diameter in white matter, but they typically require many diffusion encoding measurements and complicated mathematical models to fit the signal to multiple tissue compartments, including intra- and extra-axonal spaces. Here, Monte Carlo simulations uncovered a straightforward DW-MRI metric of axon diameter: the change in radial apparent diffusion coefficient estimated at different effective diffusion times, ΔD⊥. Simulations indicated that this metric increases monotonically within a relevant range of effective mean axon diameter while being insensitive to changes in extra-axonal volume fraction, axon diameter distribution, g-ratio, and influence of myelin water. Also, a monotonic relationship was found to exist for signals coming from both intra- and extra-axonal compartments. The slope in ΔD⊥ with effective axon diameter increased with the difference in diffusion time of both oscillating and pulsed gradient diffusion sequences.


Assuntos
Axônios , Imagem de Difusão por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Algoritmos , Simulação por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Método de Monte Carlo
12.
Magn Reson Med ; 85(2): 748-761, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32936478

RESUMO

PURPOSE: This report introduces and validates a new diffusion MRI-based method, termed MRI-cytometry, which can noninvasively map intravoxel, nonparametric cell size distributions in tissues. METHODS: MRI was used to acquire diffusion MRI signals with a range of diffusion times and gradient factors, and a model was fit to these data to derive estimates of cell size distributions. We implemented a 2-step fitting method to avoid noise-induced artificial peaks and provide reliable estimates of tumor cell size distributions. Computer simulations in silico, experimental measurements on cultured cells in vitro, and animal xenografts in vivo were used to validate the accuracy and precision of the method. Tumors in 7 patients with breast cancer were also imaged and analyzed using this MRI-cytometry approach on a clinical 3 Tesla MRI scanner. RESULTS: Simulations and experimental results confirm that MRI-cytometry can reliably map intravoxel, nonparametric cell size distributions and has the potential to discriminate smaller and larger cells. The application in breast cancer patients demonstrates the feasibility of direct translation of MRI-cytometry to clinical applications. CONCLUSION: The proposed MRI-cytometry method can characterize nonparametric cell size distributions in human tumors, which potentially provides a practical imaging approach to derive specific histopathological information on biological tissues.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imageamento por Ressonância Magnética , Animais , Tamanho Celular , Simulação por Computador , Difusão , Humanos
13.
Magn Reson Med ; 85(1): 78-88, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32643240

RESUMO

PURPOSE: Oscillating gradient (OG) enables the access of short diffusion times for time-dependent diffusion MRI (dMRI); however, it poses several technical challenges for clinical use. This study proposes a 3D oscillating gradient-prepared gradient spin-echo (OGprep-GRASE) sequence to improve SNR and shorten acquisition time for OG dMRI on clinical scanners. METHODS: The 3D OGprep-GRASE sequence consisted of global saturation, diffusion encoding, fat saturation, and GRASE readout modules. Multiplexed sensitivity-encoding reconstruction was used to correct the phase errors between multiple shots. We compared the scan time and SNR of the proposed sequence and the conventional 2D-EPI sequence for OG dMRI at 30-90-mm slice coverage. We also examined the time-dependent diffusivity changes with OG dMRI acquired at frequencies of 50 Hz and 25 Hz and pulsed-gradient dMRI at diffusion times of 30 ms and 60 ms. RESULTS: The OGprep-GRASE sequence reduced the scan time by a factor of 1.38, and increased the SNR by 1.74-2.27 times compared with 2D EPI for relatively thick slice coverage (60-90 mm). The SNR gain led to improved diffusion-tensor reconstruction in the multishot protocols. Image distortion in 2D-EPI images was also reduced in GRASE images. Diffusivity measurements from the pulsed-gradient dMRI and OG dMRI showed clear diffusion-time dependency in the white matter and gray matter of the human brain, using both the GRASE and EPI sequences. CONCLUSION: The 3D OGprep-GRASE sequence improved scan time and SNR and reduced image distortion compared with the 2D multislice acquisition for OG dMRI on a 3T clinical system, which may facilitate the clinical translation of time-dependent dMRI.


Assuntos
Imagem de Difusão por Ressonância Magnética , Substância Branca , Encéfalo/diagnóstico por imagem , Substância Cinzenta , Humanos , Imageamento por Ressonância Magnética
14.
Magn Reson Med ; 83(6): 2197-2208, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31762110

RESUMO

PURPOSE: Oscillating gradient spin-echo (OGSE) diffusion MRI provides information about the microstructure of biological tissues by means of the frequency dependence of the apparent diffusion coefficient (ADC). ADC dependence on OGSE frequency has been explored in numerous rodent studies, but applications in the human brain have been limited and have suffered from low contrast between different frequencies, long scan times, and a limited exploration of the nature of the ADC dependence on frequency. THEORY AND METHODS: Multiple frequency OGSE acquisitions were acquired in healthy subjects at 7T to explore the power-law frequency dependence of ADC, the "diffusion dispersion." Furthermore, a method for optimizing the estimation of the ADC difference between different OGSE frequencies was developed, which enabled the design of a highly efficient protocol for mapping diffusion dispersion. RESULTS: For the first time, evidence of a linear dependence of ADC on the square root of frequency in healthy human white matter was obtained. Using the optimized protocol, high-quality, full-brain maps of apparent diffusion dispersion rate were also demonstrated at an isotropic resolution of 2 mm in a scan time of 6 min. CONCLUSIONS: This work sheds light on the nature of diffusion dispersion in the healthy human brain and introduces full-brain diffusion dispersion mapping at clinically relevant scan times. These advances may lead to new biomarkers of pathology or improved microstructural modeling.


Assuntos
Encéfalo , Imagem de Difusão por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Difusão , Humanos , Imageamento por Ressonância Magnética
15.
Magn Reson Med ; 83(6): 2002-2014, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31765494

RESUMO

PURPOSE: Cell size is a fundamental characteristic of all tissues, and changes in cell size in cancer reflect tumor status and response to treatments, such as apoptosis and cell-cycle arrest. Unfortunately, cell size can currently be obtained only by pathological evaluation of tumor tissue samples obtained invasively. Previous imaging approaches are limited to preclinical MRI scanners or require relatively long acquisition times that are impractical for clinical imaging. There is a need to develop cell-size imaging for clinical applications. METHODS: We propose a clinically feasible IMPULSED (imaging microstructural parameters using limited spectrally edited diffusion) approach that can characterize mean cell sizes in solid tumors. We report the use of a combination of pulse sequences, using different gradient waveforms implemented on clinical MRI scanners and analytical equations based on these waveforms to analyze diffusion-weighted MRI signals and derive specific microstructural parameters such as cell size. We also describe comprehensive validations of this approach using computer simulations, cell experiments in vitro, and animal experiments in vivo and demonstrate applications in preoperative breast cancer patients. RESULTS: With fast acquisitions (~7 minutes), IMPULSED can provide high-resolution (1.3 mm in-plane) mapping of mean cell size of human tumors in vivo on clinical 3T MRI scanners. All validations suggest that IMPULSED provides accurate and reliable measurements of mean cell size. CONCLUSION: The proposed IMPULSED method can assess cell-size variations in tumors of breast cancer patients, which may have the potential to assess early response to neoadjuvant therapy.


Assuntos
Neoplasias da Mama , Imageamento por Ressonância Magnética , Animais , Neoplasias da Mama/diagnóstico por imagem , Tamanho Celular , Imagem de Difusão por Ressonância Magnética , Humanos , Sensibilidade e Especificidade
16.
Magn Reson Med ; 84(3): 1564-1578, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32022313

RESUMO

PURPOSE: To investigate diffusion-time dependency of diffusional kurtosis in the mouse brain using pulsed-gradient spin-echo (PGSE) and oscillating-gradient spin-echo (OGSE) sequences. METHODS: 3D PGSE and OGSE kurtosis tensor data were acquired from ex vivo brains of adult, cuprizone-treated, and age-matched control mice with diffusion-time (tD ) ~ 20 ms and frequency (f) = 70 Hz, respectively. Further, 2D acquisitions were performed at multiple times/frequencies ranging from f = 140 Hz to tD = 30 ms with b-values up to 4000 s/mm2 . Monte Carlo simulations were used to investigate the coupled effects of varying restriction size and permeability on time/frequency-dependence of kurtosis with both diffusion-encoding schemes. Simulations and experiments were further performed to investigate the effect of varying number of cycles in OGSE waveforms. RESULTS: Kurtosis and diffusivity maps exhibited significant region-specific changes with diffusion time/frequency across both gray and white matter areas. PGSE- and OGSE-based kurtosis maps showed reversed contrast between gray matter regions in the cerebellar and cerebral cortex. Localized time/frequency-dependent changes in kurtosis tensor metrics were found in the splenium of the corpus callosum in cuprizone-treated mouse brains, corresponding to regional demyelination seen with histological assessment. Monte Carlo simulations showed that kurtosis estimates with pulsed- and oscillating-gradient waveforms differ in their sensitivity to exchange. Both simulations and experiments showed dependence of kurtosis on number of cycles in OGSE waveforms for non-zero permeability. CONCLUSION: The results show significant time/frequency-dependency of diffusional kurtosis in the mouse brain, which can provide sensitivity to probe intrinsic cellular heterogeneity and pathological alterations in gray and white matter.


Assuntos
Substância Branca , Animais , Encéfalo/diagnóstico por imagem , Corpo Caloso , Difusão , Imagem de Difusão por Ressonância Magnética , Camundongos
17.
J Magn Reson Imaging ; 51(4): 1065-1074, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31507025

RESUMO

BACKGROUND: In contrast to classical pulsed gradient diffusion-weighted MRI, oscillating gradient diffusion-weighted MR imaging (DWI) is sensitive to short distance diffusion changes at the intracellular level. PURPOSE: To compare the diagnostic performance of pulsed and oscillating DWI for characterizing hepatocellular nodules in a rat model of hepatic cirrhosis. STUDY TYPE: Prospective, experimental study. ANIMAL MODEL: Cirrhosis was induced by weekly intraperitoneal injection of diethylnitrosamine in Wistar rats. FIELD STRENGTH/SEQUENCE: Ex vivo liver MRI was performed at 7T with T1 -weighted, T2 -weighted, pulsed, and oscillating gradient diffusion-weighted sequences. ASSESSMENT: Apparent diffusion coefficient from pulsed (ADCpulsed ) and oscillating gradient (ADCoscillating ) sequences was calculated in 82 nodules identified on the T1 /T2 -weighted images and on pathological examination. Two pathologists classified the nodules in three categories: benign (regenerative and low-grade dysplastic nodules), with intermediate malignancy (high-grade dysplastic nodules and early hepatocellular carcinomas) and overtly malignant (progressed hepatocellular carcinomas). STATISTICAL TESTS: Differences between groups were assessed with Kruskal-Wallis and Mann-Whitney tests. RESULTS: ADC, mainly ADCoscillating , increased in the group of nodules with intermediate malignancy (ADCpulsed : 0.75 ± 0.25 × 10-3 mm2 /s vs. 0.64 ± 0.07 × 10-3 mm2 /s in benign nodules, P = 0.025; ADCoscillating : 0.81 ± 0.20 × 10-3 mm2 /s vs. 0.65 ± 0.13 × 10-3 mm2 /s, P = 0.0008) and ADCpulsed decreased in the group of progressed hepatocellular carcinomas (ADCpulsed : 0.60 ± 0.08 × 10-3 mm2 /s, P = 0.042; ADCoscillating : 0.68 ± 0.08 × 10-3 mm2 /s, P = 0.1). DATA CONCLUSION: ADC during hepatocarcinogenesis in rats increased in nodules with intermediate malignancy and decreased in progressed hepatocellular carcinomas. Our results suggest that oscillating gradient DWI is more sensitive to the early steps of hepatocarcinogenesis and might be useful for differentiating between high-grade dysplastic nodules / early hepatocellular carcinomas and regenerating nodules / low-grade dysplastic nodules. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2020;51:1065-1074.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/diagnóstico por imagem , Meios de Contraste , Imagem de Difusão por Ressonância Magnética , Cirrose Hepática/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Prospectivos , Ratos , Ratos Wistar
18.
Magn Reson Med ; 82(6): 2225-2235, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31267578

RESUMO

PURPOSE: To investigate the diffusion time (TD ) dependence of intravoxel incoherent motion (IVIM) signals in the brain. METHODS: A 3-compartment IVIM model was proposed to characterize 2 types of microcirculatory flows in addition to tissue water in the brain: flows that cross multiple vascular segments (pseudo-diffusive) and flows that stay in 1 segment (ballistic) within TD . The model was first evaluated using simulated flow signals. Experimentally, flow-compensated (FC) pulsed-gradient spin-echo (PGSE) and oscillating-gradient spin-echo (OGSE) sequences were tested using a flow phantom and then used to examine IVIM signals in the mouse brain with TD ranging from ~2.5 ms to 40 ms on an 11.7T scanner. RESULTS: By fitting the model to simulated flow signals, we demonstrated the TD dependency of the estimated fraction of pseudo-diffusive flow and the pseudo-diffusion coefficient (D*), which were dictated by the characteristic timescale of microcirculatory flow (τ). Flow phantom experiments validated that the OGSE and FC-PGSE sequences were not susceptible to the change in flow velocity. In vivo mouse brain data showed that both the estimated fraction of pseudo-diffusive flow and D* increased significantly as TD increased. CONCLUSION: We demonstrated that IVIM signals measured in the brain are TD -dependent, potentially because more microcirculatory flows approach the pseudo-diffusive limit as TD increases with respect to τ. Measuring the TD dependency of IVIM signals may provide additional information on microvascular flows in the brain.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos , Movimento (Física) , Animais , Simulação por Computador , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação , Imagens de Fantasmas , Fatores de Tempo
19.
Neuroimage ; 182: 314-328, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28774648

RESUMO

Mapping axon diameters within the central and peripheral nervous system could play an important role in our understanding of nerve pathways, and help diagnose and monitor an array of neurological disorders. Numerous diffusion MRI methods have been proposed for imaging axon diameters, most of which use conventional single diffusion encoding (SDE) spin echo sequences. However, a growing number of studies show that oscillating gradient spin echo (OGSE) sequences can provide additional advantages over conventional SDE sequences. Recent theoretical results suggest that this is especially the case in realistic scenarios, such as when fibres have unknown or dispersed orientation. In the present study, we adopt the ActiveAx approach to experimentally investigate the extent of these advantages by comparing the performances of SDE and trapezoidal OGSE in viable nerve tissue. We optimise SDE and OGSE ActiveAx protocols for a rat peripheral nerve tissue and test their performance using Monte Carlo simulations and a 800 mT/m gradient strength pre-clinical imaging experiment. The imaging experiment uses excised sciatic nerve from a rat's leg placed in a MRI compatible viable isolated tissue (VIT) maintenance chamber, which keeps the tissue in a viable physiological state that preserves the structural complexity of the nerve and enables lengthy scan times. We compare model estimates to histology, which we perform on the nerve post scanning. Optimisation produces a three-shell SDE and OGSE ActiveAx protocol, with the OGSE protocol consisting of one SDE sequence and two low-frequency oscillating gradient waveform sequences. Both simulation and imaging results show that the OGSE ActiveAx estimates of the axon diameter index have a higher accuracy and a higher precision compared to those from SDE. Histology estimates of the axon diameter index in our nerve tissue samples are 4-5.8 µm and these are excellently matched with the OGSE estimates 4.2-6.5 µm, while SDE overestimates at 5.2-8 µm for the same sample. We found OGSE estimates to be more precise with on average a 0.5 µm standard deviation compared to the SDE estimates which have a 2 µm standard deviation. When testing the robustness of the estimates when the number of the diffusion gradient directions reduces, we found that both OGSE and SDE estimates are affected, however OGSE is more robust to these changes than the SDE. Overall, these results suggest, quantitatively and in in vivo conditions, that low-frequency OGSE sequences may provide improved accuracy of axon diameter mapping compared to standard SDE sequences.


Assuntos
Axônios , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Nervo Isquiático/diagnóstico por imagem , Animais , Simulação por Computador , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/normas , Imageamento por Ressonância Magnética/normas , Método de Monte Carlo , Neuroimagem/normas , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade
20.
NMR Biomed ; 31(6): e3917, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29601111

RESUMO

Recent advances in diffusion MRI employ multiple diffusion encoding schemes with varying diffusion direction, weighting, and diffusion time to investigate specific microstructural properties in biological tissues. In this study, we examined time-dependent diffusion kurtosis contrast in adult mouse brains and in neonatal mouse brains after hypoxic-ischemic (HI) injury. In vivo diffusion kurtosis maps were acquired with a short diffusion time using an oscillating gradient spin echo (OGSE) sequence at 100 Hz and with a relatively long diffusion time (20 ms) using a pulsed gradient spin echo (PGSE) sequence. In the adult mouse brain, we found that the cortex and hippocampus showed larger differences between OGSE kurtosis and PGSE kurtosis than major white matter tracts. In neonatal mouse brains with unilateral HI injury, the OGSE kurtosis map overall provided stronger edema contrast than the PGSE kurtosis map, and the differences between OGSE and PGSE kurtosis measurements in the edema region reflected heterogeneity of injury. This is the first in vivo study that has demonstrated multi-direction OGSE kurtosis contrasts in the mouse brain. Comparing PGSE and OGSE kurtosis measures may provide additional information on microstructural changes after ischemic stroke.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Tensor de Difusão , Animais , Animais Recém-Nascidos , Giro Denteado/diagnóstico por imagem , Giro Denteado/patologia , Feminino , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Hipóxia-Isquemia Encefálica/patologia , Camundongos , Camundongos Endogâmicos C57BL , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa