Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.687
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Semin Cancer Biol ; 100: 28-38, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556040

RESUMO

Mitochondria are the major sink for oxygen in the cell, consuming it during ATP production. Therefore, when environmental oxygen levels drop in the tumor, significant adaptation is required. Mitochondrial activity is also a major producer of biosynthetic precursors and a regulator of cellular oxidative and reductive balance. Because of the complex biochemistry, mitochondrial adaptation to hypoxia occurs through multiple mechanisms and has significant impact on other cellular processes such as macromolecule synthesis and gene regulation. In tumor hypoxia, mitochondria shift their location in the cell and accelerate the fission and quality control pathways. Hypoxic mitochondria also undergo significant changes to fundamental metabolic pathways of carbon metabolism and electron transport. These metabolic changes further impact the nuclear epigenome because mitochondrial metabolites are used as enzymatic substrates for modifying chromatin. This coordinated response delivers physiological flexibility and increased tumor cell robustness during the environmental stress of low oxygen.


Assuntos
Hipóxia , Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , Hipóxia Celular , Estresse Fisiológico , Adaptação Fisiológica
2.
Traffic ; 23(5): 270-286, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35261124

RESUMO

Mitochondria and intermediate filament (IF) accumulations often occur during imbalanced axonal transport leading to various types of neurological diseases. It is still poorly understood whether a link between neuronal IFs and mitochondrial mobility exist. In Caenorhabditis elegans, among the 11 cytoplasmic IF family proteins, IFB-1 is of particular interest as it is expressed in a subset of sensory neurons. Depletion of IFB-1 leads to mild dye-filling and significant chemotaxis defects as well as reduced life span. Sensory neuron development is affected and mitochondrial transport is slowed down leading to reduced densities of these organelles. Mitochondria tend to cluster in neurons of IFB-1 mutants likely independent of the fission and fusion machinery. Oxygen consumption and mitochondrial membrane potential is measurably reduced in worms carrying mutations in the ifb-1 gene. Membrane potential also seems to play a role in transport such as carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone treatment led to increased directional switching of mitochondria. Mitochondria co-localize with IFB-1 in worm neurons and appear in a complex with IFB-1 in pull-down assays. In summary, we propose a model in which neuronal IFs may serve as critical (transient) anchor points for mitochondria during their long-range transport in neurons for steady and balanced transport.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Filamentos Intermediários/metabolismo , Mitocôndrias/metabolismo , Células Receptoras Sensoriais/metabolismo
3.
J Physiol ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299739

RESUMO

On the 70th anniversary of the first climb of Mount Everest by Edmund Hillary and Tensing Norgay, we discuss the physiological bases of climbing Everest with or without supplementary oxygen. After summarizing the data of the 1953 expedition and the effects of oxygen administration, we analyse the reasons why Reinhold Messner and Peter Habeler succeeded without supplementary oxygen in 1978. The consequences of this climb for physiology are briefly discussed. An overall analysis of maximal oxygen consumption ( V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ) at altitude follows. In this section, we discuss the reasons for the non-linear fall of V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ at altitude, we support the statement that it is a mirror image of the oxygen equilibrium curve, and we propose an analogue of Hill's model of the oxygen equilibrium curve to analyse the V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ fall. In the following section, we discuss the role of the ventilatory and pulmonary resistances to oxygen flow in limiting V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ , which becomes progressively greater while moving toward higher altitudes. On top of Everest, these resistances provide most of the V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ limitation, and the oxygen equilibrium curve and the respiratory system provide linear responses. This phenomenon is more accentuated in athletes with elevated V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ , due to exercise-induced arterial hypoxaemia. The large differences in V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ that we observe at sea level disappear at altitude. There is no need for a very high V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ at sea level to climb the highest peaks on Earth.

4.
J Physiol ; 602(3): 445-459, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38048175

RESUMO

Maximal oxygen (O2 ) uptake ( V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ ) is an important parameter with utility in health and disease. However, the relative importance of O2 transport and utilization capacities in limiting muscle V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ before and after endurance exercise training is not well understood. Therefore, the present study aimed to identify the mechanisms determining muscle V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ pre- and post-endurance exercise training in initially sedentary participants. In five initially sedentary young males, radial arterial and femoral venous P O 2 ${P}_{{{\mathrm{O}}}_{\mathrm{2}}}$ (blood samples), leg blood flow (thermodilution), and myoglobin (Mb) desaturation (1 H nuclear magnetic resonance spectroscopy) were measured during maximal single-leg knee-extensor exercise (KE) breathing either 12%, 21% or 100% O2 both pre and post 8 weeks of KE training (1 h, 3 times per week). Mb desaturation was converted to intracellular P O 2 ${P}_{{{\mathrm{O}}}_{\mathrm{2}}}$ using an O2  half-saturation pressure of 3.2 mmHg. Pre-training muscle V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ was not significantly different across inspired O2 conditions (12%: 0.47 ± 0.10; 21%: 0.52 ± 0.13; 100%: 0.54 ± 0.01 L min-1 , all q > 0.174), despite significantly greater muscle mean capillary-intracellular P O 2 ${P}_{{{\mathrm{O}}}_{\mathrm{2}}}$ gradients in normoxia (34 ± 3 mmHg) and hyperoxia (40 ± 7 mmHg) than hypoxia (29 ± 5 mmHg, both q < 0.024). Post-training muscle V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ was significantly different across all inspired O2 conditions (12%: 0.59 ± 0.11; 21%: 0.68 ± 0.11; 100%: 0.76 ± 0.09 mmHg, all q < 0.035), as were the muscle mean capillary-intracellular P O 2 ${P}_{{{\mathrm{O}}}_{\mathrm{2}}}$ gradients (12%: 32 ± 2; 21%: 37 ± 2; 100%: 45 ± 7 mmHg, all q < 0.029). In these initially sedentary participants, endurance exercise training changed the basis of limitation on muscle V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ in normoxia from the mitochondrial capacity to utilize O2 to the capacity to transport O2 to the mitochondria. KEY POINTS: Maximal O2 uptake is an important parameter with utility in health and disease. The relative importance of O2 transport and utilization capacities in limiting muscle maximal O2 uptake before and after endurance exercise training is not well understood. We combined the direct measurement of active muscle maximal O2 uptake with the measurement of muscle intracellular P O 2 ${P}_{{{\mathrm{O}}}_{\mathrm{2}}}$ before and after 8 weeks of endurance exercise training. We show that increasing O2 availability did not increase muscle maximal O2 uptake before training, whereas increasing O2 availability did increase muscle maximal O2 uptake after training. The results suggest that, in these initially sedentary participants, endurance exercise training changed the basis of limitation on muscle maximal O2 uptake in normoxia from the mitochondrial capacity to utilize O2 to the capacity to transport O2 to the mitochondria.


Assuntos
Músculo Esquelético , Consumo de Oxigênio , Masculino , Humanos , Músculo Esquelético/fisiologia , Consumo de Oxigênio/fisiologia , Oxigênio/metabolismo , Exercício Físico/fisiologia , Hipóxia
5.
Am J Physiol Renal Physiol ; 326(2): F189-F201, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37994410

RESUMO

To reabsorb >99% of the glomerular filtrate, the metabolic demand of the kidney is high. Interestingly, renal blood flow distribution exhibits marked inhomogeneity, with typical tissue oxygen tension (Po2) of 50-60 mmHg in the well-perfused cortex and 10-20 mmHg in the inner medulla. Cellular fluid composition and acidity also varies substantially. To understand how different renal epithelial cells adapt to their local environment, we have developed and applied computational models of mitochondrial function of proximal convoluted tubule cell (baseline Po2 = 50 mmHg, cytoplasmic pH = 7.20) and medullary thick ascending limb (mTAL) cell (baseline Po2 = 10 mmHg, cytoplasmic pH = 6.85). The models predict key cellular quantities, including ATP generation, P/O (phosphate/oxygen) ratio, proton motive force, electrical potential gradient, oxygen consumption, the redox state of key electron carriers, and ATP consumption. Model simulations predict that close to their respective baseline conditions, the proximal tubule and mTAL mitochondria exhibit qualitatively similar behaviors. Nonetheless, because the mTAL mitochondrion has adapted to a much lower Po2, it can sustain a sufficiently high ATP production at Po2 as low as 4-5 mmHg, whereas the proximal tubule mitochondria would not. Also, because the mTAL cytosol is already acidic under baseline conditions, the proton motive force (pmf) exhibits higher sensitivity to further acidification. Among the different pathways that lead to oxidative phosphorylation impairment, the models predict that both the proximal tubule and mTAL mitochondria are most sensitive to reductions in Complex III activity.NEW & NOTEWORTHY Tissue fluid composition varies substantially within the mammalian kidney. The renal cortex is well perfused and pH neutral, whereas some medullary regions are hypoxic and acidic. How do these environments affect the mitochondrial function of proximal convoluted tubule and medullary thick ascending limb cells, which reside in the cortex and medulla, respectively? This computational modeling study demonstrates that these mitochondria can adapt to their contrasting environments and exhibit different sensitivities to perturbations to local environments.


Assuntos
Túbulos Renais Proximais , Rim , Ratos , Animais , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Oxigênio/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Medula Renal/metabolismo , Mamíferos/metabolismo
6.
Am J Physiol Renal Physiol ; 326(3): F420-F437, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38205546

RESUMO

Chronic kidney disease (CKD) is among the leading causes of death and disability, affecting an estimated 800 million adults globally. The underlying pathophysiology of CKD is complex creating challenges to its management. Primary risk factors for the development and progression of CKD include diabetes mellitus, hypertension, age, obesity, diet, inflammation, and physical inactivity. The high prevalence of diabetes and hypertension in patients with CKD increases the risk for secondary consequences such as cardiovascular disease and peripheral neuropathy. Moreover, the increased prevalence of obesity and chronic levels of systemic inflammation in CKD have downstream effects on critical cellular functions regulating homeostasis. The combination of these factors results in the deterioration of health and functional capacity in those living with CKD. Exercise offers protective benefits for the maintenance of health and function with age, even in the presence of CKD. Despite accumulating data supporting the implementation of exercise for the promotion of health and function in patients with CKD, a thorough description of the responses and adaptations to exercise at the cellular, system, and whole body levels is currently lacking. Therefore, the purpose of this review is to provide an up-to-date comprehensive review of the effects of exercise training on vascular endothelial progenitor cells at the cellular level; cardiovascular, musculoskeletal, and neural factors at the system level; and physical function, frailty, and fatigability at the whole body level in patients with CKD.


Assuntos
Hipertensão , Insuficiência Renal Crônica , Adulto , Humanos , Insuficiência Renal Crônica/complicações , Exercício Físico , Hipertensão/complicações , Obesidade/complicações , Inflamação
7.
EMBO J ; 39(13): e104073, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432379

RESUMO

Respirometry is the gold standard measurement of mitochondrial oxidative function, as it reflects the activity of the electron transport chain complexes working together. However, the requirement for freshly isolated mitochondria hinders the feasibility of respirometry in multi-site clinical studies and retrospective studies. Here, we describe a novel respirometry approach suited for frozen samples by restoring electron transfer components lost during freeze/thaw and correcting for variable permeabilization of mitochondrial membranes. This approach preserves 90-95% of the maximal respiratory capacity in frozen samples and can be applied to isolated mitochondria, permeabilized cells, and tissue homogenates with high sensitivity. We find that primary changes in mitochondrial function, detected in fresh tissue, are preserved in frozen samples years after collection. This approach will enable analysis of the integrated function of mitochondrial Complexes I to IV in one measurement, collected at remote sites or retrospectively in samples residing in tissue biobanks.


Assuntos
Criopreservação , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Consumo de Oxigênio , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Masculino , Camundongos
8.
Artigo em Inglês | MEDLINE | ID: mdl-38874616

RESUMO

Aging is associated with a significant decline in exercise fitness assessed by maximal exercise oxygen consumption (VO2-max). The specific VO2-max components driving this decline, namely cardiac output (CO) and arteriovenous oxygen difference (A-V) O2, remain unclear. We examined this issue by analyzing data from 99 community-dwelling participants (baseline age 21-96 years; average follow-up 12.6 years) from the Baltimore Longitudinal Study of Aging, free of clinical cardiovascular disease. VO2-peak, a surrogate of VO2-max, was used to assess aerobic capacity during upright cycle exercise. Peak exercise left ventricular (LV) volumes, heart rate, and cardiac output were estimated using repeated gated cardiac blood pool scans. The Fick equation was used to calculate (A-V) O2-peak from CO-peak and VO2-peak. In unadjusted models, VO2-peak, (A-V) O2-peak, and CO-peakdeclined longitudinally over time at steady rates with advancing age. In multiple linear regression models adjusting for baseline values and peak workload, however, steeper declines in VO2-peak and (A-V) O2 peak were observed with advanced entry age but not in CO-peak. The association between the declines in VO2-peak and (A-V) O2-peakwas stronger among those >=50 years compared to their younger counterparts but the difference between the two age groups did not reach statistical significance. These findings suggest that age-associated impairment of peripheral oxygen utilization during maximal exercise poses a stronger limitation on peak VO2 than that of CO. Future studies examining interventions targeting the structure and function of peripheral muscles and their vasculature to mitigate age-associated declines in (A-V) O2 are warranted.

9.
Magn Reson Med ; 91(4): 1645-1658, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38084378

RESUMO

PURPOSE: The heart is a highly aerobic organ consuming most of the oxygen the body in supporting heart function. Quantitative imaging of myocardial oxygen metabolism and perfusion is essential for studying cardiac physiopathology in vivo. Here, we report a new imaging method that can simultaneously assess myocardial oxygen metabolism and blood flow in the rat heart. METHODS: This novel method is based on the 17 O-MRSI combined with brief inhalation of 17 O-isotope labeled oxygen gas for quantitative imaging of myocardial metabolic rate of oxygen consumption (MVO2 ), myocardial blood flow (MBF), and oxygen extraction fraction (OEF). We demonstrate this imaging method under basal and high workload conditions in rat hearts at 9.4 T. RESULTS: We show that this 17 O MRSI-based approach can directly measure and image MVO2 (1.35-4.06 µmol/g/min), MBF (0.49-1.38 mL/g/min), and OEF (0.33-0.44) in the heart of anesthetized rat under basal and high workload (21.6 × 103 -56.7 × 103 mmHg • bpm) conditions. Under high workload condition, MVO2 and MBF values in healthy rats approximately doubled, whereas OEF remained unchanged, indicating a strong coupling between myocardial oxygen metabolic demand and supply through blood perfusion. CONCLUSION: The 17 O-MRSI method has been used to simultaneously image the myocardial metabolic rate of oxygen consumption, blood flow, and oxygen extraction fraction in small animal hearts, which are sensitive to the physiological changes induced by high workload. This approach could provide comprehensive measures that are critical for studying myocardial function in normal and diseased states and has a potential for translation.


Assuntos
Oxigênio , Carga de Trabalho , Ratos , Animais , Circulação Coronária , Miocárdio/metabolismo , Coração/diagnóstico por imagem , Consumo de Oxigênio
10.
Cancer Cell Int ; 24(1): 132, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594745

RESUMO

BACKGROUND: The metabolism of cancer cells generally differs from that of normal cells. Indeed, most cancer cells have a high rate of glycolysis, even at normal oxygen concentrations. These metabolic properties can potentially be exploited for therapeutic intervention. In this context, we have developed troglitazone derivatives to treat hormone-sensitive and triple-negative breast cancers, which currently lack therapeutic targets, have an aggressive phenotype, and often have a worse prognosis than other subtypes. Here, we studied the metabolic impact of the EP13 compound, a desulfured derivative of Δ2-troglitazone that we synthetized and is more potent than its parent compounds. METHODS: EP13 was tested on two triple-negative breast cancer cell lines, MDA-MB-231 and Hs578T, and on the luminal cell line MCF-7. The oxygen consumption rate (OCR) of the treated cell lines, Hs578T mammospheres and isolated mitochondria was measured using the XFe24 Seahorse analyser. ROS production was quantified using the MitoSOX fluorescent probe. Glycolytic activity was evaluated through measurement of the extracellular acidification rate (ECAR), glucose consumption and lactate production in extracellular medium. The synergistic effect of EP13 with glycolysis inhibitors (oxamate and 2-deoxyglucose) on cell cytotoxicity was established using the Chou-Talalay method. RESULTS: After exposure to EP13, we observed a decrease in the mitochondrial oxygen consumption rate in MCF7, MDA-MB-231 and Hs578T cells. EP13 also modified the maximal OCR of Hs578T spheroids. EP13 reduced the OCR through inhibition of respiratory chain complex I. After 24 h, ATP levels in EP13-treated cells were not altered compared with those in untreated cells, suggesting compensation by glycolysis activity, as shown by the increase in ECAR, the glucose consumption and lactate production. Finally, we performed co-treatments with EP13 and glycolysis inhibitors (oxamate and 2-DG) and observed that EP13 potentiated their cytotoxic effects. CONCLUSION: This study demonstrates that EP13 inhibits OXPHOS in breast cancer cells and potentiates the effect of glycolysis inhibitors.

11.
Chemistry ; : e202401028, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797703

RESUMO

Cationic Mn(III)-meso-tetraarylporphyrin derivatives, substituted in para position with different size alkyl chains, were investigated to function as antioxidants in free-radical degradation of high-molar-mass hyaluronan by the methods of rotational viscometry and oximetry. The results of rotational viscometry showed that MnTM-4-PyP5+, MnTE-4-PyP5+, MnTPr-4-PyP5+, MnTPen-4-PyP5+ and MnTHep-4-PyP5+ showed high efficiency in decomposing H2O2, and reducing of peroxidized hyaluronan. When using oxygen electrode, MnTE-4-PyP5+, MnTPr-4-PyP5+, MnTPen-4-PyP5+, and MnTHep-4-PyP5+ applied to function as protective antioxidants in hyaluronan degradation, the uptake of dissolved oxygen from the reaction milieu was rapid, followed by continual increase in oxygen concentration up to the end of the measurement. However, when especially MnTE-4-PyP5+, MnTPr-4-PyP5+, and MnTPen-4-PyP5+ were examined as hyaluronan chain-breaking antioxidants, after short-term dissolved oxygen uptake, almost no increase in oxygen concentration was shown.

12.
FASEB J ; 37(7): e23001, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37249913

RESUMO

Cardiac arrest (CA) and concomitant post-CA syndrome lead to a lethal condition characterized by systemic ischemia-reperfusion injury. Oxygen (O2 ) supply during cardiopulmonary resuscitation (CPR) is the key to success in resuscitation, but sustained hyperoxia can produce toxic effects post CA. However, only few studies have investigated the optimal duration and dosage of O2 administration. Herein, we aimed to determine whether high concentrations of O2 at resuscitation are beneficial or harmful. After rats were resuscitated from the 10-min asphyxia, mechanical ventilation was restarted at an FIO2 of 1.0 or 0.3. From 10 min after initiating CPR, FIO2 of both groups were maintained at 0.3. Bio-physiological parameters including O2 consumption (VO2 ) and mRNA gene expression in multiple organs were evaluated. The FIO2 0.3 group decreased VO2 , delayed the time required to achieve peak MAP, lowered ejection fraction (75.1 ± 3.3% and 59.0 ± 5.7% with FIO2 1.0 and 0.3, respectively; p < .05), and increased blood lactate levels (4.9 ± 0.2 mmol/L and 5.6 ± 0.2 mmol/L, respectively; p < .05) at 10 min after CPR. FIO2 0.3 group had significant increases in hypoxia-inducible factor, inflammatory, and apoptosis-related mRNA gene expression in the brain. Likewise, significant upregulations of hypoxia-inducible factor and apoptosis-related gene expression were observed in the FIO2 0.3 group in the heart and lungs. Insufficient O2 supplementation in the first 10 min of resuscitation could prolong ischemia, and may result in unfavorable biological responses 2 h after CA. Faster recovery from the impairment of O2 metabolism might contribute to the improvement of hemodynamics during the early post-resuscitation phase; therefore, it may be reasonable to provide the maximum feasible O2 concentrations during CPR.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Ratos , Animais , Oxigênio , Parada Cardíaca/terapia , Hemodinâmica , Hipóxia , Modelos Animais de Doenças
13.
J Exp Biol ; 227(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38841909

RESUMO

Increased average temperatures and extreme thermal events (such as heatwaves) brought forth by climate change impose important constraints on aerobic metabolism. Notably, mitochondrial metabolism, which is affected by both long- and short-term temperature changes, has been put forward as an important determinant for thermal tolerance of organisms. This study examined the influence of phenotypic plasticity on metabolic and physiological parameters in Drosophila melanogaster and the link between mitochondrial function and their upper thermal limits. We showed that D. melanogaster acclimated to 15°C have a 0.65°C lower critical thermal maximum (CTmax) compared with those acclimated to 24°C. Drosophila melanogaster acclimated to 15°C exhibited a higher proportion of shorter saturated and monounsaturated fatty acids, concomitant with lower proportions of polyunsaturated fatty acids. No mitochondrial quantitative changes (fractional area and number) were detected between acclimation groups, but changes of mitochondrial oxidation capacities were observed. Specifically, in both 15°C- and 24°C-acclimated flies, complex I-induced respiration was increased when measured between 15 and 24°C, but drastically declined when measured at 40°C. When succinate and glycerol-3-phosphate were added, this decrease was however compensated for in flies acclimated to 24°C, suggesting an important impact of acclimation on mitochondrial function related to thermal tolerance. Our study reveals that the use of oxidative substrates at high temperatures is influenced by acclimation temperature and strongly related to upper thermal tolerance as a difference of 0.65°C in CTmax translates into significant mitochondrial changes.


Assuntos
Aclimatação , Drosophila melanogaster , Mitocôndrias , Oxirredução , Animais , Drosophila melanogaster/fisiologia , Drosophila melanogaster/metabolismo , Aclimatação/fisiologia , Mitocôndrias/metabolismo , Temperatura Alta , Masculino , Feminino
14.
J Exp Biol ; 227(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38380562

RESUMO

From bacteria to metazoans, higher density populations have lower per capita metabolic rates than lower density populations. The negative covariance between population density and metabolic rate is thought to represent a form of adaptive metabolic plasticity. A relationship between density and metabolism was actually first noted 100 years ago, and was focused on spermatozoa; even then, it was postulated that adaptive plasticity drove this pattern. Since then, contemporary studies of sperm metabolism specifically assume that sperm concentration has no effect on metabolism and that sperm metabolic rates show no adaptive plasticity. We did a systematic review to estimate the relationship between sperm aerobic metabolism and sperm concentration, for 198 estimates spanning 49 species, from protostomes to humans from 88 studies. We found strong evidence that per capita metabolic rates are concentration dependent: both within and among species, sperm have lower metabolisms in dense ejaculates, but increase their metabolism when diluted. On average, a 10-fold decrease in sperm concentration increased per capita metabolic rate by 35%. Metabolic plasticity in sperm appears to be an adaptive response, whereby sperm maximize their chances of encountering eggs.

15.
Vox Sang ; 119(2): 134-143, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37997609

RESUMO

BACKGROUND AND OBJECTIVES: Most research studies on the effects of repeated plasma donation are observational with different study limitations, resulting in high uncertainty on the link between repeated plasma donation and health consequences. Here, we prospectively investigated the safety of intensive or less intensive plasma donation protocols. MATERIALS AND METHODS: Sixty-three male subjects participated in this randomized controlled trial and were divided into low-frequency (LF, once/month, n = 16), high-frequency (HF, three times/month, n = 16), very high-frequency (VHF, two times/week, n = 16) and a placebo (P, once/month, n = 15) groups. Biochemical, haematological, clinical, physiological and exercise-related data were collected before (D0), after 1½ months (D42) and after 3 months (D84) of donation. RESULTS: In VHF, red blood cells, haemoglobin and haematocrit levels decreased while reticulocyte levels increased from D0 to D84. In both HF and VHF, plasma ferritin levels were lower at D42 and D84 compared to D0. In VHF, plasma levels of albumin, immunoglobulin G (IgG), immunoglobulin A (IgA) and immunoglobulin M (IgM) dropped from D0 to D42 and remained lower at D84 than at D0. In HF, plasma IgG, IgA and IgM were lower at D42, and IgG and IgM were lower at D84, compared to D0. Few adverse events were reported in HF and VHF. Repeated plasma donation had no effect on blood pressure, body composition or exercise performance. CONCLUSION: VHF plasmapheresis may result in a large reduction in ferritin and IgG levels. HF and VHF plasmapheresis may result in little to no difference in other biochemical, haematological, clinical, physiological and exercise-related parameters.


Assuntos
Imunoglobulina G , Plasmaferese , Humanos , Masculino , Plasmaferese/efeitos adversos , Imunoglobulina A , Imunoglobulina M , Ferritinas , Nível de Saúde
16.
Environ Sci Technol ; 58(20): 8760-8770, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38717860

RESUMO

Sinking or floating is the natural state of planktonic organisms and particles in the ocean. Simulating these conditions is critical when making measurements, such as respirometry, because they allow the natural exchange of substrates and products between sinking particles and water flowing around them and prevent organisms that are accustomed to motion from changing their metabolism. We developed a rotating incubator, the RotoBOD (named after its capability to rotate and determine biological oxygen demand, BOD), that uniquely enables automated oxygen measurements in small volumes while keeping the samples in their natural state of suspension. This allows highly sensitive rate measurements of oxygen utilization and subsequent characterization of single particles or small planktonic organisms, such as copepods, jellyfish, or protists. As this approach is nondestructive, it can be combined with several further measurements during and after the incubation, such as stable isotope additions and molecular analyses. This makes the instrument useful for ecologists, biogeochemists, and potentially other user groups such as aquaculture facilities. Here, we present the technical background of our newly developed apparatus and provide examples of how it can be utilized to determine oxygen production and consumption in small organisms and particles.


Assuntos
Oxigênio , Oxigênio/metabolismo , Consumo de Oxigênio , Animais , Plâncton/metabolismo , Copépodes/metabolismo
17.
BMC Vet Res ; 20(1): 327, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030565

RESUMO

BACKGROUND: Swimming has been used empirically for rehabilitation and conditioning of horses. However, due to challenges imposed by recording physiological parameters in water, the intensity of free swimming effort is unknown. OBJECTIVES: Measure the physiological workload associated with untethered swimming in horses. Five fit Arabian endurance horses were assessed while swimming in a 100 m-long indoor pool. Horses were equipped with a modified ergospirometry facemask to measure oxygen consumption (V̇O2) and ventilatory parameters (inspired/expired volumes, VI, VE; peak inspiratory/expiratory flows, PkVI, PkVE; respiratory frequency, Rf; minute ventilation, VE; inspiratory/expiratory durations and ratios, tI, tE, tI/ttot, tE/ttot); and an underwater electrocardiogram that recorded heart rate (HR). Postexercise venous blood lactate and ammonia concentrations were measured. Data are reported as median (interquartile ranges). RESULTS: Horses showed bradypnea (12 breaths/min (10-16)) for the first 30 s of swimming. V̇O2 during swimming was 43.2 ml/(kg.min) (36.0-56.6). Ventilatory parameters were: VI = 16.7 L (15.3-21.8), VE = 14.7 L (12.4-18.9), PkVI = 47.8 L/s (45.8-56.5), PkVE = 55.8 L/s (38.3-72.5), Rf = 31.4 breaths/min (20.0-33.8), VE = 522.9 L/min (414.7-580.0), tI = 0.5 s (0.5-0.6), tE = 1.2 s (1.1-1.6), tI/ttot = 0.3 (0.2-0.4), tE/ttot = 0.7 (0.6-0.8). Expiratory flow tracings showed marked oscillations that coincided with a vibrating expiratory sound. HR was 178.0 bpm (148.5-182.0), lactate = 1.5 mmol/L (1.0-1.9) and ammonia = 41.0 µmol/L (36.5-43.5). CONCLUSIONS: Free (untethered) swimming represents a submaximal, primarily aerobic exercise in horses. The breathing pattern during swimming is unique, with a relatively longer apneic period at the beginning of the exercise and an inspiratory time less than half that of expiration.


Assuntos
Frequência Cardíaca , Consumo de Oxigênio , Espirometria , Natação , Animais , Cavalos/fisiologia , Natação/fisiologia , Consumo de Oxigênio/fisiologia , Frequência Cardíaca/fisiologia , Espirometria/veterinária , Masculino , Condicionamento Físico Animal/fisiologia , Ácido Láctico/sangue , Feminino , Amônia/sangue
18.
Eur J Pediatr ; 183(1): 379-388, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37906306

RESUMO

Endurance training has been shown to be effective in treating adolescents with major depressive disorder (MDD). To integrate endurance training into the therapeutic setting and the adolescents' daily lives, the current performance status of the adolescents should be accurately assessed. This study aims to examine adolescents with MDD concerning exhaustion criteria during a cardiopulmonary exercise test (CPET), as well as to compare the values obtained thereon with sex- and age-related control values. The study included a retrospective examination of exhaustion criteria ((i) oxygen consumption (V̇O2) plateau, (ii) peak respiratory exchange ratio (RERpeak) > 1.0, (iii) peak heart rate (HRpeak) ≥ 95% of the age-predicted maximal HR, and (iv) peak blood lactate concentration (BLCpeak) > 8.0 mmol⋅L-1) during a graded CPET on a cycle ergometer in adolescents with MDD (n = 57). Subsequently, maximal V̇O2, peak minute ventilation, V̇O2 at the first ventilatory threshold, and peak work rate of participants who met at least two of four criteria were compared with published control values using an independent-sample t-test. Thirty-three percent of the total population achieved a V̇O2 plateau and 75% a RERpeak > 1.0. The HR and BLC criteria were met by 19% and 22%, respectively. T-test results revealed significant differences between adolescents with MDD and control values for all outcomes. Adolescents with MDD achieved between 56% and 83% of control values.   Conclusions: The study shows that compared with control values, fewer adolescents with MDD achieve the exhaustion criteria on a CPET and adolescents with MDD have significantly lower cardiorespiratory fitness.   Clinical trial registration: No. U1111-1145-1854. What is Known: • It is already known that endurance training has a positive effect on depressive symptoms. What is New: • A relevant proportion of adolescents with major depressive disorder do not achieve their V̇O2max during a graded cardiopulmonary exercise test. • Adolescents with major depressive disorder have significantly lower cardiorespiratory fitness compared to sex- and age-related control values.


Assuntos
Aptidão Cardiorrespiratória , Transtorno Depressivo Maior , Humanos , Adolescente , Teste de Esforço/métodos , Aptidão Cardiorrespiratória/fisiologia , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/terapia , Estudos Retrospectivos , Testes de Função Respiratória , Consumo de Oxigênio/fisiologia
19.
Scand J Med Sci Sports ; 34(2): e14574, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38389141

RESUMO

AIM: To determine whether glucose volume of distribution (VdGLUCOSE ) affects the diagnosis of impaired insulin sensitivity (IS) when using an intravenous glucose tolerance test (IVGTT). METHODS: Individuals with distinct levels of IS underwent IVGTT after an overnight fast. The prediabetic group (Prediab; n = 33) differed from the healthy group (Healthy; n = 14) in their larger glycosylated hemoglobin (HbA1c of 5.9 ± 0.3 vs. 5.4 ± 0.1%; 41 ± 4 vs. 36 ± 1 mmol/mol; p < 0.001), percent body fat (37 ± 6 vs. 24 ± 3%; p < 0.001) and cardiovascular fitness level (VO2MAX 22 ± 5 vs. 44 ± 5 mL of O2 ·kg-1 ·min-1 ; p < 0.001). Ten minutes after intravenous infusion of the glucose bolus (i.e., 35 g in a 30% solution), VdGLUCOSE was assessed from the increases in plasma glucose concentration. IS was calculated during the next 50 min using the slope of glucose disappearance and the insulin time-response curve. RESULTS: VdGLUCOSE was higher in Healthy than in Prediab (230 ± 49 vs. 185 ± 21 mL·kg-1 ; p < 0.001). VdGLUCOSE was a strong predictor of IS (ß standardized coefficient 0.362; p = 0.004). VO2MAX was associated with VdGLUCOSE and IS (Pearson r = 0.582 and 0.704, respectively; p < 0.001). However, body fat was inversely associated with VdGLUCOSE and IS (r = -0.548 and -0.555, respectively; p < 0.001). CONCLUSIONS: Since fat mass is inversely related to VdGLUCOSE and in turn, VdGLUCOSE affects the calculations of IS, the IV glucose bolus dose should be calculated based on fat-free mass rather than body weight for a more accurate diagnosis of impaired IS.


Assuntos
Resistência à Insulina , Humanos , Teste de Tolerância a Glucose , Glucose , Insulina , Glicemia
20.
BMC Geriatr ; 24(1): 572, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961397

RESUMO

INTRODUCTION: Aging is associated with a progressive decline in the capacity for physical activity. The objective of the current study was to evaluate the effect of an intermittent hyperbaric oxygen therapy (HBOT) protocol on maximal physical performance and cardiac perfusion in sedentary older adults. METHODS: A randomized controlled clinical trial randomized 63 adults (> 64yrs) either to HBOT (n = 30) or control arms (n = 33) for three months. Primary endpoint included the maximal oxygen consumption (VO2Max) and VO2Max/Kg, on an E100 cycle ergometer. Secondary endpoints included cardiac perfusion, evaluated by magnetic resonance imaging and pulmonary function. The HBOT protocol comprised of 60 sessions administered on a daily basis, for 12 consecutive weeks, breathing 100% oxygen at 2 absolute atmospheres (ATA) for 90 min with 5-minute air breaks every 20 min. RESULTS: Following HBOT, improvements were observed in VO2Max/kg, with a significant increase of 1.91 ± 3.29 ml/kg/min indicated by a net effect size of 0.455 (p = 0.0034). Additionally, oxygen consumption measured at the first ventilatory threshold (VO2VT1) showed a significant increase by 160.03 ± 155.35 ml/min (p < 0.001) with a net effect size of 0.617. Furthermore, both cardiac blood flow (MBF) and cardiac blood volume (MBV) exhibited significant increases when compared to the control group. The net effect size for MBF was large at 0.797 (p = 0.008), while the net effect size for MBV was even larger at 0.896 (p = 0.009). CONCLUSION: The findings of the study indicate that HBOT has the potential to improve physical performance in aging adults. The enhancements observed encompass improvements in key factors including VO2Max, and VO2VT1. An important mechanism contributing to these improvements is the heightened cardiac perfusion induced by HBOT. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT02790541 (registration date 06/06/2016).


Assuntos
Oxigenoterapia Hiperbárica , Consumo de Oxigênio , Humanos , Masculino , Feminino , Idoso , Oxigenoterapia Hiperbárica/métodos , Consumo de Oxigênio/fisiologia , Pessoa de Meia-Idade , Exercício Físico/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa