Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(23): e2119719119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35648819

RESUMO

Transmission of reductive and oxidative cues from the photosynthetic electron transport chain to redox regulatory protein networks plays a crucial role in coordinating photosynthetic activities. The tight balance between these two signals dictates the cellular response to changing light conditions. While the role of reductive signals in activating chloroplast metabolism is well established, the role of their counterbalanced oxidative signals is still unclear, mainly due to monitoring difficulties. Here, we introduced chl-roGFP2-PrxΔCR, a 2-Cys peroxiredoxin-based biosensor, into Arabidopsis thaliana chloroplasts to monitor the dynamic changes in photosynthetically derived oxidative signaling. We showed that chl-roGFP2-PrxΔCR oxidation states reflected oxidation patterns similar to those of endogenous 2-Cys peroxiredoxin under varying light conditions. By employing a set of genetically encoded biosensors, we showed the induction of 2-Cys peroxiredoxin-dependent oxidative signals, throughout the day, under varying light intensities and their inverse relationship with NADPH levels, unraveling the combined activity of reducing and oxidizing signals. Furthermore, we demonstrated the induction of 2-Cys peroxiredoxin-derived oxidative signals during a dark­to­low-light transition and uncovered a faster increase in carbon assimilation rates during the photosynthesis induction phase in plants deficient in 2-Cys peroxiredoxins compared with wild type, suggesting the involvement of oxidative signals in attenuating photosynthesis. The presented data highlight the role of oxidative signals under nonstress conditions and suggest that oxidative signals measured by peroxiredoxin-based biosensors reflect the limitation to photosynthesis imposed by the redox regulatory system.


Assuntos
Arabidopsis , Técnicas Biossensoriais , Carbono , Peroxirredoxinas , Fotossíntese , Folhas de Planta , Arabidopsis/metabolismo , Carbono/metabolismo , NADP/metabolismo , Oxirredução , Peroxirredoxinas/análise , Peroxirredoxinas/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/química , Folhas de Planta/metabolismo
2.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892300

RESUMO

Reactive oxygen species (ROS) are central to inter- and intracellular signaling. Their localized and transient effects are due to their short half-life, especially when generated in controlled amounts. Upon T cell receptor (TCR) activation, regulated ROS signaling is primarily initiated by complexes I and III of the electron transport chain (ETC). Subsequent ROS production triggers the activation of nicotinamide adenine dinucleotide phosphate oxidase 2 (NADPH oxidase 2), prolonging the oxidative signal. This signal then engages kinase signaling cascades such as the mitogen-activated protein kinase (MAPK) pathway and increases the activity of REDOX-sensitive transcription factors such as nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1). To limit ROS overproduction and prevent oxidative stress, nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant proteins such as superoxide dismutases (SODs) finely regulate signal intensity and are capable of terminating the oxidative signal when needed. Thus, oxidative signals, such as T cell activation, are well-controlled and critical for cellular communication.


Assuntos
Espécies Reativas de Oxigênio , Transdução de Sinais , Linfócitos T , Espécies Reativas de Oxigênio/metabolismo , Humanos , Linfócitos T/metabolismo , Linfócitos T/imunologia , Animais , Ativação Linfocitária , Estresse Oxidativo , Oxirredução , Receptores de Antígenos de Linfócitos T/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
3.
Transgenic Res ; 27(4): 355-366, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29777502

RESUMO

Plants have co-evolved with a diverse array of pathogens and insect herbivores and so have evolved an extensive repertoire of constitutive and induced defence mechanisms activated through complex signalling pathways. OXI1 kinase is required for activation of mitogen-activated protein kinases (MAPKs) and is an essential part of the signal transduction pathway linking oxidative burst signals to diverse downstream responses. Furthermore, changes in the levels of OXI1 appear to be crucial for appropriate signalling. Callose deposition also plays a key role in defence. Here we demonstrate, for the first time, that OXI1 plays an important role in defence against aphids. The Arabidopsis mutant, oxi1-2, showed significant resistance both in terms of population build-up (p < 0.001) and the rate of build-up (p < 0.001). Arabidopsis mutants for ß-1,3-glucanase, gns2 and gns3, showed partial aphid resistance, significantly delaying developmental rate, taking two-fold longer to reach adulthood. Whilst ß-1,3-glucanase genes GNS1, GNS2, GNS3 and GNS5 were not induced in oxi1-2 in response to aphid feeding, GNS2 was expressed to high levels in the corresponding WT (Col-0) in response to aphid feeding. Callose synthase GSL5 was up-regulated in oxi1-2 in response to aphids. The results suggest that resistance in oxi1-2 mutants is through induction of callose deposition via MAPKs resulting in ROS induction as an early response. Furthermore, the results suggest that the ß-1,3-glucanase genes, especially GNS2, play an important role in host plant susceptibility to aphids. Better understanding of signalling cascades underpinning tolerance to biotic stress will help inform future breeding programmes for enhancing crop resilience.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/parasitologia , Resistência à Doença/genética , Doenças das Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Afídeos/genética , Afídeos/patogenicidade , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Tolerância a Medicamentos , Regulação da Expressão Gênica de Plantas/genética , Melhoramento Vegetal , Doenças das Plantas/parasitologia , Transdução de Sinais , Ativação Transcricional
4.
Proc Natl Acad Sci U S A ; 112(41): 12876-81, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26424450

RESUMO

The regulatory mechanisms that use signals of low levels of reactive oxygen species (ROS) could be obscured by ROS produced under stress and thus are better investigated under homeostatic conditions. Previous studies showed that the chloroplastic atypical thioredoxin ACHT1 is oxidized by 2-Cys peroxiredoxin (2-Cys Prx) in Arabidopsis plants illuminated with growth light and in turn transmits a disulfide-based signal via yet unknown target proteins in a feedback regulation of photosynthesis. Here, we studied the role of a second chloroplastic paralog, ACHT4, in plants subjected to low light conditions. Likewise, ACHT4 reacted in planta with 2-Cys Prx, indicating that it is oxidized by a similar disulfide exchange reaction. ACHT4 further reacted uniquely with the small subunit (APS1) of ADP-glucose pyrophosphorylase (AGPase), the first committed enzyme of the starch synthesis pathway, suggesting that it transfers the disulfides it receives from 2-Cys Prx to APS1 and turns off AGPase. In accordance, ACHT4 participated in an oxidative signal that quenched AGPase activity during the diurnal transition from day to night, and also in an attenuating oxidative signal of AGPase in a dynamic response to small fluctuations in light intensity during the day. Increasing the level of expressed ACHT4 or of ACHT4ΔC, a C terminus-deleted form that does not react with APS1, correspondingly decreased or increased the level of reduced APS1 and decreased or increased transitory starch content. These findings imply that oxidative control mechanisms act in concert with reductive signals to fine tune starch synthesis during daily homeostatic conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Glucose-1-Fosfato Adenililtransferase/metabolismo , Fotoperíodo , Amido/biossíntese , Tiorredoxinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Glucose-1-Fosfato Adenililtransferase/genética , Oxirredução , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Amido/genética , Tiorredoxinas/genética
5.
Plant Cell Physiol ; 57(7): 1432-1442, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27106783

RESUMO

Reactive oxygen species (ROS)-triggered programmed cell death (PCD) is a typical plant response to biotic and abiotic stressors. We have recently shown that lipid peroxide-derived reactive carbonyl species (RCS), downstream products of ROS, mediate oxidative signal to initiate PCD. Here we investigated the mechanism by which RCS initiate PCD. Tobacco Bright Yellow-2 cultured cells were treated with acrolein, one of the most potent RCS. Acrolein at 0.2 mM caused PCD in 5 h (i.e. lethal), but at 0.1 mM it did not (sublethal). Specifically, these two doses caused critically different effects on the cells. Both lethal and sublethal doses of acrolein exhausted the cellular glutathione pool in 30 min, while the lethal dose only caused a significant ascorbate decrease and ROS increase in 1-2 h. Prior to such redox changes, we found that acrolein caused significant increases in the activities of caspase-1-like protease (C1LP) and caspase-3-like protease (C3LP), the proteases which trigger PCD. The lethal dose of acrolein increased the C3LP activity 2-fold more than did the sublethal dose. In contrast, C1LP activity increments caused by the two doses were not different. Acrolein and 4-hydroxy-(E)-2-nonenal, another RCS, activated both proteases in a cell-free extract from untreated cells. H2O2 at 1 mM added to the cells increased C1LP and C3LP activities and caused PCD, and the RCS scavenger carnosine suppressed their activation and PCD. However, H2O2 did not activate the proteases in a cell-free extract. Thus the activation of caspase-like proteases, particularly C3LP, by RCS is an initial biochemical event in oxidative signal-stimulated PCD in plants.


Assuntos
Apoptose , Caspase 3/metabolismo , Nicotiana/citologia , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Acroleína/farmacologia , Apoptose/efeitos dos fármacos , Ácido Ascórbico/metabolismo , Carnosina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sistema Livre de Células , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Glutationa/metabolismo , Peróxido de Hidrogênio/toxicidade , Espaço Intracelular/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Nicotiana/efeitos dos fármacos , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa