Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 233(2): 781-794, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34784058

RESUMO

The evolutionary and ecological story of coccolithophores poses questions about their heterotrophy, surviving darkness after the end-Cretaceous asteroid impact as well as survival in the deep ocean twilight zone. Uptake of dissolved organic carbon might be an alternative nutritional strategy for supply of energy and carbon molecules. Using long-term batch culture experiments, we examined coccolithophore growth and maintenance on organic compounds in darkness. Radiolabelled experiments were performed to study the uptake kinetics. Pulse-chase experiments were used to examine the uptake into unassimilated, exchangeable pools vs assimilated, nonexchangeable pools. We found that coccolithophores were able to survive and maintain their metabolism for up to 30 d in darkness, accomplishing about one cell division. The concentration dependence for uptake was similar to the concentration dependence for growth in Cruciplacolithus neohelis, suggesting that it was taking up carbon compounds and immediately incorporating them into biomass. We recorded net incorporation of radioactivity into the particulate inorganic fraction. We conclude that osmotrophy provides nutritional flexibility and supports long-term survival in light intensities well below threshold for photosynthesis. The incorporation of dissolved organic matter into particulate inorganic carbon, raises fundamental questions about the role of the alkalinity pump and the alkalinity balance in the sea.


Assuntos
Matéria Orgânica Dissolvida , Haptófitas , Carbono/metabolismo , Escuridão , Fotossíntese
2.
Proc Natl Acad Sci U S A ; 116(12): 5613-5622, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30842288

RESUMO

Many microbes acquire metabolites in a "feeding" process where complex polymers are broken down in the environment to their subunits. The subsequent uptake of soluble metabolites by a cell, sometimes called osmotrophy, is facilitated by transporter proteins. As such, the diversification of osmotrophic microorganisms is closely tied to the diversification of transporter functions. Horizontal gene transfer (HGT) has been suggested to produce genetic variation that can lead to adaptation, allowing lineages to acquire traits and expand niche ranges. Transporter genes often encode single-gene phenotypes and tend to have low protein-protein interaction complexity and, as such, are potential candidates for HGT. Here we test the idea that HGT has underpinned the expansion of metabolic potential and substrate utilization via transfer of transporter-encoding genes. Using phylogenomics, we identify seven cases of transporter-gene HGT between fungal phyla, and investigate compatibility, localization, function, and fitness consequences when these genes are expressed in Saccharomyces cerevisiae Using this approach, we demonstrate that the transporters identified can alter how fungi utilize a range of metabolites, including peptides, polyols, and sugars. We then show, for one model gene, that transporter gene acquisition by HGT can significantly alter the fitness landscape of S. cerevisiae We therefore provide evidence that transporter HGT occurs between fungi, alters how fungi can acquire metabolites, and can drive gain in fitness. We propose a "transporter-gene acquisition ratchet," where transporter repertoires are continually augmented by duplication, HGT, and differential loss, collectively acting to overwrite, fine-tune, and diversify the complement of transporters present in a genome.


Assuntos
Transferência Genética Horizontal/genética , Aptidão Genética/genética , Saccharomyces cerevisiae/genética , Evolução Biológica , Evolução Molecular , Fungos/genética , Genoma , Proteínas de Membrana Transportadoras/genética , Fenótipo , Filogenia , Proteínas de Saccharomyces cerevisiae/genética
3.
Genomics ; 112(6): 5037-5043, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32941984

RESUMO

Horizontal gene transfer (HGT) is the transmission of genetic material between different evolutionary lineages and is believed to be an important source of genomic innovation in fungi. In this study, we searched for prokaryotic-derived HGTs in 23 fully sequenced genomes using a comprehensive phylogenomic pipeline followed by manual curation. We found strong support for 60 HGT events comprising 190 genes putatively acquired from bacteria. HGT affected all Penicillium species to various degrees. Gene duplication events happened to 3 HGT genes after the transmission. Most HGT events include genes encoding a variety of enzymes, which are associated with sugar, amino acid, and lipid metabolism. Transcriptome data from 6 Penicillium species revealed that 33 of 35 HGT genes showed expression under the conditions tested and 16 genes were differentially expressed. Our results suggest an important role for inter-domain gene transfers in shaping the genome of Penicillium fungi.


Assuntos
Transferência Genética Horizontal , Penicillium/genética , Expressão Gênica , Genoma Fúngico , Redes e Vias Metabólicas/genética , Penicillium/metabolismo
4.
Ecol Lett ; 20(2): 246-263, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28032461

RESUMO

There is increasing awareness that many terrestrial and aquatic organisms are not strictly heterotrophic or autotrophic but rather mixotrophic. Mixotrophy is an intermediate nutritional strategy, merging autotrophy and heterotrophy to acquire organic carbon and/or other elements, mainly N, P or Fe. We show that both terrestrial and aquatic mixotrophs fall into three categories, namely necrotrophic (where autotrophs prey on other organisms), biotrophic (where heterotrophs gain autotrophy by symbiosis) and absorbotrophic (where autotrophs take up environmental organic molecules). Here we discuss their physiological and ecological relevance since mixotrophy is found in virtually every ecosystem and occurs across the whole eukaryotic phylogeny, suggesting an evolutionary pressure towards mixotrophy. Ecosystem dynamics tend to separate light from non-carbon nutrients (N and P resources): the biological pump and water stratification in aquatic ecosystems deplete non-carbon nutrients from the photic zone, while terrestrial plant successions create a canopy layer with light but devoid of non-carbon soil nutrients. In both aquatic and terrestrial environments organisms face a grand écart (dancer's splits, i.e., the need to reconcile two opposing needs) between optimal conditions for photosynthesis vs. gain of non-carbon elements. We suggest that mixotrophy allows adaptation of organisms to such ubiquist environmental gradients, ultimately explaining why mixotrophic strategies are widespread.


Assuntos
Evolução Biológica , Metabolismo dos Carboidratos , Eucariotos/fisiologia , Processos Autotróficos , Processos Heterotróficos , Filogenia
5.
New Phytol ; 234(3): 1101, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35226360
6.
ISME Commun ; 4(1): ycae004, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38425478

RESUMO

The osmotrophic uptake of dissolved organic compounds in the ocean is considered to be dominated by heterotrophic prokaryotes, whereas the role of planktonic eukaryotes is still unclear. We explored the capacity of natural eukaryotic plankton communities to incorporate the synthetic amino acid L-homopropargylglycine (HPG, analogue of methionine) using biorthogonal noncanonical amino acid tagging (BONCAT), and we compared it with prokaryotic HPG use throughout a 9-day survey in the NW Mediterranean. BONCAT allows to fluorescently identify translationally active cells, but it has never been applied to natural eukaryotic communities. We found a large diversity of photosynthetic and heterotrophic eukaryotes incorporating HPG into proteins, with dinoflagellates and diatoms showing the highest percentages of BONCAT-labelled cells (49 ± 25% and 52 ± 15%, respectively). Among them, pennate diatoms exhibited higher HPG incorporation in the afternoon than in the morning, whereas small (≤5 µm) photosynthetic eukaryotes and heterotrophic nanoeukaryotes showed the opposite pattern. Centric diatoms (e.g. Chaetoceros, Thalassiosira, and Lauderia spp.) dominated the eukaryotic HPG incorporation due to their high abundances and large sizes, accounting for up to 86% of the eukaryotic BONCAT signal and strongly correlating with bulk 3H-leucine uptake rates. When including prokaryotes, eukaryotes were estimated to account for 19-31% of the bulk BONCAT signal. Our results evidence a large complexity in the osmotrophic uptake of HPG, which varies over time within and across eukaryotic groups and highlights the potential of BONCAT to quantify osmotrophy and protein synthesis in complex eukaryotic communities.

7.
J Fungi (Basel) ; 9(10)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37888277

RESUMO

Aphelids are a holomycotan group, represented exclusively by parasitoids infecting algae. They form a sister lineage to Fungi in the phylogenetic tree and represent a key group for reconstruction of the evolution of Holomycota and for analysis of the origin of Fungi. The newly assembled genome of Aphelidium insullamus (Holomycota, Aphelida) with a total length of 18.9 Mb, 7820 protein-coding genes and a GC percentage of 52.05% was obtained by a hybrid assembly based on Oxford Nanopore long reads and Illumina paired reads. In order to trace the origin and the evolution of fungal osmotrophy and its presence or absence in Aphelida, we analyzed the set of main fungal transmembrane transporters, which are proteins of the Major Facilitator superfamily (MFS), in the predicted aphelid proteomes. This search has shown an absence of a specific fungal protein family Drug:H+ antiporters-2 (DAH-2) and specific fungal orthologs of the sugar porters (SP) family, and the presence of common opisthokont's orthologs of the SP family in four aphelid genomes. The repertoire of SP orthologs in aphelids turned out to be less diverse than in free-living opisthokonts, and one of the most limited among opisthokonts. We argue that aphelids do not show signs of similarity with fungi in terms of their osmotrophic abilities, despite the sister relationships of these groups. Moreover, the osmotrophic abilities of aphelids appear to be reduced in comparison with free-living unicellular opisthokonts. Therefore, we assume that the evolution of fungi-specific traits began after the separation of fungal and aphelid lineages, and there are no essential reasons to consider aphelids as a prototype of the fungal ancestor.

8.
Biol Rev Camb Philos Soc ; 96(1): 129-152, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32959981

RESUMO

Over 3.7 billion years of Earth history, life has evolved complex adaptations to help navigate and interact with the fluid environment. Consequently, fluid dynamics has become a powerful tool for studying ancient fossils, providing insights into the palaeobiology and palaeoecology of extinct organisms from across the tree of life. In recent years, this approach has been extended to the Ediacara biota, an enigmatic assemblage of Neoproterozoic soft-bodied organisms that represent the first major radiation of macroscopic eukaryotes. Reconstructing the ways in which Ediacaran organisms interacted with the fluids provides new insights into how these organisms fed, moved, and interacted within communities. Here, we provide an in-depth review of fluid physics aimed at palaeobiologists, in which we dispel misconceptions related to the Reynolds number and associated flow conditions, and specify the governing equations of fluid dynamics. We then review recent advances in Ediacaran palaeobiology resulting from the application of computational fluid dynamics (CFD). We provide a worked example and account of best practice in CFD analyses of fossils, including the first large eddy simulation (LES) experiment performed on extinct organisms. Lastly, we identify key questions, barriers, and emerging techniques in fluid dynamics, which will not only allow us to understand the earliest animal ecosystems better, but will also help to develop new palaeobiological tools for studying ancient life.


Assuntos
Evolução Biológica , Ecossistema , Animais , Biota , Simulação por Computador , Fósseis
9.
Phytochemistry ; 144: 43-51, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28881198

RESUMO

Mixing events in stratified lakes result in microalgae being exposed to varying conditions in light and organic carbon concentrations. Stratified lakes consist of an upper illuminated strata and a lower, darker strata where organic carbon accumulates. Therefore, in this contribution we explore the importance of dissolved organic carbon for growth under various light intensities by measuring some ecophysiological adaptations in two green microalgae. We compared the non-motile Chlorella vulgaris with the flagellated Chlamydomonas acidophila under auto-, mixo-, and heterotrophic growth conditions. In both algae the maximum photosynthetic and growth rates were highest under mixotrophy, and both algae appeared inhibited in their phosphorus acquisition under heterotrophy. Heterotrophic conditions provoked the largest differences as C. vulgaris produced chlorophyll a in darkness and grew as well as in autotrophic conditions, whereas Chl. acidophila bleached and could not grow heterotrophically. Although the fatty acid composition of both phytoplankton species differed, both species reacted in a similar way to changes in their growth conditions, mainly by a decrease of C18:3n-3 and an increase of C18:1n-9 from auto- to heterotrophic conditions. The two contrasting responses within the group of green microalgae suggest that dissolved organic carbon has a high deterministic potential to explain the survival and behaviour of green algae in the deeper strata of lakes.


Assuntos
Carbono/química , Chlamydomonas/crescimento & desenvolvimento , Chlorella vulgaris/crescimento & desenvolvimento , Luz , Compostos Orgânicos/química , Clorofila/biossíntese , Clorofila A
10.
Genome Biol Evol ; 7(1): 120-35, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25527045

RESUMO

Saprotrophic and parasitic microorganisms secrete proteins into the environment to breakdown macromolecules and obtain nutrients. The molecules secreted are collectively termed the "secretome" and the composition and function of this set of proteins varies depending on the ecology, life cycle, and environment of an organism. Beyond the function of nutrient acquisition, parasitic lineages must also secrete molecules to manipulate their host. Here, we use a combination of de novo genome and transcriptome sequencing and bioinformatic identification of signal peptides to identify the putative secreted proteome of two oomycetes, the facultative parasite Achlya hypogyna and free-living Thraustotheca clavata. By comparing the secretomes of these saprolegnialean oomycetes with that of eight other oomycetes, we were able to characterize the evolution of this protein set across the oomycete clade. These species span the last common ancestor of the two major oomycete families allowing us to identify the ancestral secretome. This putative ancestral secretome consists of at least 84 gene families. Only 11 of these gene families are conserved across all 10 secretomes analyzed and the two major branches in the oomycete radiation. Notably, we have identified expressed elicitin-like effector genes in the saprotrophic decomposer, T. clavata. Phylogenetic analyses show six novel horizontal gene transfers to the oomycete secretome from bacterial and fungal donor lineages, four of which are specific to the Saprolegnialeans. Comparisons between free-living and pathogenic taxa highlight the functional changes of oomycete secretomes associated with shifts in lifestyle.


Assuntos
Achlya/genética , Evolução Molecular , Proteínas Fúngicas/genética , Transferência Genética Horizontal , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Filogenia , Proteoma
11.
Plant Signal Behav ; 2(2): 112-4, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19704752

RESUMO

Fungi and the oomycetes include several groups of plant pathogenic microbes. Although these two eukaryotic groups are unrelated they have a number of phenotypic similarities suggested to have evolved convergently. We have recently shown that gene transfer events have occurred from fungi to the oomycetes. These gene transfer events appear to be only one part of a complex and chimeric ancestry for the oomycete genome, which has also received genes from a red algal endosymbiont.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa