Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2406542, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308242

RESUMO

P2-type Mn-based layered oxides have emerged as one of the most promising cathode materials for sodium-ion batteries owing to their advantages of facile preparation and high theoretical capacity. However, challenges such as phase transition and irreversible oxygen release during cycling often lead to rapid structural distortion and the formation of oxygen vacancies, ultimately resulting in rapid capacity decay. Herein, a covalency modulation strategy is adopted to address these challenges and successfully achieved a stable P2-type Mn-based layered oxide by introducing strong covalent Ni─O bonds. The robust Ni─O motif plays a crucial role in maintaining the rigidity of transition metal (TM) layered frameworks, which efficiently alleviates the structural distortion and degradation of the coordination environments of local TM sites, thereby achieving durable structural stiffness over extended cycles. In addition, the strong covalent Ni─O bonds can also stabilize the local oxygen environment, effectively suppressing the irreversible oxygen release. Benefiting from these advancements, the as-designed Na0.6Mg0.15Mn0.7Ni0.15O2 cathode displays a full solid-solution behavior with a low volume change of only 0.9% and an enhanced reversibility of lattice oxygen redox (OR) reaction. This investigation emphasizes the crucial role of covalency modulation in regulating OR chemistry and structural integrity to achieve high-energy-density Mn-based layered oxides.

2.
Small ; : e2402991, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958092

RESUMO

In P2-type layered oxide cathodes, Na site-regulation strategies are proposed to modulate the Na+ distribution and structural stability. However, their impact on the oxygen redox reactions remains poorly understood. Herein, the incorporation of K+ in the Na layer of Na0.67Ni0.11Cu0.22Mn0.67O2 is successfully applied. The effects of partial substitution of Na+ with K+ on electrochemical properties, structural stability, and oxygen redox reactions have been extensively studied. Improved Na+ diffusion kinetics of the cathode is observed from galvanostatic intermittent titration technique (GITT) and rate performance. The valence states and local structural environment of the transition metals (TMs) are elucidated via operando synchrotron X-ray absorption spectroscopy (XAS). It is revealed that the TMO2 slabs tend to be strengthened by K-doping, which efficiently facilitates reversible local structural change. Operando X-ray diffraction (XRD) further confirms more reversible phase changes during the charge/discharge for the cathode after K-doping. Density functional theory (DFT) calculations suggest that oxygen redox reaction in Na0.62K0.03Ni0.11Cu0.22Mn0.67O2 cathode has been remarkably suppressed as the nonbonding O 2p states shift down in the energy. This is further corroborated experimentally by resonant inelastic X-ray scattering (RIXS) spectroscopy, ultimately proving the role of K+ incorporated in the Na layer.

3.
Small ; 20(40): e2401839, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38804822

RESUMO

Co-free Li-rich Mn-based cathode materials are garnering great interest because of high capacity and low cost. However, their practical application is seriously hampered by the irreversible oxygen escape and the poor cycling stability. Herein, a reversible lattice adjustment strategy is proposed by integrating O vacancies and B doping. B incorporation increases TM─O (TM: transition metal) bonding orbitals whereas decreases the antibonding orbitals. Moreover, B doping and O vacancies synergistically increase the crystal orbital bond index values enhancing the overall covalent bonding strength, which makes TM─O octahedron more resistant to damage and enables the lattice to better accommodate the deformation and reaction without irreversible fracture. Furthermore, Mott-Hubbard splitting energy is decreased due to O vacancies, facilitating electron leaps, and enhancing the lattice reactivity and capacity. Such a reversible lattice, more amenable to deformation and forestalling fracturing, markedly improves the reversibility of lattice reactions and mitigates TM migration and the irreversible oxygen redox which enables the high cycling stability and high rate capability. The modified cathode demonstrates a specific capacity of 200 mAh g-1 at 1C, amazingly sustaining the capacity for 200 cycles without capacity degradation. This finding presents a promising avenue for solving the long-term cycling issue of Li-rich cathode.

4.
Small ; 20(40): e2401915, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38805744

RESUMO

Designing cathode materials that effectively enhancing structural stability under high voltage is paramount for rationally enhancing energy density and safety of Na-ion batteries. This study introduces a novel P2-Na0.73K0.03Ni0.23Li0.1Mn0.67O2 (KLi-NaNMO) cathode through dual-site synergistic doping of K and Li in Na and transition metal (TM) layers. Combining theoretical and experimental studies, this study discovers that Li doping significantly strengthens the orbital overlap of Ni (3d) and O (2p) near the Fermi level, thereby regulates the phase transition and charge compensation processes with synchronized Ni and O redox. The introduction of K further adjusts the ratio of Nae and Naf sites at Na layer with enhanced structural stability and extended lattice space distance, enabling the suppression of TM dissolution, achieving a single-phase transition reaction even at a high voltage of 4.4 V, and improving reaction kinetics. Consequently, KLi-NaNMO exhibits a high capacity (105 and 120 mAh g-1 in the voltage of 2-4.2 V and 2-4.4 V at 0.1 C, respectively) and outstanding cycling performance over 300 cycles under 4.2 and 4.4 V. This work provides a dual-site doping strategy to employ synchronized TM and O redox with improved capacity and high structural stability via electronic and crystal structure modulation.

5.
Angew Chem Int Ed Engl ; 63(35): e202404330, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-38878199

RESUMO

Enhancing the energy density of layered oxide cathode materials is of great significance for realizing high-performance sodium-ion batteries and promoting their commercial application. Lattice oxygen redox at high voltage usually enables a high capacity and energy density. But the structural degradation, severe voltage decay, and the resultant poor cycling performance caused by irreversible oxygen release seriously restrict the practical application. Herein we introduce a novel fence-type superstructure (2a×3a type supercell) into O3-type layered cathode material Na0.9Li0.1Ni0.3Mn0.3Ti0.3O2 and achieve a stable cycling performance at a high voltage of 4.4 V. The fence-type superstructure effectively inhibits the formation of the vacancy clusters resulting from out-of-plane Li migration and in-plane transition metal migration at high voltage due to the wide d-spacing, thereby significantly reducing the irreversible release of lattice oxygen and greatly stabilizing the crystal structure. The cathode exhibits a high energy density of 545 Wh kg-1, a high rate capability (112.8 mAh g-1 at 5 C) and a high cycling stability (85.8 %@200 cycles with a high initial capacity of 148.6 mAh g-1 at 1 C) accompanied by negligible voltage attenuation (98.5 %@200 cycles). This strategy provides a distinct spacing effect of superstructure to design stable high-voltage layered cathode materials for Na-ion batteries.

6.
Angew Chem Int Ed Engl ; : e202412057, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39132838

RESUMO

Activating anionic redox reaction (ARR) has attracted a great interest in Li/Na-ion batteries owing to the fascinating extra-capacity at high operating voltages. However, ARR has rarely been reported in aqueous zinc-ion batteries (AZIBs) and its possibility in the popular MnO2-based cathodes has not been explored. Herein, the novel manganese deficient MnO2 micro-nano spheres with interlayer "Ca2+-pillars" (CaMnO-140) are prepared via a low-temperature (140 °C) hydrothermal method, where the Mn vacancies can trigger ARR by creating non-bonding O 2p states, the pre-intercalated Ca2+ can reinforce the layered structure and suppress the lattice oxygen release by forming Ca-O configurations. The tailored CaMnO-140 cathode demonstrates an unprecedentedly high rate capability (485.4 mAh g-1 at 0.1 A g-1 with 154.5 mAh g-1 at 10 A g-1) and a marvelous long-term cycling durability (90.6% capacity retention over 5000 cycles) in AZIBs. The reversible oxygen redox chemistry accompanied by CF3SO3- (from the electrolyte) uptake/release, and the manganese redox accompanied by H+/Zn2+ co-insertion/extraction, are elucidated by advanced synchrotron characterizations and theoretical computations. Finally, pouch-type CaMnO-140//Zn batteries manifest bright application prospects with high energy, long life, wide-temperature adaptability, and high operating safety. This study provides new perspectives for developing high-energy cathodes for AZIBs by initiating anionic redox chemistry.

7.
Angew Chem Int Ed Engl ; 63(29): e202405620, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709194

RESUMO

Manganese-based layered oxides are currently of significant interest as cathode materials for sodium-ion batteries due to their low toxicity and high specific capacity. However, the practical applications are impeded by sluggish intrinsic Na+ migration and poor structure stability as a result of Jahn-Teller distortion and complicated phase transition. In this study, a high-entropy strategy is proposed to enhance the high-voltage capacity and cycling stability. The designed P2-Na0.67Mn0.6Cu0.08Ni0.09Fe0.18Ti0.05O2 achieves a deeply desodiation and delivers charging capacity of 158.1 mAh g-1 corresponding to 0.61 Na with a high initial Coulombic efficiency of 98.2 %. The charge compensation is attributed to the cationic and anionic redox reactions conjunctively. Moreover, the crystal structure is effectively stabilized, leading to a slight variation of lattice parameters. This research carries implications for the expedited development of low-cost, high-energy-density cathode materials for sodium-ion batteries.

8.
Angew Chem Int Ed Engl ; 63(38): e202409152, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38923635

RESUMO

Na+/vacancy ordering in sodium-ion layered oxide cathodes is widely believed to deteriorate the structural stability and retard the Na+ diffusion kinetics, but its unexplored potential advantages remain elusive. Herein, we prepared a P2-Na0.8Cu0.22Li0.08Mn0.67O2 (NCLMO-12 h) material featuring moderate Na+/vacancy and transition-metal (TM) honeycomb orderings. The appropriate Na+/vacancy ordering significantly enhances the operating voltage and the TM honeycomb ordering effectively strengthens the layered framework. Compared with the disordered material, the well-balanced dual-ordering NCLMO-12 h cathode affords a boosted working voltage from 2.85 to 3.51 V, a remarkable ~20 % enhancement in energy density, and a superior cycling stability (capacity retention of 86.5 % after 500 cycles). The solid-solution reaction with a nearly "zero-strain" character, the charge compensation mechanisms, and the reversible inter-layer Li migration upon sodiation/desodiation are unraveled by systematic in situ/ex situ characterizations. This study breaks the stereotype surrounding Na+/vacancy ordering and provides a new avenue for developing high-energy and long-durability sodium layered oxide cathodes.

9.
Angew Chem Int Ed Engl ; 63(17): e202401996, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38445364

RESUMO

Metal-organic frameworks (MOFs) show wide application as the cathode of aqueous zinc-ion batteries (AZIBs) in the future owning to their high porosity, diverse structures, abundant species, and controllable morphology. However, the low energy density and poor cycling stability hinder the feasibility in practical application. Herein, an innovative strategy of organic/inorganic double electroactive sites is proposed and demonstrated to obtain extra capacity and enhance the energy density in a manganese-based metal-organic framework (Mn-MOF-74). Simultaneously, its energy storage mechanism is systematically investigated. Moreover, profiting from the coordination effect, the Mn-MOF-74 features with stable structure in ZnSO4 electrolyte. Therefore, the Zn/Mn-MOF-74 batteries exhibit a high energy density and superior cycling stability. This work aids in the future development of MOFs in AZIBs.

10.
Angew Chem Int Ed Engl ; : e202411059, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011573

RESUMO

Anionic redox chemistry can surpass theoretical limits of conventional layered oxide cathodes in energy density. A recent model system of sodium-ion batteries, O3-NaLi1/3Mn2/3O2, demonstrated full anionic redox capacity but is limited in reversibility and kinetics due to irreversible structural rearrangement and oxygen loss. Solutions to these issues are missing due to the challenging synthesis. Here, we harness the unique structural richness of sodium layered oxides and realize a controlled ratio of P2 structural intergrowth in this model compound with the overall composition maintained. The resulted O3 with 27% P2 intergrowth structure delivers an excellent initial Coulombic efficiency of 87%, comparable to the state-of-the-art Li-rich NMCs. This improvement is attributed to the effective suppression of irreversible oxygen release and structural changes, evidenced by operando Differential Electrochemical Mass Spectroscopy and X-ray Diffraction. The as-prepared intergrowth material, based on the environmentally benign Mn, exhibits a reversible capacity of 226 mAh g-1 at C/20 rate with excellent cycling stability stemming from the redox reactions of oxygen and manganese. Our work isolates the role of P2 structural intergrowth and thereby introduces a novel strategy to enhance the reversibility and kinetics of anionic redox reactions in sodium layered cathodes without compromising capacity.

11.
Small ; 19(37): e2302332, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37140106

RESUMO

Stacking order plays a key role in defining the electrochemical behavior and structural stability of layer-structured cathode materials. However, the detailed effects of stacking order on anionic redox in layer-structured cathode materials have not been investigated specifically and are still unrevealed. Herein, two layered cathodes with the same chemical formula but different stacking orders: P2-Na0.75 Li0.2 Mn0.7 Cu0.1 O2 (P2-LMC) and P3-Na0.75 Li0.2 Mn0.7 Cu0.1 O2 (P3-LMC) are compared. It is found that P3 stacking order is beneficial to improve the oxygen redox reversibility compared with P2 stacking order. By using synchrotron hard and soft X-ray absorption spectroscopies, three redox couples of Cu2+ /Cu3+ , Mn3.5+ /Mn4+ , and O2- /O- are revealed to contribute charge compensation in P3 structure simultaneously, and two redox couples of Cu2+ /Cu3+ and O2- /O- are more reversible than those in P2-LMC due to the higher electronic densities in Cu 3d and O 2p orbitals in P3-LMC. In situ X-ray diffraction reveals that P3-LMC exhibits higher structural reversibility during charge and discharge than P2-LMC, even at 5C rate. As a result, P3-LMC delivers a high reversible capacity of 190.3 mAh g-1 and capacity retention of 125.7 mAh g-1 over 100 cycles. These findings provide new insight into oxygen-redox-involved layered cathode materials for SIBs.

12.
Small ; 19(38): e2300878, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37211714

RESUMO

Triggering reversible lattice oxygen redox (LOR) in oxide cathodes is a paradigmatic approach to overcome the capacity ceiling determined by orthodox transition-metal (TM) redox. However, the LOR reactions in P2-structured Na-layered oxides are commonly accompanied by irreversible nonlattice oxygen redox (non-LOR) and large local structural rearrangements, bringing about capacity/voltage fading and constantly evolving charge/discharge voltage curves. Herein, a novel Na0.615 Mg0.154 Ti0.154 Mn0.615 ◻0.077 O2 (◻ = TM vacancies) cathode with both NaOMg and NaO◻ local configurations is deliberately designed. Intriguingly, the activating of oxygen redox at middle-voltage region (2.5-4.1 V) via NaO◻ configuration helps in maintaining the high-voltage plateau from LOR (≈4.38 V) and stable charge/discharge voltage curves even after 100 cycles. Hard X-ray absorption spectroscopy (hXAS), solid-state NMR, and electron paramagnetic resonance studies demonstrate that both the involvement of non-LOR at high-voltage and the structural distortions originating from Jahn-Teller distorted Mn3+ O6 at low-voltage are effectively restrained in Na0.615 Mg0.154 Ti0.154 Mn0.615 ◻0.077 O2 . Resultantly, the P2 phase is well retained in a wide electrochemical window of 1.5-4.5 V (vs Na+ /Na), resulting in an extraordinary capacity retention of 95.2% after 100 cycles. This work defines an effective approach to upgrade the lifespan of Na-ion battery with reversible high-voltage capacity provided by LOR.

13.
Chemistry ; 29(22): e202203586, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-36806289

RESUMO

Anionic redox has been considered as a promising strategy to break the capacity limitation of cathode materials that solely relies on the intrinsic cationic redox in secondary batteries. Vacancy, as a kind of defect, can be introduced into transition metal layer to trigger oxygen redox, thus enhancing the energy density of layer-structured cathode materials for sodium-ion batteries. Herein, the formation process, recent progress in working mechanisms of triggering oxygen redox, as well as advanced characterization techniques for transition metal (TM) vacancy were overviewed and discussed. Strategies applied to stabilize the vacancy contained structures and harness the reversible oxygen redox were summarized. Furthermore, the challenges and prospects for further understanding TM vacancy were particularly emphasized.

14.
Small ; 18(19): e2201086, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35481894

RESUMO

P2-type sodium-manganese-based layered cathodes, owing to their high capacity from both cationic and anionic redox, are a potential candidate for Na-ion batteries (NIBs) to replace Li-ion technology in certain applications. Still, the structure instability originating from irreversible oxygen redox at high voltage remains a challenge. Here, a high sustainability cobalt-free P2-Na0.72 Mn0.75 Li0.24 X0.01 O2  (X = Ti/Si) cathode is developed. The outstanding capacity retention and voltage retention after 150 cycles are obtained in half-cells. The finding shows that Ti localizes on the surface while Si diffuses to the bulk of the particles. Thus, Ti can act as a protective layer that alleviates side reactions in carbonate-based electrolyte. Meanwhile, Si can regulate the local electronic structure and suppress oxygen redox activities. Notably, full-cells with hard carbon (≈300-335 W h kg-1 based on the cathode mass) deliver the capacity retention of 83% for P2-Na0.72 Mn0.75 Li0.24 Si0.01 O2  and 66% for P2-Na0.72 Mn0.75 Li0.24 Ti0.01 O2  after 500 cycles; this electrochemical stability is the best compared to other reported cathodes based on oxygen redox at present. The superior cycle performance also stems from the ability to inhibit microcracking and planar gliding within the particles. Altogether, this finding offers a new composition for developing high-performance low-cost cathodes for NIBs and highlights the unique role of Ti/Si ions.

15.
Small ; 18(18): e2201014, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35373917

RESUMO

High-capacity Li-rich Mn-based oxide cathodes show a great potential in next generation Li-ion batteries but suffer from some critical issues, such as, lattice oxygen escape, irreversible transition metal (TM) cation migration, and voltage decay. Herein, a comprehensive structural modulation in the bulk and surface of Li-rich cathodes is proposed through simultaneously introducing oxygen vacancies and P doping to mitigate these issues, and the improvement mechanism is revealed. First, oxygen vacancies and P doping elongates OO distance, which lowers the energy barrier and enhances the reversible cation migration. Second, reversible cation migration elevates the discharge voltage, inhibits voltage decay and lattice oxygen escape by increasing the Li vacancy-TM antisite at charge, and decreasing the trapped cations at discharge. Third, oxygen vacancies vary the lattice arrangement on the surface from a layered lattice to a spinel phase, which deactivates oxygen redox and restrains oxygen gas (O2 ) escape. Fourth, P doping enhances the covalency between cations and anions and elevates lattice stability in bulk. The modulated Li-rich cathode exhibits a high-rate capability, a good cycling stability, a restrained voltage decay, and an elevated working voltage. This study presents insights into regulating oxygen redox by facilitating reversible cation migration and suppressing O2 escape.

16.
Small ; 18(6): e2103499, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34850552

RESUMO

Lithium-excess manganese layered oxide Li2 MnO3 , attracts much attention as a cathode in Li-ion batteries, due to the low cost and the ultrahigh theoretical capacity (≈460 mA h g-1 ). However, it delivers a low reversible practical capacity (<200 mA h g-1 ) due to the irreversible oxygen redox at high potentials (>4.5 V). Herein, heavy fluorination (9.5%) is successfully implemented in the layered anionic framework of a Li-Mn-O-F (LMOF) cathode through a unique ion-exchange route. F substitution with O stabilizes the layered anionic framework, completely inhibits the O2 evolution during the first cycle, and greatly enhances the reversibility of oxygen redox, delivering an ultrahigh reversible capacity of 389 mA h g-1 , which is 85% of the theoretical capacity of Li2 MnO3 . Moreover, it also induces a thin spinel shell coherently forming on the particle surface, which greatly improves the surface structure stability, making LMOF exhibit a superior cycling stability (a capacity retention of 91.8% after 120 cycles at 50 mA g-1 ) and excellent rate capability. These findings stress the importance of stabilizing the anionic framework in developing high-performance low-cost cathodes for next-generation Li-ion batteries.

17.
Angew Chem Int Ed Engl ; 61(16): e202115552, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35112438

RESUMO

Improving the reversibility of oxygen redox is quite significant for layered oxides cathodes in sodium-ion batteries. Herein, we for the first time simultaneously tune bulk O2 and nonbonding oxygen state for reversible oxygen redox chemistry in P2-Na0.67 Mn0.5 Fe0.5 O2 through a synergy of Li2 TiO3 coating and Li/Ti co-doping. O2- is oxidized to molecular O2 and peroxide (O2 )n- (n<2) during charging. Molecular O2 derived from transition metal (TM) migration is related to the superstructure ordering induced by Li doping. The synergy mechanism of Li2 TiO3 coating and Li/Ti co-doping on the two O-redox modes is revealed. Firstly, Li2 TiO3 coating restrains the surface O2 and inhibits O2 loss. Secondly, nonbonding Li-O-Na enhances the reversibility of O2- →(O2 )n- . Thirdly, Ti doping strengthens the TM-O bond which fixes lattice oxygen. The cationic redox reversibility is also enhanced by Li/Ti co-doping. The proposed insights into the oxygen redox reversibility are insightful for other oxide cathodes.

18.
Nano Lett ; 20(8): 5779-5785, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32643943

RESUMO

Continued improvement in the electrochemical performance of Li-Mn-O oxide cathode materials is key to achieving advanced low-cost Li-ion batteries with high energy densities. In this study, O2-type Li0.78[Li0.24Mn0.76]O2 nanowires were synthesized by a solvothermal reaction to produce P2-type Na5/6[Li1/4Mn3/4]O2 nanowires, which were then subjected to molten salt Li-ion exchange. The resulting nanowires have diameters less than 20 nm and lengths of several micrometers. The full-Mn-based nanowires cathode material delivers a reversible capacity of 275 mAh g-1 at 0.1 C and 200 mAh g-1 at a high current rate of 15 C with a capacity retention of more than 80% and the voltage decay was dramatically suppressed after 100 cycles. This excellent performance is ascribed to the highly stable oxygen redox reaction and lack of layered-to-spinel phase transition in the O2-type structure during cycling.

19.
Molecules ; 26(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34577012

RESUMO

Description of redox reactions is critically important for understanding and rational design of materials for electrochemical technologies, including metal-ion batteries, catalytic surfaces, or redox-flow cells. Most of these technologies utilize redox-active transition metal compounds due to their rich chemistry and their beneficial physical and chemical properties for these types of applications. A century since its introduction, the concept of formal oxidation states (FOS) is still widely used for rationalization of the mechanisms of redox reactions, but there exists a well-documented discrepancy between FOS and the electron density-derived charge states of transition metal ions in their bulk and molecular compounds. We summarize our findings and those of others which suggest that density-driven descriptors are, in certain cases, better suited to characterize the mechanism of redox reactions, especially when anion redox is involved, which is the blind spot of the FOS ansatz.

20.
Angew Chem Int Ed Engl ; 60(40): 22026-22034, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34378281

RESUMO

Anionic redox is an effective way to boost the energy density of layer-structured metal-oxide cathodes for rechargeable batteries. However, inherent rigid nature of the TMO6 (TM: transition metals) subunits in the layered materials makes it hardly tolerate the inner strains induced by lattice glide, especially at high voltage. Herein, P2-Na0.8 Mg0.13 [Mn0.6 Co0.2 Mg0.07 □0.13 ]O2 (□: TM vacancy) is designed that contains vacancies in TM sites, and Mg ions in both TM and sodium sites. Vacancies make the rigid TMO6 octahedron become more asymmetric and flexible. Low valence Co2+ /Co3+ redox couple stabilizes the electronic structure, especially at the charged state. Mg2+ in sodium sites can tune the interlayer spacing against O-O electrostatic repulsion. Time-resolved in situ X-ray diffraction confirms that irreversible structure evolution is effectively suppressed during deep desodiation benefiting from the specific configuration. X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations demonstrate that, deriving from the intrinsic vacancies, multiple local configurations of "□-O-□", "Na-O-□", "Mg-O-□" are superior in facilitating the oxygen redox for charge compensation than previously reported "Na-O-Mg". The resulted material delivers promising cycle stability and rate capability, with a long voltage plateau at 4.2 V contributed by oxygen, and can be well maintained even at high rates. The strategy will inspire new ideas in designing highly stable cathode materials with reversible anionic redox for sodium-ion batteries.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa