RESUMO
Parabens have been widely employed as preservatives since the 1920s for extending the shelf life of foodstuffs, medicines, and daily care products. Given the fact that there are some legitimate concerns related to their potential multiple endocrine-disrupting properties, the development of novel bioanalytical methods for their biomonitoring is crucial. In this study, a fabric phase sorptive extraction reversed-phase liquid chromatography method coupled with UV detection (FPSE-HPLC-UV) was developed and validated for the quantitation of seven parabens in human plasma samples. Chromatographic separation of the seven parabens and p-hydroxybenzoic acid was achieved on a semi-micro Spherisorb ODS1 analytical column under isocratic elution using a mobile phase containing 0.1% (v/v) formic acid and 66% 49 mM ammonium formate aqueous solution in acetonitrile at flow rate 0.25 mL min-1 with a 24-min run time for each sample. The method was linear at a concentration range of 20 to 500 ng mL-1 for the seven parabens under study in human plasma samples. The efficiency of the method was proven with the analysis of 20 human plasma samples collected from women subjected to breast cancer surgery and to reconstructive and aesthetic breast surgery. The highest quantitation rates in human plasma samples from cancerous cases were found for methylparaben and isobutylparaben with average plasma concentrations at 77 and 112.5 ng mL-1. The high concentration levels detected agree with previous findings for some of the parabens and emphasize the need for further epidemiological research on the possible health effects of the use of these compounds.
Assuntos
Cromatografia de Fase Reversa/métodos , Parabenos/análise , Plasma/química , Cromatografia Líquida de Alta Pressão/métodos , Disruptores Endócrinos/análise , Feminino , Humanos , Limite de Detecção , Conservantes Farmacêuticos/análise , Extração em Fase Sólida/métodos , Têxteis/análiseRESUMO
Preservatives (ingredients which inhibit growth of microorganisms) are used to prolong shelf life of various foods, cosmetics, and pharmaceutical products. Parabens are one of the most popular preservatives used in the aforementioned products and is currently being used worldwide. Parabens are easily absorbed by the human body. Thus, it is important to discuss about their safety with respect to human physiology. In view of the current literature, which classifies parabens as a group of endocrine disrupting chemicals (EDCs), it seems that the precise assessment of their influence on the human endocrine system is particularly important. Disruption of the endocrine homoeostasis might lead to multidirectional implications causing disruption of fitness and functions of the body. Therefore, in this review article, we aimed to summarize the current literature on properties, occurrence, and metabolism of parabens as well as to present recent progress in knowledge about their influence on the human endocrine system.
Assuntos
Sistema Endócrino/efeitos dos fármacos , Parabenos/toxicidade , Animais , Monitoramento Ambiental , Humanos , Parabenos/química , Parabenos/metabolismoRESUMO
Dialkyl 4,4'-(2-(1,3-bis(4-(alkoxycarbonyl)phenoxy)propan-2-ylidene)propane-1,3-diyl)bis (oxy)dibenzoate 6a,b were synthesized through the reaction of ethene-1,1,2,2,-tetra-yl-tetra methylene tetra bromide 1 with methyl 4-hydroxy benzoate or ethyl 4-hydroxy benzoate 2a,b. In addition, compounds 6a,b were obtained by using the esterification reaction from the reaction compound 5 with methyl and ethyl alcohol in high yields. Compound 4 was synthesized from the reaction of ethene-1,1,2,2,-tetra-yl-tetra methylene tetra bromide 1 with 4-hydroxy benzonitrile 3. The structures of the novel synthesized compounds were confirmed by IR, (1)H NMR, (13)C NMR, COSY, elemental analysis, and mass spectral data. Compound 6b, C42H44O12, was also characterized with additional analysis such as UV-vis, and X-ray spectral techniques. The electronic structure of compound 6b was studied by DFT level 6-31G∗(d,p) using X-ray crystallographic data. The results obtained from this study are consistent with the X-ray data. In order to understand the electronic transitions of the compound 6b, time dependent density functional theory (TD-DFT) calculations were carried out. TD-DFT studies showed that the low-energy excitations are consistent with the experimental results.
Assuntos
Alcenos/química , Compostos Macrocíclicos/química , Compostos Macrocíclicos/síntese química , Modelos Moleculares , Parabenos/química , Cristalografia por Raios X , Elétrons , Ligação de Hidrogênio , Conformação Molecular , Teoria Quântica , Espectrofotometria UltravioletaRESUMO
Biomonitoring of human exposure to bisphenol A diglycidyl ethers (BADGEs; resin coating for food cans), p-hydroxybenzoic acid esters (parabens; preservatives), benzophenone-type UV filters (BP-UV filters; sunscreen agents), triclosan (TCS; antimicrobials), and triclocarban (TCC; antimicrobials) has been investigated in western European countries and North America. Nevertheless, little is known about the exposure of Greek populations to these environmental chemicals. In this study, 100 urine samples collected from Athens, Greece, were analyzed by liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for the determination of total concentrations of five derivatives of BADGEs, six parabens and their metabolite (ethyl-protocatechuate), five derivatives of BP-UV filters, TCS, and TCC. Urinary concentrations of BADGEs, parabens, ethyl-protocatechuate, BP-UV filters, TCS and TCC (on a volume basis) ranged 0.3-20.9 (geometric mean: 0.9), 1.6-1010 (24.2), <2-71.0 (2.1), 0.5-1120 (4.4), <0.5-2580 (8.0) and <0.5-1.9 (0.6) ng/mL, respectively. All 19 target chemicals were found in urine, and the highest detection rates were observed for methyl paraben (100%), bisphenol A bis (2,3-dihydroxypropyl) ether (90%), ethyl paraben (87%), 2,4-dihydroxybenzophenone (78%), propyl paraben (72%), and TCS (71%). Estimated daily intakes (EDIurine), calculated on the basis of the measured urinary concentrations, ranged from 0.023 µg/kg bw/day for Σ5BADGEs to 31.4 µg/kg bw/day for Σ6Parabens.
Assuntos
Compostos Benzidrílicos/urina , Benzofenonas/urina , Carbanilidas/urina , Exposição Ambiental/análise , Poluentes Ambientais/urina , Compostos de Epóxi/urina , Parabenos/metabolismo , Triclosan/urina , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Exposição Ambiental/normas , Feminino , Grécia , Humanos , Masculino , Pessoa de Meia-Idade , Protetores Solares/metabolismo , Adulto JovemRESUMO
Human exposure to p-hydroxybenzoic acid esters (parabens) is a concern, owing to adverse health effects of these compounds. Parabens are metabolized and eliminated from the human bodies within a few hours of exposure. In this study, for the first time, methyl- and ethyl-protocatechuates (OH-MeP and OH-EtP) and their parent compounds, methyl- (MeP) and ethyl-parabens (EtP), were determined in urine samples collected from U.S. children and adults. Alkyl protocatechuates were found in almost all urine samples, with median concentrations of 11.8 (OH-MeP) and 2.90ng/mL (OH-EtP) in adults, and 5.43 (OH-MeP) and 0.85ng/mL (OH-EtP) in children. In adults, the concentrations of urinary OH-MeP and OH-EtP were higher than the corresponding concentrations of MeP and EtP. Significant correlation between OH-MeP/OH-EtP and MeP/EtP was observed. This is the first report to document hydroxylation of parabens in humans, and to propose hydroxylated metabolites (i.e., alkyl protocatechuates) as alternative biomarkers of exposure to parabens in human biomonitoring studies. The rates of transformation of parabens between children and adults appeared to be different, as evidenced from the slopes of regression between alkyl protocatechuates and parabens. In addition to alkyl protocatechuates, hydroxybenzoic acid (4-HB) and 3,4-dihydroxybenzoic acid (3,4-DHB) were found at considerable levels in the urine samples. The occurrence of a significant proportion of alkyl protocatechuates and 3,4-DHB suggests the need for inclusion of these derivatives in accurate estimation of human exposure to parabens and in epidemiological studies that associate paraben exposure to health outcomes in populations.