RESUMO
Invasive lobular carcinoma (ILC) is the second most frequent type of breast cancer (BC) and its peculiar morphology is mainly driven by inactivation of CDH1, the gene coding for E-cadherin cell adhesion protein. ILC-specific therapeutic and disease-monitoring approaches are gaining momentum in the clinic, increasing the importance of accurate ILC diagnosis. Several essential and desirable morphologic diagnostic criteria are currently defined by the World Health Organization, the routine use of immunohistochemistry (IHC) for E-cadherin is not recommended. Disagreement in the diagnosis of ILC has been repeatedly reported, but interpathologist agreement increases with the use of E-cadherin IHC. In this study, we aimed to harmonize the pathological diagnosis of ILC by comparing 5 commonly used E-cadherin antibody clones (NCH-38, EP700Y, Clone 36, NCL-L-E-cad [Clone 36B5], and ECH-6). We determined their biochemical specificity for the E-cadherin protein and IHC staining performance according to type and location of mutation on the CDH1 gene. Western blot analysis on mouse cell lines with conditional E-cadherin expression revealed a reduced specificity of EP700Y and NCL-L-E-cad for E-cadherin, with cross-reactivity of Clone 36 to P-cadherin. The use of IHC improved interpathologist agreement for ILC, lobular carcinoma in situ, and atypical lobular hyperplasia. The E-cadherin IHC staining pattern was associated with variant allele frequency and likelihood of nonsense-mediated RNA decay but not with the type or position of CDH1 mutations. Based on these results, we recommend the indication for E-cadherin staining, choice of antibodies, and their interpretation to standardize ILC diagnosis in current pathology practice.
Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Caderinas , Carcinoma Lobular , Imuno-Histoquímica , Carcinoma Lobular/diagnóstico , Carcinoma Lobular/patologia , Carcinoma Lobular/metabolismo , Carcinoma Lobular/genética , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Feminino , Caderinas/metabolismo , Caderinas/análise , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Antígenos CD/metabolismo , Animais , CamundongosRESUMO
The epicardium is integral to cardiac development and facilitates endogenous heart regeneration and repair. While miR-194-3p is associated with cellular migration and invasion, its impact on epicardial cells remains uncharted. In this work we use gain-of-function and loss-of-function methodologies to investigate the function of miR-194-3p in cardiac development. We culture embryonic epicardial cells in vitro and subject them to transforming growth factor ß (TGF-ß) treatment to induce epithelial-mesenchymal transition (EMT) and monitor miR-194-3p expression. In addition, the effects of miR-194-3p mimics and inhibitors on epicardial cell development and changes in EMT are investigated. To validate the binding targets of miR-194-3p and its ability to recover the target gene-phenotype, we produce a mutant vector p120-catenin-3'UTR-MUT. In epicardial cells, TGF-ß-induced EMT results in a notable overexpression of miR-194-3p. The administration of miR-194-3p mimics promotes EMT, which is correlated with elevated levels of mesenchymal markers. Conversely, miR-194-3p inhibitor attenuates EMT. Further investigations reveal a negative correlation between miR-194-3p and p120-catenin, which influences ß-catenin level in the cell adhesion pathway. The suppression of EMT caused by the miR-194-3p inhibitor is balanced by silencing of p120-catenin. In conclusion, miR-194-3p directly targets p120-catenin and modulates its expression, which in turn alters ß-catenin expression, critically influencing the EMT process in the embryonic epicardial cells via the cell adhesion mechanism.
Assuntos
Cateninas , Transição Epitelial-Mesenquimal , MicroRNAs , Pericárdio , Transdução de Sinais , beta Catenina , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , beta Catenina/metabolismo , beta Catenina/genética , Pericárdio/metabolismo , Pericárdio/citologia , Pericárdio/embriologia , Camundongos , Cateninas/metabolismo , Cateninas/genética , delta Catenina , Fator de Crescimento Transformador beta/metabolismo , Células CultivadasRESUMO
The ß-cells of the islets of Langerhans are the sole producers of insulin in the human body. In response to rising glucose levels, insulin-containing vesicles inside ß-cells fuse with the plasma membrane and release their cargo. However, the mechanisms regulating this process are only partly understood. Previous evidence indicated reductions in α-catenin elevate insulin release, while reductions in ß-catenin decrease insulin release. α- and ß-catenin contribute to cellular regulation in a range of ways but one is as members of the adherens junction complex. Therefore, we investigated the effects of adherens junctions on insulin release. We show in INS-1E ß-cells knockdown of either E- or N-cadherin had only small effects on insulin secretion, but simultaneous knockdown of both cadherins resulted in a significant increase in basal insulin release to the same level as glucose-stimulated release. This double knockdown also significantly attenuated levels of p120 catenin, a cadherin-binding partner involved in regulating cadherin turnover. Conversely, reducing p120 catenin levels with siRNA destabilized both E- and N-cadherin, and this was also associated with an increase in levels of insulin secreted from INS-1E cells. Furthermore, there were also changes in these cells consistent with higher insulin release, namely reductions in levels of F-actin and increased intracellular free Ca2+ levels in response to KCl-induced membrane depolarization. Taken together, these data provide evidence that adherens junctions play important roles in retaining a pool of insulin secretory vesicles within the cell and establish a role for p120 catenin in regulating this process.
Assuntos
Junções Aderentes , Cateninas , Células Secretoras de Insulina , Insulina , Vesículas Secretórias , Junções Aderentes/metabolismo , Caderinas/genética , Caderinas/metabolismo , Proteínas de Transporte/metabolismo , Cateninas/genética , Cateninas/metabolismo , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Vesículas Secretórias/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , delta CateninaRESUMO
Inflammasome activation is of central importance for the process of generation of overwhelming inflammatory response and the pathogenesis of sepsis. The intrinsic molecular mechanism for controlling inflammasome activation is still poorly understood. Here we investigated the role of p120-catenin expression in macrophages in regulating nucleotide-binding oligomerization domain (NOD) and leucine-rich repeat (LRR)- and pyrin domain-containing proteins 3 (NLRP3) inflammasome activation. Depletion of p120-catenin in murine bone marrow-derived macrophages enhanced caspase-1 activation and secretion of active interleukin (IL)-1ß in response to ATP stimulation following LPS priming. Coimmunoprecipitation analysis showed that p120-catenin deletion promoted NLRP3 inflammasome activation by accelerating the assembly of the inflammasome complex comprised of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and pro-caspase-1. Depletion of p120-catenin also increased the production of mitochondrial reactive oxygen species. Pharmacological inhibition of mitochondrial reactive oxygen species nearly completely abolished NLRP3 inflammasome activation, caspase-1 activation, and the production of IL-1ß in p120-catenin-depleted macrophages. Furthermore, p120-catenin ablation significantly disrupted mitochondrial function, evidenced by decreased mitochondrial membrane potential and lower production of intracellular ATP. In alveolar macrophage-depleted mice challenged with cecal ligation and puncture, pulmonary transplantation of p120-catenin-deficient macrophages dramatically enhanced the accumulation of IL-1ß and IL-18 in bronchoalveolar lavage fluid. These results demonstrate that p120-catenin prevents NLRP3 inflammasome activation in macrophages by maintaining mitochondrial homeostasis and reducing the production of mitochondrial reactive oxygen species in response to endotoxin insult. Thus, inhibition of NLRP3 inflammasome activation by stabilization of p120-catenin expression in macrophages may be a novel strategy to prevent an uncontrolled inflammatory response in sepsis.
Assuntos
Inflamassomos , Sepse , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , delta Catenina , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , Caspase 1/metabolismo , Sepse/metabolismo , Trifosfato de Adenosina/metabolismo , Interleucina-1beta/metabolismoRESUMO
We report here the effects of targeted p120-catenin (encoded by CTNND1; hereafter denoted p120) knockout (KO) in a PyMT mouse model of invasive ductal (mammary) cancer (IDC). Mosaic p120 ablation had little effect on primary tumor growth but caused significant pro-metastatic alterations in the tumor microenvironment, ultimately leading to a marked increase in the number and size of pulmonary metastases. Surprisingly, although early effects of p120-ablation included decreased cell-cell adhesion and increased invasiveness, cells lacking p120 were almost entirely unable to colonized distant metastatic sites in vivo The relevance of this observation to human IDC was established by analysis of a large clinical dataset of 1126 IDCs. As reported by others, p120 downregulation in primary IDC predicted worse overall survival. However, as in the mice, distant metastases were almost invariably p120 positive, even in matched cases where the primary tumors were p120 negative. Collectively, our results demonstrate a strong positive role for p120 (and presumably E-cadherin) during metastatic colonization of distant sites. On the other hand, downregulation of p120 in the primary tumor enhanced metastatic dissemination indirectly via pro-metastatic conditioning of the tumor microenvironment.
Assuntos
Neoplasias da Mama , Animais , Neoplasias da Mama/genética , Caderinas/genética , Cateninas/genética , Adesão Celular , Feminino , Humanos , Camundongos , Microambiente Tumoral , delta CateninaRESUMO
BACKGROUND: The cadherin-associated protein p120 catenin regulates convergent extension through interactions with cadherin proteins, Cdc42, and Rac1, as we previously showed in zebrafish (Danio rerio). Phosphorylation of p120 catenin changes the nature of its activity in vitro but is virtually unexplored in embryos. We used our previously developed antisense RNA splice-site morpholino targeted to endogenous p120 catenin-δ1 to cause defects in axis elongation probing the functions of three p120 catenin tyrosine-phosphorylation sites in gastrulating zebrafish embryos. RESULTS: The morpholino-induced defects were rescued by co-injections with mouse p120 catenin-δ1-3A mRNAs mutated at residues Y228 and Y217 to a non-phosphorylatable phenylalanine (F) or mutated at residue Y335 to a phosphomimetic glutamic acid (E). Co-injection of the complementary mutations Y228E, Y217E, or Y335F mRNAs partially rescued embryos whereas dual mutation to Y228E-Y217E blocked rescue. Immunopurification showed Y228F mutant proteins preferentially interacted with Rac1, potentially promoting cell migration. In contrast, the phosphomimetic Y228E preferentially interacted with E-cadherin increasing adhesion. Both Y228F and Y335F strongly bind VAV2. CONCLUSIONS: p120 catenin serves dual roles during gastrulation of zebrafish. Phosphorylation and dephosphorylation of tyrosine residues Y217, Y228, and Y335 precisely balance cell adhesion and cell migration to facilitate somite compaction and axis elongation.
Assuntos
Gastrulação , Peixe-Zebra , Camundongos , Animais , Peixe-Zebra/metabolismo , Fosforilação , Morfolinos/metabolismo , Cateninas/genética , Cateninas/metabolismo , Caderinas/genética , Caderinas/metabolismo , Adesão Celular/fisiologia , Tirosina/genética , Tirosina/metabolismo , Fosfoproteínas/metabolismo , beta Catenina/metabolismoRESUMO
BACKGROUND: Cadherin-associated protein p120 catenin regulates cell adhesion and migration in cell cultures and is required for axial elongation in embryos. Its roles in adhesion and cell migration are regulated by phosphorylation. We determined the effects of phosphorylation of six serine and three threonine residues in p120 catenin during zebrafish (Danio rerio) embryogenesis. RESULTS: We knocked down endogenous p120 catenin-δ1 with an antisense RNA-splice-site morpholino (Sp-MO) causing defects in axis elongation. These defects were rescued by co-injections of mRNAs for wildtype mouse p120 catenin-δ1-3A or various mutated forms. Several mRNAs containing serine or threonine codons singly or doubly mutated to phosphomimetic glutamic acid rescued, and some nonphosphorylatable mutants did not. CONCLUSIONS: We discovered that phosphorylation of serine residue S252 or S879 is required for convergent extension of zebrafish embryos, since rescue occurred only when these residues were mutated to glutamic acid. In addition, the phosphorylation of either S268 or S269 is required, not both, consistent with the presence of only a single one of these residues in two isoforms of zebrafish and Xenopus laevis. In summary, phosphorylation of multiple serine and threonine residues of p120 catenin activates migration of presomitic mesoderm of zebrafish embryos facilitating elongation of the dorsal axis.
Assuntos
Serina , Peixe-Zebra , Camundongos , Animais , Fosforilação , Peixe-Zebra/metabolismo , Serina/metabolismo , Ácido Glutâmico/metabolismo , Cateninas/genética , Cateninas/metabolismo , Caderinas/genética , Caderinas/metabolismo , Mesoderma/metabolismo , Treonina/metabolismoRESUMO
BACKGROUND: p120 catenin (p120ctn) is an important component in the cadherin-catenin cell adhesion complex because it stabilizes cadherin-mediated intercellular junctions. Outside these junctions, p120ctn is actively involved in the regulation of small GTPases of the Rho family, in actomyosin dynamics and in transcription regulation. We and others reported that loss of p120ctn in mouse embryos results in an embryonic lethal phenotype, but the exact developmental role of p120ctn during brain formation has not been reported. RESULTS: We combined floxed p120ctn mice with Del-Cre or Wnt1-Cre mice to deplete p120ctn from either all cells or specific brain and neural crest cells. Complete loss of p120ctn in mid-gestation embryos resulted in an aberrant morphology, including growth retardation, failure to switch from lordotic to fetal posture, and defective neural tube formation and neurogenesis. By expressing a wild-type p120ctn from the ROSA26 locus in p120ctn-null mouse embryonic stem cells, we could partially rescue neurogenesis. To further investigate the developmental role of p120ctn in neural tube formation, we generated conditional p120ctnfl/fl;Wnt1Cre knockout mice. p120ctn deletion in Wnt1-expressing cells resulted in neural tube closure defects (NTDs) and craniofacial abnormalities. These defects could not be correlated with misregulation of brain marker genes or cell proliferation. In contrast, we found that p120ctn is required for proper expression of the cell adhesion components N-cadherin, E-cadherin and ß-catenin, and of actin-binding proteins cortactin and Shroom3 at the apical side of neural folds. This region is of critical importance for closure of neural folds. Surprisingly, the lateral side of mutant neural folds showed loss of p120ctn, but not of N-cadherin, ß-catenin or cortactin. CONCLUSIONS: These results indicate that p120ctn is required for neurogenesis and neurulation. Elimination of p120ctn in cells expressing Wnt1 affects neural tube closure by hampering correct formation of specific adhesion and actomyosin complexes at the apical side of neural folds. Collectively, our results demonstrate the crucial role of p120ctn during brain morphogenesis.
Assuntos
Cateninas/metabolismo , Proteína Wnt1/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Cateninas/genética , Adesão Celular/genética , Adesão Celular/fisiologia , Camundongos , Camundongos Knockout , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Proteína Wnt1/genética , beta Catenina/genética , beta Catenina/metabolismoRESUMO
p120-catenin (p120) serves as a stabilizer of the calcium-dependent cadherin-catenin complex and loss of p120 expression has been observed in several types of human cancers. The p120-dependent E-cadherin-ß-catenin complex has been shown to mediate calcium-induced keratinocyte differentiation via inducing activation of plasma membrane phospholipase C-γ1 (PLC-γ1). On the other hand, PLC-γ1 has been shown to interact with phosphatidylinositol 3-kinase enhancer in the nucleus and plays a critical role in epidermal growth factor-induced proliferation of oral squamous cell carcinoma (OSCC) cells. To determine whether p120 suppresses OSCC proliferation and tumor growth via inhibiting PLC-γ1, we examined effects of p120 knockdown or p120 and PLC-γ1 double knockdown on proliferation of cultured OSCC cells and tumor growth in xenograft OSCC in mice. The results showed that knockdown of p120 reduced levels of PLC-γ1 in the plasma membrane and increased levels of PLC-γ1 and its signaling in the nucleus in OSCC cells and OSCC cell proliferation as well as xenograft OSCC tumor growth. However, double knockdown of p120 and PLC-γ1 or knockdown of PLC-γ1 alone did not have any effect. Immunohistochemical analysis of OSCC tissue from patients showed a lower expression level of p120 and a higher expression level of PLC-γ1 compared with that of adjacent noncancerous tissue. These data indicate that p120 suppresses OSCC cell proliferation and tumor growth by inhibiting signaling mediated by nuclear PLC-γ1.
Assuntos
Cateninas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Neoplasias Bucais/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Cálcio da Dieta/farmacologia , Carcinoma de Células Escamosas/patologia , Cateninas/metabolismo , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento Epidérmico/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias Bucais/patologia , Fosfolipase C gama/efeitos dos fármacos , Fosfolipase C gama/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologiaRESUMO
The RNA interference (RNAi) machinery is an essential component of the cell, regulating miRNA biogenesis and function. RNAi complexes were thought to localize either in the nucleus, such as the microprocessor, or in the cytoplasm, such as the RNA-induced silencing complex (RISC). We recently revealed that the core microprocessor components DROSHA and DGCR8, as well as the main components of RISC, including Ago2, also associate with the apical adherens junctions of well-differentiated cultured epithelial cells. Here, we demonstrate that the localization of the core RNAi components is specific and predominant at apical areas of cell-cell contact of human normal colon epithelial tissues and normal primary colon epithelial cells. Importantly, the apical junctional localization of RNAi proteins is disrupted or lost in human colon tumors and in poorly differentiated colon cancer cell lines, correlating with the dysregulation of the adherens junction component PLEKHA7. We show that the restoration of PLEKHA7 expression at adherens junctions of aggressively tumorigenic colon cancer cells restores the junctional localization of RNAi components and suppresses cancer cell growth in vitro and in vivo. In summary, this work identifies the apical junctional localization of the RNAi machinery as a key feature of the differentiated colonic epithelium, with a putative tumor suppressing function.
Assuntos
Junções Aderentes/metabolismo , Colo/metabolismo , Células Epiteliais/metabolismo , Interferência de RNA/fisiologia , Animais , Carcinogênese/metabolismo , Linhagem Celular , Proliferação de Células/fisiologia , Neoplasias do Colo/metabolismo , Citoplasma/metabolismo , Feminino , Humanos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/metabolismoRESUMO
Canonical Wnt signaling controls ß-catenin protein stabilization, its translocation to the nucleus and the activation of ß-catenin/Tcf-4-dependent transcription. In this review, we revise and discuss the recent results describing actions of p120-catenin in different phases of this pathway. More specifically, we comment its involvement in four different steps: (i) the very early activation of CK1É, essential for Dvl-2 binding to the Wnt receptor complex; (ii) the internalization of GSK3 and Axin into multivesicular bodies, necessary for a complete stabilization of ß-catenin; (iii) the activation of Rac1 small GTPase, required for ß-catenin translocation to the nucleus; and (iv) the release of the inhibitory action caused by Kaiso transcriptional repressor. We integrate these new results with the previously known action of other elements in this pathway, giving a particular relevance to the responses of the Wnt pathway not required for ß-catenin stabilization but for ß-catenin transcriptional activity. Moreover, we discuss the possible future implications, suggesting that the two cellular compartments where ß-catenin is localized, thus, the adherens junction complex and the Wnt signalosome, are more physically connected that previously thought.
Assuntos
Cateninas/metabolismo , Receptores Wnt/metabolismo , Transcrição Gênica/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Proteínas Desgrenhadas/metabolismo , Proteínas de Drosophila/metabolismo , Humanos , Fatores de Transcrição/metabolismo , beta Catenina/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , delta CateninaRESUMO
Mitochondria supply energy to maintain the integrity of cell junctions. NLRP3, as the core component of the inflammatory response, is crucial in mechanical stretching. Mechanical stretching could activate NLRP3 and induce mitochondrial dysfunction. The relationship between p120 and mitochondria in ventilator-induced lung injury (VILI) has not been elucidated. MLE-12 cells and wild-type male C57BL/6 mice were pre-treated with MCC950 (specific and highly efficient inhibitor of NLRP3) or a p120 siRNA-liposome complex. Then, the cells were subjected to 20% cyclic stretching, and the mice were subjected to mechanical ventilation at a high tidal volume. Cell lysates and lung tissues were obtained to detect the expression of NLRP3, p120, TLR4 pathway components, IL-6 and IL-1ß, to determine the functions and structures of mitochondria, and the wet/dry ratio of the lung, and to perform pathological staining and an Evans blue dye assay. Mechanical stretching could increase the levels of NLRP3, ROS and damaged mitochondria, while these changes could be reversed by MCC950. Moreover, p120 prevented the activation of NLRP3 and regulated NLRP3 by inhibiting the TLR4 pathway and ROS production. Additionally, p120 played a vital role in protecting mitochondrial structures and functions after mechanical stretching. Taken together, these findings suggest that p120 depletion during mechanical stretching aggravates mitochondrial dysfunction by activating NLRP3, which indicates that p120 has a protective role on mitochondria in VILI by inhibiting NLRP3 activation.
Assuntos
Cateninas/metabolismo , Pulmão/metabolismo , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Animais , Células Cultivadas , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Respiração Artificial/métodos , Transdução de Sinais/fisiologia , Volume de Ventilação Pulmonar/fisiologia , delta CateninaRESUMO
Hepatocellular carcinoma (HCC) is a fatal disease with increasing morbidity and poor prognosis due to surgical recurrence and metastasis. Moreover, the molecular mechanism of HCC progression remains unclear. Although the role of p120-catenin (p120ctn) in liver cancer is well studied, the effects of secreted p120ctn transported by exosomes are less understood. Here, we show that p120ctn in exosomes secreted from liver cancer cells suppresses HCC cell proliferation and metastasis and expansion of liver cancer stem cells (CSCs). Mechanically, exosome p120ctn inhibits HCC cell progression via the STAT3 pathway, and the STAT3 inhibitor S3I-201 abolishes the observed effects on growth, metastasis, and self-renewal ability between exosome p120ctn-treated HCC cells and control cells. Taken together, we propose that p120ctn-containing exosomes derived from cancer cells inhibit the progression of liver cancer and may offer a new therapeutic strategy.
Assuntos
Carcinoma Hepatocelular/patologia , Cateninas/metabolismo , Neoplasias Hepáticas/patologia , Células-Tronco Neoplásicas/patologia , Fator de Transcrição STAT3/metabolismo , Ácidos Aminossalicílicos/farmacologia , Benzenossulfonatos/farmacologia , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Exossomos/patologia , Humanos , Neoplasias Hepáticas/genética , Metástase Neoplásica/patologia , Fator de Transcrição STAT3/antagonistas & inibidores , delta CateninaRESUMO
BACKGROUND: Epithelial ovarian cancer (EOC) remains one of the most lethal gynecologic cancers, and its pathogenetic mechanism remains unclear. Here we show that MUC16 promotes the translocation of p120-catenin (p120ctn) to the cytoplasm and consequently activates ras homolog (Rho) GTPases RhoA/Cdc42 activation to modulate the proliferation and migration abilities of EOC cells. METHODS: We collect 94 ovarian cancer (OC) patients' tissue samples to constitute tissue microarray (TMA) and analyze the MUC16 and p120ctn expression levels. Lentivirus transfection is used to overexpress cytoplasmic tail domain (CTD) of MUC16 and CRISPR/Cas9 genome-editing system is firstly used to knock out MUC16 in EOC cells. The proliferation or migration ability of cells is analyzed by MTS or migration assay. RESULTS: We find that MUC16 and p120ctn are aberrantly overexpressed in 94 clinical OC samples compared with benign ovarian tumors (BOT). MUC16 is a critical inducer of the proliferation and migration of EOC cells and the CTD of MUC16 plays an important role during this process. In addition, we reveal the relationship between MUC16 and p120ctn, which has not previously been studied. We show that MUC16 promotes the translocation of p120ctn to the cytoplasm and consequently activates Rho GTPases to modulate the proliferation and migration abilities of EOC cells. The cell proliferation and migration abilities induced by MUC16 are mediated by p120ctn through RhoA/Cdc42 activation. CONCLUSIONS: The highly expressed MUC16 promotes the translocation of p120ctn to the cytoplasm, where it activates RhoA/Cdc42 to modulate the proliferation and migration abilities of EOC cells. These findings may provide new targets for the treatment of EOC.
Assuntos
Antígeno Ca-125/metabolismo , Carcinoma Epitelial do Ovário/metabolismo , Cateninas/metabolismo , Citoplasma/metabolismo , Proteínas de Membrana/metabolismo , Antígeno Ca-125/genética , Carcinoma Epitelial do Ovário/genética , Movimento Celular , Proliferação de Células , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Feminino , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana/genética , Transporte Proteico , Análise Serial de Tecidos , Células Tumorais Cultivadas , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , delta CateninaRESUMO
Metastatic renal cell carcinoma (RCC) remains an important clinical issue; the 5-year survival rate of patients with metastasis is approximately 12%, while it is 93% in those with localized disease. There is evidence that blood cadmium and lead levels are elevated in RCC. The current studies were designed to assess the impact of cadmium and lead on the progression of RCC. The disruption of homotypic cell-cell adhesion is an essential step in epithelial-to-mesenchymal transition and tumor metastasis. Therefore, we examined the impact of cadmium and lead on the cadherin/catenin complex in Renca cells-a mouse RCC cell line. Lead, but not cadmium, induced a concentration-dependent loss of E-cadherin, while cadmium, but not lead, increased p120-catenin expression, specifically isoform 1 expression. Lead also induced a substantial increase in matrix metalloproteinase-9 levels. Both cadmium and lead significantly decreased the number of Renca cell aggregates, consistent with the disruption of the cadherin/catenin complex. Both metals enhanced wound healing in a scratch assay, and increased cell migration and invasion. These data suggest that cadmium and lead promote RCC progression.
Assuntos
Cádmio/efeitos adversos , Carcinoma de Células Renais/patologia , Agregação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Neoplasias Renais/patologia , Chumbo/efeitos adversos , Invasividade Neoplásica/patologia , Animais , Caderinas/metabolismo , Carcinoma de Células Renais/metabolismo , Cateninas/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Renais/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , delta CateninaRESUMO
Cadherins are the primary adhesion molecules in adherens junctions and desmosomes and play essential roles in embryonic development. Although significant progress has been made in understanding cadherin structure and function, we lack a clear vision of how cells confer plasticity upon adhesive junctions to allow for cellular rearrangements during development, wound healing and metastasis. Endocytic membrane trafficking has emerged as a fundamental mechanism by which cells confer a dynamic state to adhesive junctions. Recent studies indicate that the juxtamembrane domain of classical cadherins contains multiple endocytic motifs, or "switches," that can be used by cellular membrane trafficking machinery to regulate adhesion. The cadherin-binding protein p120-catenin (p120) appears to be the master regulator of access to these switches, thereby controlling cadherin endocytosis and turnover. This review focuses on p120 and other cadherin-binding proteins, ubiquitin ligases, and growth factors as key modulators of cadherin membrane trafficking.
Assuntos
Junções Aderentes/metabolismo , Caderinas/metabolismo , Adesão Celular/fisiologia , Membrana Celular/metabolismo , Desenvolvimento Embrionário/fisiologia , Endocitose/fisiologia , Junções Aderentes/fisiologia , Animais , Membrana Celular/fisiologia , Humanos , Transporte ProteicoRESUMO
p120-catenin (p120) is an important regulator in the function and stability of E-cadherin. However, the role of p120 in the epidermis is unclear. Previous studies have shown that globally knockout of p120 caused increased epidermal proliferation but little changes in epidermal differentiation and permeability. In the present study, we generated a conditional knockout mouse model and examined epidermal proliferation, differentiation and permeability. The results showed that conditional knockout of p120 in the epidermis caused not only increased epidermal proliferation but also decreased epidermal differentiation and increased permeability. These data suggest that p120 is required for suppressing epidermal proliferation, promoting epidermal differentiation and maintaining permeability barrier function of the epidermis.
Assuntos
Cateninas/genética , Diferenciação Celular/genética , Epiderme/crescimento & desenvolvimento , Animais , Caderinas/genética , Permeabilidade da Membrana Celular/genética , Proliferação de Células/genética , Células Epidérmicas/metabolismo , Células Epidérmicas/patologia , Epiderme/metabolismo , Epiderme/patologia , Humanos , Camundongos , Camundongos Knockout , delta CateninaRESUMO
Cadherins are homophilic adhesion molecules with important functions in cell-cell adhesion, tissue morphogenesis, and cancer. In epithelial cells, E-cadherin accumulates at areas of cell-cell contact, coalesces into macromolecular complexes to form the adherens junctions (AJs), and associates via accessory partners with a subcortical ring of actin to form the apical zonula adherens (ZA). As a master regulator of the epithelial phenotype, E-cadherin is essential for the overall maintenance and homeostasis of polarized epithelial monolayers. Its expression is regulated by a host of genetic and epigenetic mechanisms related to cancer, and its function is modulated by mechanical forces at the junctions, by direct binding and phosphorylation of accessory proteins collectively termed catenins, by endocytosis, recycling and degradation, as well as, by multiple signaling pathways and developmental processes, like the epithelial to mesenchymal transition (EMT). Nuclear signaling mediated by the cadherin associated proteins ß-catenin and p120 promotes growth, migration and pluripotency. Receptor tyrosine kinase, PI3K/AKT, Rho GTPase, and HIPPO signaling, are all regulated by E-cadherin mediated cell-cell adhesion. Finally, the recruitment of the microprocessor complex to the ZA by PLEKHA7, and the subsequent regulation of a small subset of miRNAs provide an additional mechanism by which the state of epithelial cell-cell adhesion affects translation of target genes to maintain the homeostasis of polarized epithelial monolayers. Collectively, the data indicate that loss of E-cadherin function, especially at the ZA, is a common and crucial step in cancer progression.
Assuntos
Junções Aderentes/metabolismo , Caderinas/metabolismo , Adesão Celular/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Neoplasias/metabolismo , Animais , Células Epiteliais/metabolismo , HumanosRESUMO
To study the role of the nuclear factor (NF)-κB signaling pathway and P120-catenin in the inflammatory effects of intermittent cyclic mechanical tension (ICMT) on endplate chondrocytes. Inflammatory reactions of endplate chondrocyte were measured by real-time reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assays, a dual-luciferase reporter assay system, immunofluorescence, and Western blot analysis. ICMT loading led to inflammatory reactions of endplate chondrocytes in both the rabbit endplate cartilage model and rat endplate chondrocytes in vitro. Inhibition of NF-κB signaling significantly ameliorated the inflammation induced by ICMT in endplate chondrocytes. Moreover, the expression of P120-catenin was decreased by ICMT. However, over-expression of P120-catenin suppressed NF-κB signaling and reversed the inflammatory effects. P120-catenin prevents endplate chondrocytes from undergoing ICMT-mediated inflammation by suppressing the expression of NF-κB. J. Cell. Biochem. 118: 4508-4516, 2017. © 2017 Wiley Periodicals, Inc.
Assuntos
Cateninas/biossíntese , Condrócitos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Resistência à Tração , Animais , Condrócitos/patologia , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Coelhos , Ratos , Ratos Sprague-Dawley , delta CateninaRESUMO
Apical constriction (AC) is a widely utilized mechanism of cell shape change whereby epithelial cells transform from a cylindrical to conical shape, which can facilitate morphogenetic movements during embryonic development. Invertebrate epithelial cells undergoing AC depend on the contraction of apical cortex-spanning actomyosin filaments that generate force on the apical junctions and pull them toward the middle of the cell, effectively reducing the apical circumference. A current challenge is to determine whether these mechanisms are conserved in vertebrates and to identify the molecules responsible for linking apical junctions with the AC machinery. Utilizing the developing mouse eye as a model, we have uncovered evidence that lens placode AC may be partially dependent on apically positioned myosin-containing filaments associated with the zonula adherens. In addition we found that, among several junctional components, p120-catenin genetically interacts with Shroom3, a protein required for AC during embryonic morphogenesis. Further analysis revealed that, similar to Shroom3, p120-catenin is required for AC of lens cells. Finally, we determined that p120-catenin functions by recruiting Shroom3 to adherens junctions. Together, these data identify a novel role for p120-catenin during AC and further define the mechanisms required for vertebrate AC.