RESUMO
Human bone morphogenetic protein 2 (hBMP-2) plays a leading role in the process of osteogenesis and is one of the key components of osteoplastic materials, ensuring their high osteoinduction. In order to obtain a homodimeric form hBMP-2 using the E. coli expression system, a number of problems associated with refolding in vitro and purification from monomer and oligomeric forms must be solved. The developed method for co-expression of the target protein with chaperone proteins makes it possible to obtain the biologically active homodimeric form of hBMP-2 in vivo. Purification with simple ion-exchange sorbents without the use of denaturing reagents affecting the structure of the protein molecule provides a chromatographic purity of the product of at least 97%. The expressed hBMP-2 was identified by Western blotting and the LC-ESI-TOF mass spectrometry confirmed its molecular weight of 26052.72 Da. Circular dichroism spectroscopy showed that recombinant hBMP-2 has a native secondary structure.
Assuntos
Proteína Morfogenética Óssea 2 , Escherichia coli , Humanos , Proteína Morfogenética Óssea 2/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Osteogênese , Proteína Morfogenética Óssea 7/metabolismoRESUMO
BACKGROUND: Masquelet's induced membrane (IM) has osteogenesis activity, but IM spontaneous osteogenesis (SO) has not been described previously. OBJECTIVES: To report on varying degrees of IMSO and analyze its possible causes. METHODS: Twelve eight-week-old male Sprague-Dawley rats with 10 mm right femoral bone defects who received the first stage of IM technique (IMT) were used to observe the SO. In addition, clinical data from patients with bone defects who received the first stage of IMT with an interval of > 2 months post-operatively and exhibited SO between January 2012 and June 2020 were retrospectively analyzed. The SO was divided into four grades according to the amount and characteristics of the new bone formation. RESULTS: At twelve weeks, grade II SO was observed in all rats, and more new bone was formed in the IM near the bone end forming an uneven margin. Histology revealed bone and cartilage foci in the new bone. Four of the 98 patients treated with the first stage of IMT exhibited IMSO, including one female and three males with a median age of 40.5 years (range 29-52 years). The bone defects were caused by severe fractures and infection in two cases and by infection or tumor in one case each. Partial or segmental defects occurred in two cases. The time interval between inserting a cement spacer and diagnosis of SO ranged from six months to nine years. Two cases were grade I, and one case each of grades III and IV. CONCLUSION: Varying degrees of SO confirm the existence of the IMSO phenomenon. Bioactive bone tissue or local inflammation and a long time interval are the primary reasons underlying enhancement of the osteogenic activity of IM and leading to SO, which tends to take place as endochondral osteogenesis.
Assuntos
Fraturas Ósseas , Osteogênese , Ratos , Masculino , Feminino , Animais , Ratos Sprague-Dawley , Estudos Retrospectivos , Fêmur/diagnóstico por imagem , Fêmur/cirurgiaRESUMO
In a previous study, we successfully coated hydroxyapatite (HAp) onto titanium (Ti) plates using the erbium-doped yttrium aluminum garnet pulsed-laser deposition (Er:YAG-PLD) method. In this study, we performed further experiments to validate the in vitro osteogenic properties, macrophage polarization, and in vivo osseointegration activity of HAp-coated Ti (HAp-Ti) plates and screws. Briefly, we coated a HAp film onto the surfaces of Ti plates and screws via Er:YAG-PLD. The surface morphological, elemental, and crystallographic analyses confirmed the successful surface coating. The macrophage polarization and osteogenic induction were evaluated in macrophages and rat bone marrow mesenchymal stem cells, and the in vivo osteogenic properties were studied. The results showed that needle-shaped nano-HAp promoted the early expression of osteogenic and immunogenic genes in the macrophages and induced excellent M2 polarization properties. The calcium deposition and osteocalcin production were significantly higher in the HAp-Ti than in the uncoated Ti. The implantation into rat femurs revealed that the HAp-coated materials had superior osteoinductive and osseointegration activities compared with the Ti, as assessed by microcomputed tomography and histology. Thus, HAp film on sandblasted Ti plates and screws via Er:YAG-PLD enhances hard-tissue differentiation, macrophage polarization, and new bone formation in tissues surrounding implants both in vitro and in vivo.
Assuntos
Osteogênese , Titânio , Animais , Ratos , Titânio/farmacologia , Microtomografia por Raio-X , Lasers , Durapatita/farmacologia , MacrófagosRESUMO
ß-sitosterol derived from Clinacanthus nutans Lindau was tested for its in vitro osteogenic activity using MC3T3-E1 pre-osteoblasts. Our results indicated that ß-sitosterol was non-toxic to the cells cultured at a concentration <20 µg/mL. Treatment of the cells with ß-sitosterol significantly enhanced the alkaline phosphatase activity up to 210 and 204.6% at 5 and 10 µg/mL, respectively (P < .05). Similarly, the mineralization activity of the ß-sitosterol treated cells was elevated up to 134, 168, 118% at a concentration of 2.5, 5, and 10 µg/mL, respectively (P < .05). In addition, this compound up-regulated several marker genes for osteoblast differentiation, including runx2, osx and col I to 2, 2.5 and 5.6 folds at 10 µg/mL, respectively (P < .05). The expression of p38 and ERK proteins involved in the MAPK signal pathway related to mineralization and differentiation was also enhanced. Thus, the osteoblastogenic activity of ß-sitosterol was fully illustrated for the first time.
Assuntos
Osteoblastos , Osteogênese , Regulação para Cima , Diferenciação Celular , Osteoblastos/metabolismoRESUMO
Polyetheretherketone (PEEK) is a potential substitute for conventional metallic biomedical implants owing to its superior mechanical and chemical properties, as well as biocompatibility. However, its inherent bio-inertness and poor osseointegration limit its use in clinical applications. Herein, thin titanium films were deposited on the PEEK substrate by plasma sputtering, and porous nanonetwork structures were incorporated on the PEEK surface by alkali treatment (PEEK-TNS). Changes in the physical and chemical characteristics of the PEEK surface were analyzed to establish the interactions with cell behaviors. The osteoimmunomodulatory properties were evaluated using macrophage cells and osteoblast lineage cells. The functionalized nanostructured surface of PEEK-TNS effectively promoted initial cell adhesion and proliferation, suppressed inflammatory responses, and induced macrophages to anti-inflammatory M2 polarization. Compared with PEEK, PEEK-TNS provided a more beneficial osteoimmune environment, including increased levels of osteogenic, angiogenic, and fibrogenic gene expression, and balanced osteoclast activities. Furthermore, the crosstalk between macrophages and osteoblast cells showed that PEEK-TNS could provide favorable osteoimmunodulatory environment for bone regeneration. PEEK-TNS exhibited high osteogenic activity, as indicated by alkaline phosphatase activity, osteogenic factor production, and the osteogenesis/osteoclastogenesis-related gene expression of osteoblasts. The study establishes that the fabrication of titanate nanonetwork structures on PEEK surfaces could extract an adequate immune response and favorable osteogenesis for functional bone regeneration. Furthermore, it indicates the potential of PEEK-TNS in implant applications.
Assuntos
Benzofenonas/farmacologia , Fatores Imunológicos/farmacologia , Nanopartículas/química , Osteogênese , Polímeros/farmacologia , Titânio/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Forma Celular/efeitos dos fármacos , Forma Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Células RAW 264.7 , Propriedades de SuperfícieRESUMO
BACKGROUND: Adequate calcium intake is necessary to prevent osteoporosis, which poses significant public health challenges. The natural bioactive peptide calcium chelates have been regarded as superior calcium supplements. Microalgae peptides are regarded as potential candidates for protection from bone loss in osteoporosis. This study aimed to prepare microalgae calcium-chelating peptides from four microalgae proteins and assess their osteogenic activities in osteoporosis-like zebrafish. RESULTS: After in vitro gastrointestinal digestion, 4.42% Chlorella pyrenoidosa protein, 2.74% Nannochloropsis oceanica protein, 6.07% Arthospira platensis protein and 10.47% Dunaliella salina protein were retained. The calcium-chelating capacities of four microalgae protein hydrolysates (MPHs) ranged from 14.10 ± 7.16% to 34.11 ± 9.34%. CaCl2 addition increased the maximum absorption peaks, absorption intensities and particle sizes of MPHs. Calcium-chelating MPHs showed stronger osteogenic activities than MPHs in the osteoporosis-like zebrafish model, with significantly increased mineralized tissue area and integrated optical density. CONCLUSION: Microalgae proteins have favorable digestibilities. Among the four MPHs, Nannochloropsis oceanica protein hydrolysates showed the highest calcium-chelating capacity, which might be due to its high degree of hydrolysis after in vitro digestion and high content of Ser, Tyr, Thr, Asp and Glu. The absorption intensities and particle sizes of MPHs both increased after calcium addition. MPH treatment could reverse dexamethasone-induced osteoporosis of zebrafish, and MPHs-Ca chelates showed higher osteogenic activities in osteoporosis-like phenotype zebrafish. © 2022 Society of Chemical Industry.
Assuntos
Chlorella , Microalgas , Osteoporose , Estramenópilas , Animais , Cálcio/metabolismo , Cloreto de Cálcio/metabolismo , Chlorella/metabolismo , Dexametasona/metabolismo , Microalgas/química , Peptídeos/química , Hidrolisados de Proteína/química , Proteínas/metabolismo , Estramenópilas/metabolismo , Peixe-Zebra/metabolismoRESUMO
The application of minimally invasive surgical techniques in the field of orthopedic surgery has created a growing need for new injectable synthetic materials that can be used for bone grafting. In this work, novel injectable thermosensitive foam was developed by mixing nHAP powder with a thermosensitive polymer with foaming power (Pluronic F-127) and loaded with a water-soluble bisphosphonate drug (risedronate) to promote osteogenesis. The foam was able to retain the porous structure after injection and set through temperature change of PF-127 solution to form gel inside the body. The effect of different formulation parameters on the gelation time, porosity, foamability, injectability, and in vitro degradation in addition to drug release from the prepared foams were analyzed using a full factorial design. The addition of a co-polymer like methylcellulose or sodium alginate into the foam was also studied. Results showed that the prepared optimized thermosensitive foam was able to gel within 1 min at 37°C, and sustain the release of drug for 72 h. The optimized formulation was further tested for any interactions using DSC and IR, and revealed no interactions between the drug and the used excipients in the prepared foam. Furthermore, the ability of the pre-set foam to support osteoblastic-like Saos-2-cell proliferation and differentiation was assessed, and revealed superior function on promoting cellular proliferation as confirmed by fluorescence microscope compared to the plain drug solution. The activity of the foam treated cells was also assessed by measuring the alkaline phosphatase activity and calcium deposition, and confirmed that the cellular activity was greatly enhanced in foam treated cells compared to those treated with the plain drug solution only. The obtained results show that the prepared risedronate-loaded thermosensitive foam would represent a step forward in the design of new materials for minimally invasive bone regeneration.
Assuntos
Conservadores da Densidade Óssea/farmacologia , Durapatita/farmacologia , Nanoestruturas , Osteogênese/efeitos dos fármacos , Poloxâmero/farmacologia , Ácido Risedrônico/administração & dosagem , Alginatos/administração & dosagem , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Durapatita/química , Humanos , Metilcelulose/farmacologia , Porosidade , Ácido Risedrônico/farmacologiaRESUMO
Hierarchical micropore/nanorod-patterned strontium doped hydroxyapatite (Ca9Sr1(PO4)6(OH)2, Sr1-HA) structures (MNRs) with different nanorod diameters of about 30, 70 and 150 nm were coated on titanium, to investigate the effect of nanorod diameter on osteogenesis and the involved mechanism. Compared to micropore/nanogranule-patterned Sr1-HA coating (MNG), MNRs gave rise to dramatically enhanced in vitro mesenchymal stem cell functions including osteogenic differentiation in the absence of osteogenic supplements and in vivo osseointegration related to the nanorod diameter with about 70 nm displaying the best effects. MNRs activated the cellular Wnt/ß-catenin pathway by increasing the expression of Wnt3a and LRP6 and decreasing the expression of Wnt/ß-catenin pathway antagonists (sFRP1, sFRP2, Dkk1 and Dkk2). The exogenous Wnt3a significantly enhanced the ß-catenin signaling activation and cell differentiation on MNG, and the exogenous Dkk1 attenuated the enhancing effect of MNRs on them. The data demonstrate that MNRs favor osseointegration via a Wnt/ß-catenin pathway.
Assuntos
Materiais Revestidos Biocompatíveis/administração & dosagem , Células-Tronco Mesenquimais/citologia , Nanotubos/química , Osseointegração , Osteogênese , Via de Sinalização Wnt , Animais , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Durapatita/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Coelhos , Propriedades de Superfície , Titânio/químicaRESUMO
Collagen from a marine resource is believed to have more potential activity in bone tissue engineering and their bioactivity depends on biochemical and structural properties. Considering the above concept, pepsin soluble collagen (PSC) and acid soluble collagen (ASC) from blue shark (Prionace glauca) skin were extracted and its biochemical and osteogenic properties were investigated. The hydroxyproline content was higher in PSC than ASC and the purified collagens contained three distinct bands α1, α2, and ß dimer. The purity of collagen was confirmed by the RP-HPLC profile and the thermogravimetric data showed a two-step thermal degradation pattern. ASC had a sharp decline in viscosity at 20â»30 °C. Scanning electron microscope (SEM) images revealed the fibrillar network structure of collagens. Proliferation rates of the differentiated mouse bone marrow-mesenchymal stem (dMBMS) and differentiated osteoblastic (dMC3T3E1) cells were increased in collagen treated groups rather than the controls and the effect was dose-dependent, which was further supported by higher osteogenic protein and mRNA expression in collagen treated bone cells. Among two collagens, PSC had significantly increased dMBMS cell proliferation and this was materialized through increasing RUNX2 and collagen-I expression in bone cells. Accordingly, the collagens from blue shark skin with excellent biochemical and osteogenic properties could be a suitable biomaterial for therapeutic application.
Assuntos
Osso e Ossos/metabolismo , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo I/farmacologia , Tubarões , Engenharia Tecidual/métodos , Animais , Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Diferenciação Celular , Linhagem Celular , Colágeno Tipo I/química , Colágeno Tipo I/isolamento & purificação , Colágeno Tipo I/ultraestrutura , Células-Tronco Mesenquimais , Camundongos , Microscopia Eletrônica de Varredura , Osteoblastos , Osteogênese/efeitos dos fármacos , Pepsina A/química , Pele/química , Solubilidade , ViscosidadeRESUMO
Three new secoiridoids, nuezhenelenoliciside (1), isojaslanceoside B (2), 6'-O-trans-cinnamoyl-secologanoside (3), were isolated from the dried fruits of Ligustrum lucidum. Their structures were elucidated by comprehensive spectroscopic analysis. Among them, 1 featured a rare rearrangement product of secoiridoid, which underwent the cleavage of chemical bond between C-1 and O-2, and the reformation of a new iridoid ring between C-8 and O-2. In addition, all compounds were tested for their osteogenic activity on pre-osteoblastic MC3T3-E1 cells. As a result, 1 and 3 exhibited potent effects on promoting cell proliferation of pre-osteoblast cells.
Assuntos
Iridoides/química , Iridoides/farmacologia , Ligustrum/química , Células 3T3 , Animais , Calcificação Fisiológica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacosRESUMO
To enhance biocompatibility, osteogenesis, and osseointegration, we coated titanium implants, by krypton fluoride (KrF) pulsed laser deposition, with a thin film of fluoridated hydroxyapatite (FHA). Coating was confirmed by scanning electron microscopy (SEM) and scanning probe microscopy (SPM), while physicochemical properties were evaluated by attenuated reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Calcium deposition, osteocalcin production, and expression of osteoblast genes were significantly higher in rat bone marrow mesenchymal stem cells seeded on FHA-coated titanium than in cells seeded on uncoated titanium. Implantation into rat femurs also showed that the FHA-coated material had superior osteoinductive and osseointegration activity in comparison with that of traditional implants, as assessed by microcomputed tomography and histology. Thus, titanium coated with FHA holds promise as a dental implant material.
Assuntos
Interface Osso-Implante , Materiais Revestidos Biocompatíveis/química , Hidroxiapatitas/química , Osteogênese , Titânio/química , Animais , Cálcio/metabolismo , Células Cultivadas , Materiais Revestidos Biocompatíveis/efeitos adversos , Hidroxiapatitas/efeitos adversos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Osseointegração , Osteocalcina/genética , Osteocalcina/metabolismo , Ratos , Ratos Sprague-Dawley , Titânio/efeitos adversosRESUMO
Periosteum-derived cells was indicated to respond to mechanical force and have stem cell potential capable of differentiating into multiple tissue. Investigation of osteogenic activity under mechanical stimulation is important to understand the therapeutic conditions of fracture healing. In this work, a cell culture platform was developed for respectively providing isotropic and anisotropic axial strain. Primary rabbit periosteal cells were isolated and cultured in the chamber. Multi-axial tensile strain was received and osteogenic activity was investigated by mRNA expressions of CBFA1 and OPN. The highest mRNA expression was found in moderate strain (5-8%) under anisotropic axial strain. These results provided important foundation for further in vivo studies and development of tailor-made stretching rehabilitation equipment.
Assuntos
Técnicas de Cultura de Células/instrumentação , Osteogênese , Periósteo/citologia , Estresse Mecânico , Resistência à Tração , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Periósteo/metabolismo , Pressão , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , CoelhosRESUMO
The primary pathology of periodontitis involves the gradual deterioration of periodontal tissues resulting from the inflammatory reaction triggered by bacterial infection. In this study, a novel drug for periodontal pocket injection, known as the Shed-Cu-HA hydrogel, was developed by incorporating copper ions (Cu2+) and Shed-derived exosomes (Shed-exo) inside the hyaluronic acid (HA) hydrogel. Suitable concentrations of Cu2+ and Shed-exo released from Shed-Cu-HA enhanced cell viability and cell proliferation of human periodontal ligament stem cells. Additionally, the Shed-Cu-HA demonstrated remarkable antibacterial effects against the key periodontal pathogen (Aa) owing to the synergistic effect of Cu2+ and HA. Furthermore, the material effectively suppressed macrophage inflammatory response via the IL-6/JAK2/STAT3 pathway. Moreover, the Shed-Cu-HA, combining the inflammation-regulating properties of HA with the synergistic osteogenic activity of Shed-exo and Cu2+, effectively upregulated the expression of genes and proteins associated with osteogenic differentiation. The experimental findings from a mouse periodontitis model demonstrated that the administration of Shed-Cu-HA effectively reduced the extent of inflammatory cell infiltration and bacterial infections in gingival tissues and facilitated the regeneration of periodontal bone tissues and collagen after 2 and 4 weeks of injection. Consequently, it holds significant prospects for future applications in periodontitis treatment.
Assuntos
Antibacterianos , Regeneração Óssea , Cobre , Exossomos , Ácido Hialurônico , Hidrogéis , Osteogênese , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Animais , Osteogênese/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Humanos , Camundongos , Cobre/química , Cobre/farmacologia , Regeneração Óssea/efeitos dos fármacos , Exossomos/metabolismo , Exossomos/química , Ligamento Periodontal/efeitos dos fármacos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Periodontite/tratamento farmacológico , Periodontite/patologia , Periodontite/microbiologia , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacosRESUMO
The optimal material for repairing skull defects should exhibit outstanding biocompatibility and mechanical properties. Specifically, hydrogel scaffolds that emulate the microenvironment of the native bone extracellular matrix play a vital role in promoting osteoblast adhesion, proliferation, and differentiation, thereby yielding superior outcomes in skull reconstruction. In this study, a composite network hydrogel comprising sodium alginate (SA), epigallocatechin gallate (EGCG), and zinc ions (Zn2+) was developed to establish an ideal osteogenic microenvironment for bone regeneration. Initially, physical entanglement and hydrogen bonding between SA and EGCG resulted in the formation of a primary network hydrogel known as SA-EGCG. Subsequently, the inclusion of Zn2+ facilitated the creation of a composite network hydrogels named SA-EGCG-Zn2+ via dynamic coordination bonds with SA and EGCG. The engineered SA-EGCG2â¯%-Zn2+ hydrogels offered an environment mimicking the native extracellular matrix (ECM). Moreover, the sustained release of Zn2+ from the hydrogel effectively enhanced cell adhesion, promoted proliferation, and stimulated osteoblast differentiation. In vitro experiments have shown that SA-EGCG2â¯%-Zn2+ hydrogels greatly enhance the attachment and growth of osteoblast precursor cells (MC3T3-E1), while also increasing the expression of genes related to osteogenesis in these cells. Additionally, in vivo studies have confirmed that SA-EGCG2â¯%-Zn2+ hydrogels promote new bone formation and accelerate the regeneration of bone in situ, indicating promising applications in the realm of bone tissue engineering.
Assuntos
Alginatos , Catequina , Proliferação de Células , Hidrogéis , Crânio , Alicerces Teciduais , Zinco , Zinco/química , Zinco/farmacologia , Alginatos/química , Alginatos/farmacologia , Catequina/química , Catequina/análogos & derivados , Catequina/farmacologia , Crânio/efeitos dos fármacos , Crânio/lesões , Crânio/patologia , Animais , Camundongos , Hidrogéis/química , Hidrogéis/farmacologia , Alicerces Teciduais/química , Proliferação de Células/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Adesão Celular/efeitos dos fármacosRESUMO
This study aimed to evaluate the bioactivity of poly(ether ether ketone) (PEEK) after surface modification by persistent photoconductive strontium titanate (SrTiO3) magnetron sputtering and ultraviolet (UV) C irradiation. According to the different modifications, the PEEK specimens were randomly divided into five groups (n = 38/group): PEEK, Sr100-PEEK, Sr200-PEEK, UV/PEEK, and UV/Sr200-PEEK. Then, the specimens of Sr100-PEEK and Sr200-PEEK groups were, respectively, coated with 100 and 200 nm thickness photocatalyst SrTiO3 on the PEEK surface by magnetron sputtering. Subsequently, UV-C light photofunctionalized the specimens of PEEK and Sr200-PEEK groups to form UV/PEEK and UV/Sr200-PEEK groups. The specimens were characterized by a step meter, scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDX), and a water contact angle meter. The release test of the Sr ion was performed by inductively coupled plasma mass spectrometry (ICP-MS). In vitro study, osteogenic activity (MC3T3-E1 osteoblast-like cells) and epithelial and connective tissue attachment (gingival epithelial cells GE1 and fibroblasts NIH3T3) were analyzed in five groups. Surface morphology of the specimens was changed after coating, and the Sr content on the Sr-PEEK surface was increased with increasing coating thickness. In addition, the contact angle was increased significantly after magnetron sputtering. After UV-C photofunctionalization, the content of surface elements changed and the contact angle was decreased. The release of Sr ion was sustained, and the final cumulative release amount did not exceed the safety limit. In vitro experiments showed that SrTiO3 improved the cell activity of MC3T3-E1 and UV-C irradiation further enhanced the osteogenic performance of PEEK. Besides, UV-C irradiation also significantly promoted the cell viability, development, and expression of adhesion proteins of GE1 and NIH3T3 on PEEK. The present investigation demonstrated that nano SrTiO3 coating with UV-C photofunctionalization synergistically enhanced the osteogenic properties and soft tissue sealing function of PEEK in vitro.
Assuntos
Benzofenonas , Cetonas , Óxidos , Polietilenoglicóis , Polímeros , Estrôncio , Titânio , Camundongos , Animais , Cetonas/farmacologia , Polietilenoglicóis/farmacologia , Polietilenoglicóis/química , Éter , Células NIH 3T3 , Etil-Éteres , ÉteresRESUMO
Bone defects are a common and challenging orthopedic problem with poor self-healing ability and long treatment cycles. The difficult-to-heal bone defects cause a significant burden of medical expenses on patients. Currently, biomaterials with mechanical stability, long-lasting action, and osteogenic activity are considered as a suitable way to effectively heal bone defects. Here, an injectable double network (DN) hydrogel prepared using physical and chemical cross-linking methods is designed. The first rigid network is constructed using methylpropenylated hyaluronic acid (HAMA), while the addition of chitosan oligosaccharide (COS) forms a second flexible network by physical cross-linking. The mesoporous silica nanoparticles (MSN) loaded with bone morphogenetic protein-4 (BMP-4) were embedded into DN hydrogel, which not only enhanced the mechanical stability of the hydrogel, but also slowly released BMP-4 to achieve long-term skull repair. The designed composite hydrogel showed an excellent compression property and deformation resistance. In vitro studies confirmed that the HAMA/COS/MSN@BMP-4 hydrogel had good biocompatibility and showed great potential in supporting proliferation and osteogenic differentiation of mouse embryo osteoblast precursor (MC3T3-E1) cells. Furthermore, in vivo studies confirmed that the DN hydrogel successfully filled and closed irregular skull defect wounds, effectively promoted bone regeneration, and significantly promoted bone repair compared with the control group. In addition, HAMA/COS/MSN@BMP-4 hydrogel precursor solution can quickly form hydrogel in situ at the wound by ultraviolet light, which can be applied to the closure and repair of wounds of different shapes, which provides the new way for the treatment of bone defects.
Assuntos
Hidrogéis , Nanopartículas , Camundongos , Animais , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Osteogênese , Dióxido de Silício/farmacologia , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/farmacologia , Crânio/cirurgia , Crânio/lesões , Nanopartículas/químicaRESUMO
The issue of bone volume loss is playing an increasing role in bone tissue engineering. Research has focused on studying the preparation and use of different types of human or xenogenic materials and their osteogenic properties. An alternative source for this purpose could be autologous extracted teeth. The simple preparation protocol, minimal immune response, and rapid organizing of the newly formed bone with optimal mechanical properties predispose autologous hard teeth tissues (HTTs) as a promising material suitable in the indication of augmentation of maxillary and mandible defects, comparable to other high-end augmentation materials. The aim of this study was to experimentally evaluate the osteogenic potential of ground native autologous HTTs prepared by different demineralization procedures, aimed at potentiating the osteoinductive and osteoconductive properties of their organic components. The results indicate that the most effective preparation process for HTT stimulation is the application of Cleanser for 10 min followed by exposure to 0.6 N HCl for 5 min with a wash in phosphate-buffered saline solution.
RESUMO
Calcium sensing receptor (CaSR) has become the novel target of treating osteoporosis with herbal medicine Ligustri Lucidi Fructus (LLF), however, the bioactive compounds responsible for anti-osteoporosis are hard to clarify due to the complexity and diversity of chemical constituents in it. Herein, the immobilized CaSR column was packed with stationary phase materials, which were derived from integrating CLIP-tagged CaSR directly out of crude cell lysates onto the surface of silica gels (5.83â¯mg/g) in a site-specific covalent manner. The column had a great specificity of recognizing agonists and kept a good stability for at least 3 weeks. The two compounds from LLF extract were screened and identified as olenuezhenoside and ligustroflavone using the immobilized CaSR column in conjunction with mass spectrometry. Molecular docking predicted that both compounds were bound in venus flytrap (VFT) domain of CaSR by the formation of hydrogen bonds. Cellular results showed that both compounds exhibited the distinct osteogenic activity by enhancing the proliferation, differentiation and mineralization of osteoblastic cells. Our study demonstrated that, the immobilized protein column enables to screen the bioactive compounds rapidly from herbal extract, and the newly discovered natural product ligands towards CaSR, including olenuezhenoside and ligustroflavone, will be the candidates for the treatment of osteoporosis.
Assuntos
Ligustrum , Simulação de Acoplamento Molecular , Osteogênese , Extratos Vegetais , Receptores de Detecção de Cálcio , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/antagonistas & inibidores , Osteogênese/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ligustrum/química , Humanos , Osteoblastos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Frutas/química , Animais , Osteoporose/tratamento farmacológicoRESUMO
This study fabricates a functionalized scaffold by cryogenic three-dimensional (3D) printing using an aminated poly-L-lactic acid (EPLA) solution containing nanosilver/zinc-coated black phosphorus (BP@(Zn+Ag)) nanocomposites. The nanocomposites are prepared by a green method of in situ photodeposition of silver and zinc nanoparticles (AgNPs and ZnNPs) on BP nanosheets (BPNs) under visible light irradiation without any chemical reductant. Scanning electron microscope (SEM) and X-ray energy dispersive spectrometer (EDS) confirm the uniform distribution of BP@(Zn+Ag) nanoparticles in the EPLA nanofibrous matrix. The in vitro tests show that the fabricated BP@(Zn+Ag)/EPLA nanofibrous scaffold exhibits excellent antibacterial activity (over 96%) against E. coli and S. aureus, as well as enhanced cell viability and osteogenic activity to facilitate the growth and differentiation of osteoblasts. The in vivo rat calvarial defect model also demonstrates that the BP@(Zn+Ag)/EPLA nanofibrous scaffold promotes new bone tissue formation around the implant site. Therefore, the prepared multifunctional 3D printed BP@(Zn+Ag)/EPLA nanofibrous scaffold has great potential for bone tissue engineering (BTE) applications.
Assuntos
Antibacterianos , Nanofibras , Fósforo , Poliésteres , Impressão Tridimensional , Prata , Staphylococcus aureus , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Poliésteres/química , Prata/química , Nanofibras/química , Ratos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Fósforo/química , Escherichia coli/efeitos dos fármacos , Zinco/química , Zinco/farmacologia , Osteogênese/efeitos dos fármacos , Osso e Ossos , Ratos Sprague-Dawley , Nanopartículas Metálicas/química , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Nanocompostos/químicaRESUMO
Recombinant human bone morphogenetic protein-2 (rhBMP-2) is the predominant growth factor that effectively induces osteogenic differentiation in orthopedic procedures. However, the bioactivity and stability of rhBMP-2 are intrinsically associated with its sequence, structure, and storage conditions. In this study, we successfully determined the amino acid sequence and protein secondary structure model of non-glycosylated rhBMP-2 expressed by an E. coli expression system through X-ray crystal structure analysis. Furthermore, we observed that acidic storage conditions enhanced the proliferative and osteoinductive activity of rhBMP-2. Although the osteogenic activity of non-glycosylated rhBMP-2 is relatively weaker compared to glycosylated rhBMP-2; however, this discrepancy can be mitigated by incorporating exogenous chaperone molecules. Overall, such information is crucial for rationalizing the design of stabilization methods and enhancing the bioactivity of rhBMP-2, which may also be applicable to other growth factors.