Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Mol Cell ; 84(3): 552-569.e11, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103557

RESUMO

Autophagy, an important quality control and recycling process vital for cellular homeostasis, is tightly regulated. The mTORC1 signaling pathway regulates autophagy under conditions of nutrient availability and scarcity. However, how mTORC1 activity is fine-tuned during nutrient availability to allow basal autophagy is unclear. Here, we report that the WD-domain repeat protein MORG1 facilitates basal constitutive autophagy by inhibiting mTORC1 signaling through Rag GTPases. Mechanistically, MORG1 interacts with active Rag GTPase complex inhibiting the Rag GTPase-mediated recruitment of mTORC1 to the lysosome. MORG1 depletion in HeLa cells increases mTORC1 activity and decreases autophagy. The autophagy receptor p62/SQSTM1 binds to MORG1, but MORG1 is not an autophagy substrate. However, p62/SQSTM1 binding to MORG1 upon re-addition of amino acids following amino acid's depletion precludes MORG1 from inhibiting the Rag GTPases, allowing mTORC1 activation. MORG1 depletion increases cell proliferation and migration. Low expression of MORG1 correlates with poor survival in several important cancers.


Assuntos
GTP Fosfo-Hidrolases , Proteínas Monoméricas de Ligação ao GTP , Humanos , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Células HeLa , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Lisossomos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo
2.
Mol Cell ; 84(10): 1980-1994.e8, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759629

RESUMO

Aggregation of proteins containing expanded polyglutamine (polyQ) repeats is the cytopathologic hallmark of a group of dominantly inherited neurodegenerative diseases, including Huntington's disease (HD). Huntingtin (Htt), the disease protein of HD, forms amyloid-like fibrils by liquid-to-solid phase transition. Macroautophagy has been proposed to clear polyQ aggregates, but the efficiency of aggrephagy is limited. Here, we used cryo-electron tomography to visualize the interactions of autophagosomes with polyQ aggregates in cultured cells in situ. We found that an amorphous aggregate phase exists next to the radially organized polyQ fibrils. Autophagosomes preferentially engulfed this amorphous material, mediated by interactions between the autophagy receptor p62/SQSTM1 and the non-fibrillar aggregate surface. In contrast, amyloid fibrils excluded p62 and evaded clearance, resulting in trapping of autophagic structures. These results suggest that the limited efficiency of autophagy in clearing polyQ aggregates is due to the inability of autophagosomes to interact productively with the non-deformable, fibrillar disease aggregates.


Assuntos
Amiloide , Autofagossomos , Autofagia , Proteína Huntingtina , Doença de Huntington , Peptídeos , Agregados Proteicos , Proteína Sequestossoma-1 , Peptídeos/metabolismo , Peptídeos/química , Peptídeos/genética , Humanos , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/química , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Amiloide/metabolismo , Amiloide/química , Amiloide/genética , Doença de Huntington/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Microscopia Crioeletrônica , Animais , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/genética
3.
EMBO J ; 42(14): e113349, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37306101

RESUMO

NRF2 is a transcription factor responsible for antioxidant stress responses that is usually regulated in a redox-dependent manner. p62 bodies formed by liquid-liquid phase separation contain Ser349-phosphorylated p62, which participates in the redox-independent activation of NRF2. However, the regulatory mechanism and physiological significance of p62 phosphorylation remain unclear. Here, we identify ULK1 as a kinase responsible for the phosphorylation of p62. ULK1 colocalizes with p62 bodies, directly interacting with p62. ULK1-dependent phosphorylation of p62 allows KEAP1 to be retained within p62 bodies, thus activating NRF2. p62S351E/+ mice are phosphomimetic knock-in mice in which Ser351, corresponding to human Ser349, is replaced by Glu. These mice, but not their phosphodefective p62S351A/S351A counterparts, exhibit NRF2 hyperactivation and growth retardation. This retardation is caused by malnutrition and dehydration due to obstruction of the esophagus and forestomach secondary to hyperkeratosis, a phenotype also observed in systemic Keap1-knockout mice. Our results expand our understanding of the physiological importance of the redox-independent NRF2 activation pathway and provide new insights into the role of phase separation in this process.


Assuntos
Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Humanos , Animais , Camundongos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fosforilação , Proteína Sequestossoma-1/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Autofagia/fisiologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
4.
Mol Cell ; 66(1): 141-153.e6, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28388439

RESUMO

Mitochondria play an integral role in cell death, autophagy, immunity, and inflammation. We previously showed that Nur77, an orphan nuclear receptor, induces apoptosis by targeting mitochondria. Here, we report that celastrol, a potent anti-inflammatory pentacyclic triterpene, binds Nur77 to inhibit inflammation and induce autophagy in a Nur77-dependent manner. Celastrol promotes Nur77 translocation from the nucleus to mitochondria, where it interacts with tumor necrosis factor receptor-associated factor 2 (TRAF2), a scaffold protein and E3 ubiquitin ligase important for inflammatory signaling. The interaction is mediated by an LxxLL motif in TRAF2 and results not only in the inhibition of TRAF2 ubiquitination but also in Lys63-linked Nur77 ubiquitination. Under inflammatory conditions, ubiquitinated Nur77 resides at mitochondria, rendering them sensitive to autophagy, an event involving Nur77 interaction with p62/SQSTM1. Together, our results identify Nur77 as a critical intracellular target for celastrol and unravel a mechanism of Nur77-dependent clearance of inflamed mitochondria to alleviate inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Autofagia/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Fator 2 Associado a Receptor de TNF/metabolismo , Triterpenos/farmacologia , Ubiquitinação/efeitos dos fármacos , Transporte Ativo do Núcleo Celular , Animais , Anti-Inflamatórios/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Modelos Animais de Doenças , Feminino , Genótipo , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Ligantes , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/deficiência , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Triterpenos Pentacíclicos , Fenótipo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator 2 Associado a Receptor de TNF/genética , Transfecção , Triterpenos/metabolismo
5.
Mol Cell Proteomics ; 22(2): 100495, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36634736

RESUMO

We have previously documented that in liver cells, the multifunctional protein scaffold p62/SQSTM1 is closely associated with IκBα, an inhibitor of the transcriptional activator NF-κB. Such an intimate p62-IκBα association we now document leads to a marked 18-fold proteolytic IκBα-stabilization, enabling its nuclear entry and termination of the NF-κB-activation cycle. In p62-/--cells, such termination is abrogated resulting in the nuclear persistence and prolonged activation of NF-κB following inflammatory stimuli. Utilizing various approaches both classic (structural deletion, site-directed mutagenesis) as well as novel (in-cell chemical crosslinking), coupled with proteomic analyses, we have defined the precise structural hotspots of p62-IκBα association. Accordingly, we have identified such IκBα hotspots to reside around N-terminal (K38, K47, and K67) and C-terminal (K238/C239) residues in its fifth ankyrin repeat domain. These sites interact with two hotspots in p62: One in its PB-1 subdomain around K13, and the other comprised of a positively charged patch (R183/R186/K187/K189) between its ZZ- and TB-subdomains. APEX proximity analyses upon IκBα-cotransfection of cells with and without p62 have enabled the characterization of the p62 influence on IκBα-protein-protein interactions. Interestingly, consistent with p62's capacity to proteolytically stabilize IκBα, its presence greatly impaired IκBα's interactions with various 20S/26S proteasomal subunits. Furthermore, consistent with p62 interaction with IκBα on an interface opposite to that of its NF-κB-interacting interface, p62 failed to significantly affect IκBα-NF-κB interactions. These collective findings together with the known dynamic p62 nucleocytoplasmic shuttling leads us to speculate that it may be involved in "piggy-back" nuclear transport of IκBα following its NF-κB-elicited transcriptional activation and de novo synthesis, required for termination of the NF-κB-activation cycle. Consequently, mice carrying a liver-specific deletion of p62-residues 68 to 252 reveal age-dependent-enhanced liver inflammation. Our findings reveal yet another mode of p62-mediated pathophysiologically relevant regulation of NF-κB.


Assuntos
Inibidor de NF-kappaB alfa , NF-kappa B , Proteína Sequestossoma-1 , Animais , Camundongos , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Proteínas I-kappa B/metabolismo , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Proteômica , Proteína Sequestossoma-1/química , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais
6.
Curr Issues Mol Biol ; 46(7): 6868-6884, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39057052

RESUMO

The onset of neurodegenerative diseases involves a complex interplay of pathological mechanisms, including protein aggregation, oxidative stress, and impaired autophagy. This review focuses on the intricate connection between oxidative stress and autophagy in neurodegenerative disorders, highlighting autophagy as pivotal in disease pathogenesis. Reactive oxygen species (ROS) play dual roles in cellular homeostasis and autophagy regulation, with disruptions of redox signaling contributing to neurodegeneration. The activation of the Nrf2 pathway represents a critical antioxidant mechanism, while autophagy maintains cellular homeostasis by degrading altered cell components. The interaction among p62/SQSTM1, Nrf2, and Keap1 forms a regulatory pathway essential for cellular stress response, whose dysregulation leads to impaired autophagy and aggregate accumulation. Targeting the Nrf2-p62/SQSTM1 pathway holds promise for therapeutic intervention, mitigating oxidative stress and preserving cellular functions. Additionally, this review explores the potential synergy between the endocannabinoid system and Nrf2 signaling for neuroprotection. Further research is needed to elucidate the involved molecular mechanisms and develop effective therapeutic strategies against neurodegeneration.

7.
Cell Commun Signal ; 22(1): 87, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297346

RESUMO

BACKGROUND: Arginyltransferase (Ate1) orchestrates posttranslational protein arginylation, a pivotal regulator of cellular proteolytic processes. In eukaryotic cells, two interconnected systems-the ubiquitin proteasome system (UPS) and macroautophagy-mediate proteolysis and cooperate to maintain quality protein control and cellular homeostasis. Previous studies have shown that N-terminal arginylation facilitates protein degradation through the UPS. Dysregulation of this machinery triggers p62-mediated autophagy to ensure proper substrate processing. Nevertheless, how Ate1 operates through this intricate mechanism remains elusive. METHODS: We investigated Ate1 subcellular distribution through confocal microscopy and biochemical assays using cells transiently or stably expressing either endogenous Ate1 or a GFP-tagged Ate1 isoform transfected in CHO-K1 or MEFs, respectively. To assess Ate1 and p62-cargo clustering, we analyzed their colocalization and multimerization status by immunofluorescence and nonreducing immunoblotting, respectively. Additionally, we employed Ate1 KO cells to examine the role of Ate1 in autophagy. Ate1 KO MEFs cells stably expressing GFP-tagged Ate1-1 isoform were used as a model for phenotype rescue. Autophagy dynamics were evaluated by analyzing LC3B turnover and p62/SQSTM1 levels under both steady-state and serum-starvation conditions, through immunoblotting and immunofluorescence. We determined mTORC1/AMPk activation by assessing mTOR and AMPk phosphorylation through immunoblotting, while mTORC1 lysosomal localization was monitored by confocal microscopy. RESULTS: Here, we report a multifaceted role for Ate1 in the autophagic process, wherein it clusters with p62, facilitates autophagic clearance, and modulates its signaling. Mechanistically, we found that cell-specific inactivation of Ate1 elicits overactivation of the mTORC1/AMPk signaling hub that underlies a failure in autophagic flux and subsequent substrate accumulation, which is partially rescued by ectopic expression of Ate1. Statistical significance was assessed using a two-sided unpaired t test with a significance threshold set at P<0.05. CONCLUSIONS: Our findings uncover a critical housekeeping role of Ate1 in mTORC1/AMPk-regulated autophagy, as a potential therapeutic target related to this pathway, that is dysregulated in many neurodegenerative and cancer diseases.


Assuntos
Aminoaciltransferases , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Ubiquitina/metabolismo , Autofagia , Complexo de Endopeptidases do Proteassoma/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Isoformas de Proteínas
8.
J Neural Transm (Vienna) ; 131(1): 73-81, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37801108

RESUMO

Depressive symptoms are common in Parkinson's disease (PD). The relationships between autophagy and PD or depression have been documented. However, no studies explored the role of autophagy markers associated with depressive symptoms in PD. Our study aimed to investigate the relationships between autophagy markers, cognitive impairments and depressive symptoms in PD patients. A total of 163 PD patients aged 50-80 years were recruited. Plasma concentrations of autophagy markers (LC3-I, LC3-II and p62/SQSTM1) and glycolipid parameters were measured. Depressive symptoms, cognitive impairments, and motor function were assessed using the Hamilton Depression Rating Scale-17 (HAMD-17), the Montreal Cognitive Assessment (MoCA), and the Movement Disorders Society Unified Parkinson's Rating Scale Part III (MDS-UPDRS-III), respectively. There were no significant differences between depressed and non-depressed PD patients for LC3-I, LC3-II, LC3-II/LC3-I and p62/SQSTM1. After controlling confounding variables, LC3-II/LC3-I showed an independent relationship with depressive symptoms in PD patients (Beta = 10.082, t = 2.483, p = 0.014). Moreover, in depressive PD patients, p62/SQSTM1 was associated with MoCA score (Beta = - 0.002, t = - 2.380, p = 0.020); Further, p62/SQSTM1 was related to naming ability; in addition, p62/SQSTM1 was independently associated with delayed recall (Beta = - 0.001, t = - 2.452, p = 0.017). LC3-II/LC3-I was related to depressive symptoms in PD patients. In depressive PD patients, p62/SQSTM1 was associated with cognitive function, especially naming ability and delayed recall.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Humanos , Depressão/etiologia , Proteína Sequestossoma-1 , Disfunção Cognitiva/complicações , Cognição , Autofagia
9.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39125836

RESUMO

Regulation of autophagy through the 62 kDa ubiquitin-binding protein/autophagosome cargo protein sequestosome 1 (p62/SQSTM1), whose level is generally inversely proportional to autophagy, is crucial in microglial functions. Since autophagy is involved in inflammatory mechanisms, we investigated the actions of pro-inflammatory lipopolysaccharide (LPS) and anti-inflammatory rosuvastatin (RST) in secondary microglial cultures with or without bafilomycin A1 (BAF) pretreatment, an antibiotic that potently inhibits autophagosome fusion with lysosomes. The levels of the microglia marker protein Iba1 and the autophagosome marker protein p62/SQSTM1 were quantified by Western blots, while the number of p62/SQSTM1 immunoreactive puncta was quantitatively analyzed using fluorescent immunocytochemistry. BAF pretreatment hampered microglial survival and decreased Iba1 protein level under all culturing conditions. Cytoplasmic p62/SQSTM1 level was increased in cultures treated with LPS+RST but reversed markedly when BAF+LPS+RST were applied together. Furthermore, the number of p62/SQSTM1 immunoreactive autophagosome puncta was significantly reduced when RST was used but increased significantly in BAF+RST-treated cultures, indicating a modulation of autophagic flux through reduction in p62/SQSTM1 degradation. These findings collectively indicate that the cytoplasmic level of p62/SQSTM1 protein and autophagocytotic flux are differentially regulated, regardless of pro- or anti-inflammatory state, and provide context for understanding the role of autophagy in microglial function in various inflammatory settings.


Assuntos
Autofagossomos , Autofagia , Lipopolissacarídeos , Macrolídeos , Microglia , Proteína Sequestossoma-1 , Animais , Proteína Sequestossoma-1/metabolismo , Microglia/metabolismo , Microglia/efeitos dos fármacos , Macrolídeos/farmacologia , Autofagia/efeitos dos fármacos , Ratos , Autofagossomos/metabolismo , Autofagossomos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Células Cultivadas , Inflamação/metabolismo , Biomarcadores/metabolismo
10.
J Cell Biochem ; 124(11): 1779-1791, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37842885

RESUMO

The protein sequestosome 1 (p62/SQSTM1) is primarily known as a selective autophagy cargo receptor, but due to its multidomain structure, it also has roles in the ubiquitin-proteasome system, metabolism, cell death and survival signalling. The increase in p62 levels is detected in some types of cancers, including colorectal cancer (CRC). Chemoresistance is the main cause of high mortality rates of CRC patients. Since p62 can regulate both cell survival and death, it is a potential modulator of chemoresistance. The impact of p62 on molecular causes of chemoresistance in CRC cells is insufficiently analysed. Therefore, we aimed to determine the impact of p62 on apoptosis, RIPK1-pRIPK3 axis, and IL-8 levels in chemoresistant CRC cells. Our data revealed that p62 levels are higher in the 5-fluorouracil (5-FU)-resistant HCT116/FU subline compared to the parental cell line. 5-FU and oxaliplatin (OxaPt) treatment decreased p62 protein levels and it correlated with chemoresistance of HCT116 and DLD1 cell lines. The silencing of p62 increased CRC cell sensitivity to 5-FU and OxaPt, hence p62 is one of the factors supporting chemoresistance. The downregulation of p62 reduced the activation of caspase-3 and the levels of RIPK1 and pRIPK3. Furthermore, p62 silencing decreased the BAX/BCL2 ratio in the HCT116/FU subline and did not change the levels of apoptosis. Instead, p62 silencing reduced the amount of IL-8 protein. Our results show that p62 impacts chemoresistance by stimulating prosurvival signalling.


Assuntos
Neoplasias Colorretais , Fluoruracila , Humanos , Oxaliplatina/farmacologia , Fluoruracila/farmacologia , Interleucina-8/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Morte Celular , Apoptose , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
11.
Development ; 147(2)2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31862842

RESUMO

Hydra possesses three distinct stem cell populations that continuously self-renew and prevent aging in Hydra vulgaris However, sexual animals from the H. oligactis cold-sensitive strain Ho_CS develop an aging phenotype upon gametogenesis induction, initiated by the loss of interstitial stem cells. Animals stop regenerating, lose their active behaviors and die within 3 months. This phenotype is not observed in the cold-resistant strain Ho_CR To dissect the mechanisms of Hydra aging, we compared the self-renewal of epithelial stem cells in these two strains and found it to be irreversibly reduced in aging Ho_CS but sustained in non-aging Ho_CR We also identified a deficient autophagy in Ho_CS epithelial cells, with a constitutive deficiency in autophagosome formation as detected with the mCherry-eGFP-LC3A/B autophagy sensor, an inefficient response to starvation as evidenced by the accumulation of the autophagosome cargo protein p62/SQSTM1, and a poorly inducible autophagy flux upon proteasome inhibition. In the non-aging H. vulgaris animals, the blockade of autophagy by knocking down WIPI2 suffices to induce aging. This study highlights the essential role of a dynamic autophagy flux to maintain epithelial stem cell renewal and prevent aging.


Assuntos
Envelhecimento/fisiologia , Autofagia , Células Epiteliais/citologia , Água Doce , Hydra/fisiologia , Células-Tronco/citologia , Animais , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Temperatura Baixa , Epiderme/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Gametogênese/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hydra/efeitos dos fármacos , Hydra/genética , Imageamento Tridimensional , Fenótipo , Inibidores de Proteassoma/farmacologia , Sirolimo/farmacologia , Células-Tronco/efeitos dos fármacos , Análise de Sobrevida
12.
Stem Cells ; 40(4): 371-384, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35284915

RESUMO

CD133 is a transmembrane protein that mainly localizes to the plasma membrane in hematopoietic/neural stem cells and cancer stem cells. Although CD133 also localizes to the cytoplasm and is degraded through autophagy, the precise mechanisms responsible for the autophagic degradation of endosomal CD133 currently remain unknown. We demonstrated that endosomal CD133 has unique properties for cell homeostasis. Endosomal CD133 is degraded through p62/SQSTM1-mediated selective autophagy. However, in low basal autophagic cells, such as SK-N-DZ and SH-SY5Y cells, endosomal CD133 accumulates at the pericentrosomal region and conversely suppresses autophagy. Endosomal CD133 also asymmetrically distributes to the pericentrosomal region and induces unequal autophagic activity between 2 daughter cells during cytokinesis in SK-N-DZ and TGW cells. In addition, the asymmetric distribution of pericentrosomal CD133 endosomes and nuclear ß-catenin cooperatively suppresses autophagic activity against p62 in SK-N-DZ cells. Thus, the present study suggests that the asymmetric distribution of pericentrosomal CD133 endosomes induces the symmetry breaking of autophagic activity during cytokinesis in cooperation with nuclear ß-catenin.


Assuntos
Neuroblastoma , beta Catenina , Antígeno AC133 , Autofagia , Citocinese , Endossomos/metabolismo , Humanos , Neuroblastoma/metabolismo , beta Catenina/metabolismo
13.
EMBO Rep ; 22(1): e50854, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33393215

RESUMO

Nrf2 signaling is vital for protecting cells against oxidative stress. However, its hyperactivation is frequently found in liver cancer through excessive build-up of p62/SQSTM1 bodies that sequester Keap1, an adaptor of the E3-ubiquitin ligase complex for Nrf2. Here, we report that the Bax-binding protein MOAP-1 regulates p62-Keap1-Nrf2 signaling through disruption of p62 bodies. Upon induction of cellular stresses that stimulate formation of p62 bodies, MOAP-1 is recruited to p62 bodies and reduces their levels independent of the autophagy pathway. MOAP-1 interacts with the PB1-ZZ domains of p62 and interferes with its self-oligomerization and liquid-liquid phase separation, thereby disassembling the p62 bodies. Loss of MOAP-1 can lead to marked upregulation of p62 bodies, enhanced sequestration of Keap1 by p62 and hyperactivation of Nrf2 antioxidant target genes. MOAP-1-deficient mice exhibit an elevated tumor burden with excessive levels of p62 bodies and Nrf2 signaling in a diethylnitrosamine (DEN)-induced hepatocarcinogenesis model. Together, our data define MOAP-1 as a negative regulator of Nrf2 signaling via dissociation of p62 bodies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Animais , Autofagia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo
14.
Cell Mol Life Sci ; 79(3): 160, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35224690

RESUMO

Topoisomerase1 (TOP1)-mediated chromosomal breaks are endogenous sources of DNA damage that affect neuronal genome stability. Whether TOP1 DNA breaks are sources of genomic instability in Huntington's disease (HD) is unknown. Here, we report defective 53BP1 recruitment in multiple HD cell models, including striatal neurons derived from HD patients. Defective 53BP1 recruitment is due to reduced H2A ubiquitination caused by the limited RNF168 activity. The reduced availability of RNF168 is caused by an increased interaction with p62, a protein involved in selective autophagy. Depletion of p62 or disruption of the interaction between RNAF168 and p62 was sufficient to restore 53BP1 enrichment and subsequent DNA repair in HD models, providing new opportunities for therapeutic interventions. These findings are reminiscent to what was described for p62 accumulation caused by C9orf72 expansion in ALS/FTD and suggest a common mechanism by which protein aggregation perturb DNA repair signaling.


Assuntos
Quebras de DNA , Reparo do DNA , Doença de Huntington/metabolismo , Proteína Sequestossoma-1/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular , DNA/metabolismo , DNA Topoisomerases Tipo I/metabolismo , Células HEK293 , Histonas/metabolismo , Humanos , Doença de Huntington/genética , Neurônios/metabolismo , Transdução de Sinais , Ubiquitinação
15.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37511362

RESUMO

NFE2L2 and STAT3 are key pro-survival molecules, and thus, their targeting may represent a promising anti-cancer strategy. In this study, we found that a positive feedback loop occurred between them and provided evidence that their concomitant inhibition efficiently impaired the survival of PEL cells, a rare, aggressive B cell lymphoma associated with the gammaherpesvirus KSHV and often also EBV. At the molecular level, we found that NFE2L2 and STAT3 converged in the regulation of several pro-survival molecules and in the activation of processes essential for the adaption of lymphoma cells to stress. Among those, STAT3 and NFE2L2 promoted the activation of pathways such as MAPK3/1 and MTOR that positively regulate protein synthesis, sustained the antioxidant response, expression of molecules such as MYC, BIRC5, CCND1, and HSP, and allowed DDR execution. The findings of this study suggest that the concomitant inhibition of NFE2L2 and STAT3 may be considered a therapeutic option for the treatment of this lymphoma that poorly responds to chemotherapies.


Assuntos
Autofagia , Linfoma de Células B , Humanos , Linfócitos/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
16.
EMBO J ; 37(8)2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29496741

RESUMO

Negative regulation of immune pathways is essential to achieve resolution of immune responses and to avoid excess inflammation. DNA stimulates type I IFN expression through the DNA sensor cGAS, the second messenger cGAMP, and the adaptor molecule STING Here, we report that STING degradation following activation of the pathway occurs through autophagy and is mediated by p62/SQSTM1, which is phosphorylated by TBK1 to direct ubiquitinated STING to autophagosomes. Degradation of STING was impaired in p62-deficient cells, which responded with elevated IFN production to foreign DNA and DNA pathogens. In the absence of p62, STING failed to traffic to autophagy-associated vesicles. Thus, DNA sensing induces the cGAS-STING pathway to activate TBK1, which phosphorylates IRF3 to induce IFN expression, but also phosphorylates p62 to stimulate STING degradation and attenuation of the response.


Assuntos
Nucleotidiltransferases/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteína Sequestossoma-1/fisiologia , Animais , Autofagia , Linhagem Celular , DNA/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
17.
Biochem Biophys Res Commun ; 612: 99-104, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35512463

RESUMO

Autophagy is known to play an essential role in intracellular quality control through the degradation of damaged organelles and components. We previously demonstrated that ß-cell-specific autophagy deficient mice, which lack Atg7, exhibited impaired glucose tolerance, accompanied by the accumulation of sequestosome 1/p62 (hereafter referred to as p62). Whereas p62 has been reported to play essential roles in regulating cellular homeostasis in the liver and adipose tissue, we previously showed that ß-cell-specific p62 deficiency does not cause any apparent impairment in glucose metabolism. In the present study, we investigated the roles of p62 in ß cells under autophagy-deficient conditions, by simultaneously inactivating both Atg7 and p62 in a ß-cell specific manner. Whereas p62 accumulation was substantially reduced in the islets of Atg7 and p62 double-deficient mice, glucose tolerance and insulin secretion were comparable to Atg7 single-deficient mice. Taken together, these findings suggest that the p62 accumulation appears to have little effect on ß-cell function under conditions of autophagy inhibition.


Assuntos
Células Secretoras de Insulina , Animais , Autofagia , Proteína 7 Relacionada à Autofagia/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Camundongos , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo
18.
Biochem Biophys Res Commun ; 627: 5-11, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36007335

RESUMO

CDK2 forms a complex with cyclin A and cyclin E to promote the progress of cell cycle, but when cyclin A and cyclin E are dissociated from the complex and degraded by the ubiquitin proteasome pathway, the fate of the inactive CDK2 is unclear. In this study, we found that the inactive CDK2 protein was degraded by autophagy-lysosome pathway. In the classic model of G0/G1 phase arrest induced by serum starvation, we found that the mRNA level in CDK2 did not change but the protein level decreased. Subsequently, using PI3K and AKT inhibitors and gene knockout methods, it was found that CDK2 degradation was mediated by the inhibition of PI3Kα/AKTT308. In addition, P62/SQSTM1 was found to bind to the inactivated CDK2 protein to help it enter autophagy-lysosome degradation in a CTSB-dependent manner. Taken together, these results confirm that the PI3Kα/AKTT308 inhibition leads to degradation of CDK2 protein in the autophagy-lysosome pathway. These data reveal a new molecular mechanism of CDK2 protein degradation and provide a new strategy and method for regulating CDK2 protein.


Assuntos
Ciclina E , Proteínas Proto-Oncogênicas c-akt , Autofagia/genética , Ciclina A/metabolismo , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Lisossomos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Sequestossoma-1/metabolismo
19.
BMC Cancer ; 22(1): 347, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354432

RESUMO

BACKGROUND: Accumulation of the signal adaptor protein p62 has been demonstrated in many forms of cancer, including pancreatic ductal adenocarcinoma (PDAC). Although data from experimental studies suggest that p62 accumulation accelerates the development of PDAC, the association between p62 protein expression and survival in PDAC patients is unclear. METHODS: Thirty-three tumor specimens from PDAC patients treated by primary surgery were obtained. Immunohistochemical expression of p62, microtubule-associated protein 1A/1B-light chain 3 (LC3), and nuclear factor-erythroid factor 2-related factor 2 (NRF2) in tumor tissue was examined for associations with clinicopathological characteristics and disease-specific survival (DSS). RESULTS: There was no association between p62 expression and any of the clinicopathological variables. However, high p62 protein expression in tumor cells was significantly associated with shorter DSS (7 months vs. 29 months, p = 0.017). The hazard ratio for death in patients with high p62 protein expression in tumor cells was 2.88 (95% confidence interval: 1.17-7.11, p = 0.022). In multivariable analysis, high p62 expression was an independent prognostic factor for shorter DSS (p = 0.020) when follow up time was more than 5 years. LC3 and NRF2 staining was not associated with survival or other clinicopathological parameters. CONCLUSION: Our results show that high p62 protein expression in tumor cells is associated with shorter survival following pancreatic tumor resection. This association supports a role for p62 as a prognostic marker in patients with PDAC treated by primary surgery.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/cirurgia , Humanos , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/cirurgia , Proteína Sequestossoma-1/metabolismo
20.
EMBO Rep ; 21(3): e48902, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31916398

RESUMO

p62/SQSTM1 is a multivalent protein that has the ability to cause liquid-liquid phase separation and serves as a receptor protein that participates in cargo isolation during selective autophagy. This protein is also involved in the non-canonical activation of the Keap1-Nrf2 system, a major oxidative stress response pathway. Here, we show a role of neighbor of BRCA1 gene 1 (NBR1), an autophagy receptor structurally similar to p62/SQSTM1, in p62-liquid droplet formation and Keap1-Nrf2 pathway activation. Overexpression of NBR1 blocks selective degradation of p62/SQSTM1 through autophagy and promotes the accumulation and phosphorylation of p62/SQSTM1 in liquid-like bodies, which is required for the activation of Nrf2. NBR1 is induced in response to oxidative stress, which triggers p62-mediated Nrf2 activation. Conversely, loss of Nbr1 suppresses not only the formation of p62/SQSTM1-liquid droplets, but also of p62-dependent Nrf2 activation during oxidative stress. Taken together, our results show that NBR1 mediates p62/SQSTM1-liquid droplet formation to activate the Keap1-Nrf2 pathway.


Assuntos
Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Animais , Autofagia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa