Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Mol Pain ; 20: 17448069241252385, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38631845

RESUMO

Preemptive analgesia is used for postoperative pain management, providing pain relief with few adverse effects. In this study, the effect of a preemptive regime on rat behavior and c-fos expression in the spinal cord of the uterine surgical pain model was evaluated. It was a lab-based experimental study in which 60 female Sprague-Dawley rats; eight to 10 weeks old, weighing 150-300 gm were used. The rats were divided into two main groups: (i) superficial pain group (SG) (with skin incision only), (ii) deep pain group (with skin and uterine incisions). Each group was further divided into three subgroups based on the type of preemptive analgesia administered i.e., "tramadol, buprenorphine, and saline subgroups." Pain behavior was evaluated using the "Rat Grimace Scale" (RGS) at 2, 4, 6, 9 and 24 h post-surgery. Additionally, c-fos immunohistochemistry was performed on sections from spinal dorsal horn (T12-L2), and its expression was evaluated using optical density and mean cell count 2 hours postoperatively. Significant reduction in the RGS was noted in both the superficial and deep pain groups within the tramadol and buprenorphine subgroups when compared to the saline subgroup (p ≤ .05). There was a significant decrease in c-fos expression both in terms of number of c-fos positive cells and the optical density across the superficial laminae and lamina X of the spinal dorsal horn in both SD and DG (p ≤ .05). In contrast, the saline group exhibited c-fos expression primarily in laminae I-II and III-IV for both superficial and deep pain groups and lamina X in the deep pain group only (p ≤ .05). Hence, a preemptive regimen results in significant suppression of both superficial and deep components of pain transmission. These findings provide compelling evidence of the analgesic efficacy of preemptive treatment in alleviating pain response associated with uterine surgery.


Assuntos
Modelos Animais de Doenças , Dor Pós-Operatória , Proteínas Proto-Oncogênicas c-fos , Ratos Sprague-Dawley , Útero , Animais , Feminino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Dor Pós-Operatória/tratamento farmacológico , Útero/cirurgia , Útero/efeitos dos fármacos , Anestesia Geral/métodos , Analgesia/métodos , Tramadol/farmacologia , Tramadol/uso terapêutico , Medição da Dor , Ratos , Anestesia Local/métodos , Comportamento Animal/efeitos dos fármacos , Buprenorfina/farmacologia , Buprenorfina/uso terapêutico
2.
Curr Top Microbiol Immunol ; 438: 189-221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34524508

RESUMO

Reactivation of latent varicella-zoster virus (VZV) causes herpes zoster (HZ), which is commonly accompanied by acute pain and pruritus over the time course of a zosteriform rash. Although the rash and associated pain are self-limiting, a considerable fraction of HZ cases will subsequently develop debilitating chronic pain states termed postherpetic neuralgia (PHN). How VZV causes acute pain and the mechanisms underlying the transition to PHN are far from clear. The human-specific nature of VZV has made in vivo modeling of pain following reactivation difficult to study because no single animal can reproduce reactivated VZV disease as observed in the clinic. Investigations of VZV pathogenesis following primary infection have benefited greatly from human tissues harbored in immune-deficient mice, but modeling of acute and chronic pain requires an intact nervous system with the capability of transmitting ascending and descending sensory signals. Several groups have found that subcutaneous VZV inoculation of the rat induces prolonged and measurable changes in nociceptive behavior, indicating sensitivity that partially mimics the development of mechanical allodynia and thermal hyperalgesia seen in HZ and PHN patients. Although it is not a model of reactivation, the rat is beginning to inform how VZV infection can evoke a pain response and induce long-lasting alterations to nociception. In this review, we will summarize the rat pain models from a practical perspective and discuss avenues that have opened for testing of novel treatments for both zoster-associated pain and chronic PHN conditions, which remain in critical need of effective therapies.


Assuntos
Dor Aguda , Dor Crônica , Exantema , Herpes Zoster , Neuralgia Pós-Herpética , Humanos , Ratos , Camundongos , Animais , Neuralgia Pós-Herpética/complicações , Dor Crônica/complicações , Dor Aguda/complicações , Herpes Zoster/complicações , Herpes Zoster/tratamento farmacológico , Herpesvirus Humano 3/fisiologia , Exantema/complicações , Doença Crônica
3.
Neurochem Res ; 49(4): 872-886, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38281247

RESUMO

Neuropathic pain, a prevalent chronic condition in clinical settings, has attracted widespread societal attention. This condition is characterized by a persistent pain state accompanied by affective and cognitive disruptions, significantly impacting patients' quality of life. However, current clinical therapies fall short of addressing its complexity. Thus, exploring the underlying molecular mechanism of neuropathic pain and identifying potential targets for intervention is highly warranted. The transient receptor potential (TRP) receptors, a class of widely distributed channel proteins, in the nervous system, play a crucial role in sensory signaling, cellular calcium regulation, and developmental influences. TRP ion channels are also responsible for various sensory responses including heat, cold, pain, and stress. This review highlights recent advances in understanding TRPs in various rodent models of neuropathic pain, aiming to uncover potential therapeutic targets for clinical management.


Assuntos
Neuralgia , Canais de Potencial de Receptor Transitório , Animais , Humanos , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/uso terapêutico , Roedores/metabolismo , Qualidade de Vida , Neuralgia/metabolismo , Transdução de Sinais
4.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397054

RESUMO

BACKGROUND: Peripheral neuropathy is caused by a malfunction in the axons and myelin sheaths of peripheral nerves and motor and sensory neurons. In this context, nonpharmacological treatments with antioxidant potential have attracted much attention due to the issues that some conventional pharmaceutical therapy can generate. Most of these treatments contain lipoic acid, but issues have emerged regarding its use. Considering this, the present study evaluated the beneficial effects of nutraceuticals based on Gastrodiae elata dry extract 10:1 or lipoic acid in combination with other substances (such as citicholine, B vitamins, and acetyl L-carnitine). METHOD: To assess the combination's absorption and biodistribution and exclude cytotoxicity, its bioavailability was first examined in a 3D intestinal barrier model that replicated oral ingestion. Subsequently, a 3D model of nerve tissue was constructed to investigate the impacts of the new combination on the significant pathways dysregulated in peripheral neuropathy. RESULTS: Our findings show that the novel combination outperformed in initial pain relief response and in recovering the mechanism of nerve healing following Schwann cell injury by successfully crossing the gut barrier and reaching the target site. CONCLUSION: This article describes a potential alternative nutraceutical approach supporting the effectiveness of combinations with Gastrodiae elata extract in decreasing neuropathy and regulating pain pathways.


Assuntos
Medicamentos de Ervas Chinesas , Neuralgia , Ácido Tióctico , Humanos , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico , Distribuição Tecidual , Neuralgia/tratamento farmacológico , Suplementos Nutricionais
5.
Mol Pain ; 19: 17448069231170546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37015885

RESUMO

The development of the chronic neuropathic pain state often originates at the level of peripheral sensory neurons, whose abnormal function elicits central sensitization and maladaptive plasticity in the nociceptive circuits of the spinal dorsal horn. These changes eventually reach supraspinal areas bringing about cognitive and affective co-morbidities of chronic pain such as anxiety and depression. This transmission presumably relies on the function of spinal projection neurons at the origin of the anterolateral system (AS). However, the identity of these neurons and the extent of their functional contribution remain unknown. Here, we asked these questions in the context of the mouse AS neurons that require the transcription factor Phox2a for their normal target connectivity and function in transmitting acute nociceptive information to the brain. To this end, we examined the effects of a spinal cord-specific loss of Phox2a (Phox2acKO) on the development of central sensitization evoked by the spared nerve injury (SNI) model of chronic pain. We found that SNI-treated Phox2acKO mice developed normal reflexive spinal responses such as mechanical allodynia evidenced by a decreased withdrawal threshold to von Frey filament stimulation and dynamic brush. On the other hand, Phox2acKO attenuated the development of cold but not mechanical hyperalgesia, in behavioral paradigms that require the relay of nociceptive information to the brain. Furthermore, Phox2acKO attenuated anxio-depressive-like behaviors evoked by SNI, measured by performance in the open field test and tail suspension test. Thus, Phox2a AS neurons play a critical role in the generation and maintenance of chronic neuropathic pain.


Assuntos
Dor Crônica , Neuralgia , Camundongos , Animais , Dor Crônica/genética , Neurônios , Hiperalgesia , Neuralgia/genética , Corno Dorsal da Medula Espinal , Proteínas de Homeodomínio/genética
6.
Acta Pharmacol Sin ; 44(9): 1768-1776, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37142682

RESUMO

Voltage-gated sodium channel 1.7 (Nav1.7) remains one of the most promising drug targets for pain relief. In the current study, we conducted a high-throughput screening of natural products in our in-house compound library to discover novel Nav1.7 inhibitors, then characterized their pharmacological properties. We identified 25 naphthylisoquinoline alkaloids (NIQs) from Ancistrocladus tectorius to be a novel type of Nav1.7 channel inhibitors. Their stereostructures including the linkage modes of the naphthalene group at the isoquinoline core were revealed by a comprehensive analysis of HRESIMS, 1D, and 2D NMR spectra as well as ECD spectra and single-crystal X-ray diffraction analysis with Cu Kα radiation. All the NIQs showed inhibitory activities against the Nav1.7 channel stably expressed in HEK293 cells, and the naphthalene ring in the C-7 position displayed a more important role in the inhibitory activity than that in the C-5 site. Among the NIQs tested, compound 2 was the most potent with an IC50 of 0.73 ± 0.03 µM. We demonstrated that compound 2 (3 µM) caused dramatical shift of steady-state slow inactivation toward the hyperpolarizing direction (V1/2 values were changed from -39.54 ± 2.77 mV to -65.53 ± 4.39 mV, which might contribute to the inhibition of compound 2 against the Nav1.7 channel. In acutely isolated dorsal root ganglion (DRG) neurons, compound 2 (10 µM) dramatically suppressed native sodium currents and action potential firing. In the formalin-induced mouse inflammatory pain model, local intraplantar administration of compound 2 (2, 20, 200 nmol) dose-dependently attenuated the nociceptive behaviors. In summary, NIQs represent a new type of Nav1.7 channel inhibitors and may act as structural templates for the following analgesic drug development.


Assuntos
Alcaloides , Canal de Sódio Disparado por Voltagem NAV1.7 , Camundongos , Animais , Humanos , Células HEK293 , Dor/tratamento farmacológico , Neurônios , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Gânglios Espinais , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/uso terapêutico
7.
Pain Pract ; 23(6): 639-646, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37067033

RESUMO

BACKGROUND: Spinal cord stimulation (SCS) has been proven to be an effective treatment for patients suffering from intractable chronic neuropathic pain. Recent advances in the field include the utilization of programs that multiplex various signals to target different neural structures in the dorsal spinal cord associated with the painful area. Preclinical studies have been fundamental in understanding the mechanism by which this differential target multiplexed programming (DTMP) SCS approach works. Transcriptomic- and proteomic-based studies demonstrated that DTMP can modulate expression levels of genes and proteins involved in pain-related processes that have been affected by a neuropathic pain model. This work studied the effect of the intensity of DTMP signals on mechanical hypersensitivity and cell-specific transcriptomes. METHODS: The spared nerve injury model (SNI) of neuropathic pain was induced in 20 animals which were 1:1 randomized into two SCS groups in which the intensity of the DTMP was adjusted to either 70% or 40% of the motor threshold (MT). SCS was applied continuously for 48 h via a quadripolar lead implanted in the dorsal epidural space of animals. Controls, which included a group of implanted SNI animals that received no SCS and a group of animals naive to the SNI, were assessed in parallel to the SCS groups. Mechanical hypersensitivity was assessed before SNI, before SCS, and at 48 h of SCS. At the end of SCS, the stimulated segment of the dorsal spinal cord was dissected and subjected to RNA sequencing to quantify expression levels in all experimental groups. Differential effects were assessed via fold-change comparisons of SCS and naive groups versus the no-SCS group for transcriptomes specific to neurons and glial cells. Standard statistical analyses were employed to assess significance of the comparisons (p < 0.05). RESULTS: SCS treatments provided significant improvement in mechanical sensitivity relative to no SCS treatment. However, the change in the intensity did not provide a significant difference in the improvement of mechanical sensitivity. DTMP regulated expression levels back toward those found in the naive group in the cell-specific transcriptomes analyzed. There were no significant differences related to the intensity of the stimulation in terms of the percentage of genes in each transcriptome in which expression levels were reversed toward the naive state. CONCLUSIONS: DTMP when applied at either 40% MT or 70% MT provided similar reduction of pain-like behavior in rats and similar effects in neuron- and glia-specific transcriptomes.


Assuntos
Neuralgia , Estimulação da Medula Espinal , Ratos , Animais , Limiar da Dor/fisiologia , Medição da Dor , Proteômica , Timidina Monofosfato/metabolismo , Modelos Animais de Doenças , Neuralgia/terapia , Neuralgia/metabolismo , Medula Espinal/fisiologia
8.
Neuroimage ; 256: 119278, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35523367

RESUMO

INTRODUCTION: Resting state functional connectivity (FC) is widely used to assess functional brain alterations in patients with chronic pain. However, reports of FC accompanying tonic pain in pain-free persons are rare. A network we term the Descending Pain Modulatory Network (DPMN) is implicated in healthy and pathologic pain modulation. Here, we evaluate the effect of tonic pain on FC of specific nodes of this network: anterior cingulate cortex (ACC), amygdala (AMYG), periaqueductal gray (PAG), and parabrachial nuclei (PBN). METHODS: In 50 pain-free participants (30F), we induced tonic pain using a capsaicin-heat pain model. functional MRI measured resting BOLD signal during pain-free rest with a 32 °C thermode and then tonic pain where participants experienced a previously warm temperature combined with capsaicin. We evaluated FC from ACC, AMYG, PAG, and PBN with correlation of self-report pain intensity during both states. We hypothesized tonic pain would diminish FC dyads within the DPMN. RESULTS: Of all hypothesized FC dyads, only PAG and subgenual ACC was weakly altered during pain (F = 3.34; p = 0.074; pain-free>pain d = 0.25). After pain induction sACC-PAG FC became positively correlated with pain intensity (R = 0.38; t = 2.81; p = 0.007). Right PBN-PAG FC during pain-free rest positively correlated with subsequently experienced pain (R = 0.44; t = 3.43; p = 0.001). During pain, this connection's FC was diminished (paired t=-3.17; p = 0.0026). In whole-brain analyses, during pain-free rest, FC between left AMYG and right superior parietal lobule and caudate nucleus were positively correlated with subsequent pain. During pain, FC between left AMYG and right inferior temporal gyrus negatively correlated with pain. Subsequent pain positively correlated with right AMYG FC with right claustrum; right primary visual cortex and right temporo-occipitoparietal junction CONCLUSION: We demonstrate sACC-PAG tonic pain FC positively correlates with experienced pain and resting right PBN-PAG FC correlates with subsequent pain and is diminished during tonic pain. Finally, we reveal PAG- and right AMYG-anchored networks which correlate with subsequently experienced pain intensity. Our findings suggest specific connectivity patterns within the DPMN at rest are associated with subsequently experienced pain and modulated by tonic pain. These nodes and their functional modulation may reveal new therapeutic targets for neuromodulation or biomarkers to guide interventions.


Assuntos
Dor Crônica , Núcleos Parabraquiais , Tonsila do Cerebelo/diagnóstico por imagem , Mapeamento Encefálico , Capsaicina/farmacologia , Giro do Cíngulo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Substância Cinzenta Periaquedutal/diagnóstico por imagem
9.
Mol Pain ; 18: 17448069211060181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35048719

RESUMO

The effect of spinal cord stimulation (SCS) using differential target multiplexed programming (DTMP) on proteins involved in the regulation of ion transport in spinal cord (SC) tissue of an animal model of neuropathic pain was evaluated in comparison to low rate (LR) SCS. Rats subjected to the spared nerve injury model (SNI) and implanted with a SCS lead were assigned to DTMP or LR and stimulated for 48 h. A No-SCS group received no stimulation, and a Sham group received no SNI or stimulation. Proteins in the dorsal ipsilateral quadrant of the stimulated SC were identified and quantified using mass spectrometry. Proteins significantly modulated by DTMP or LR relative to No-SCS were identified. Bioinformatic tools were used to identify proteins related to ion transport regulation. DTMP modulated a larger number of proteins than LR. More than 40 proteins significantly involved in the regulation of chloride (Cl-), potassium (K+), sodium (Na+), or calcium (Ca2+) ions were identified. SNI affected proteins that promote the increase of intracellular Ca2+, Na+, and K+ and decrease of intracellular Cl-. DTMP modulated proteins involved in glial response to neural injury that affect Ca2+ signaling. DTMP decreased levels of proteins related to Ca2+ transport that may result in the reduction of intracellular Ca2+. Presynaptic proteins involved in GABA vesicle formation and release were upregulated by DTMP. DTMP also upregulated postsynaptic proteins involved with elevated intracellular Cl-, while modulating proteins, expressed by astrocytes, that regulate postsynaptic Cl- inhibition. DTMP downregulated K+ regulatory proteins affected by SNI that affect neuronal depolarization, and upregulated proteins that are associated with a decrease of intracellular neuronal K+ and astrocyte uptake of extracellular K+. DTMP treatment modulated the expression of proteins with the potential to facilitate a reversal of dysregulation of ion transport and signaling associated with a model of neuropathic pain.


Assuntos
Neuralgia , Estimulação da Medula Espinal , Animais , Modelos Animais de Doenças , Íons/metabolismo , Neuralgia/metabolismo , Neuralgia/terapia , Ratos , Medula Espinal/metabolismo , Estimulação da Medula Espinal/métodos
10.
Pain Med ; 22(12): 2806-2817, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34051102

RESUMO

OBJECTIVE: There is no single prevailing theory of pain that explains its origin, qualities, and alleviation. Although many studies have investigated various molecular targets for pain management, few have attempted to examine the etiology or working mechanisms of pain through mathematical or computational model development. In this systematic review, we identified and classified mathematical and computational models for characterizing pain. METHODS: The databases queried were Science Direct and PubMed, yielding 560 articles published prior to January 1st, 2020. After screening for inclusion of mathematical or computational models of pain, 31 articles were deemed relevant. RESULTS: Most of the reviewed articles utilized classification algorithms to categorize pain and no-pain conditions. We found the literature heavily focused on the application of existing models or machine learning algorithms to identify the presence or absence of pain, rather than to explore features of pain that may be used for diagnostics and treatment. CONCLUSIONS: Although understudied, the development of mathematical models may augment the current understanding of pain by providing directions for testable hypotheses of its underlying mechanisms. Additional focus is needed on developing models that seek to understand the underlying mechanisms of pain, as this could potentially lead to major breakthroughs in its treatment.


Assuntos
Algoritmos , Manejo da Dor , Simulação por Computador , Humanos , Dor/diagnóstico , Publicações
11.
J Clin Nurs ; 30(17-18): 2732-2741, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33951254

RESUMO

AIMS AND OBJECTIVES: The aims of this study were to explore the prevalence of background pain and identify demographic, clinical and psychosocial factors associated with moderate to severe background pain in persons with leg ulcers. BACKGROUND: All chronic leg ulcers are potentially painful. Research indicates that 80% of persons with chronic leg ulcers experience wound-related background pain. However, studies on factors associated with pain have small samples and findings are inconclusive. DESIGN: Exploratory cross-sectional study. METHOD: This quantitative study recruited persons with chronic leg ulcers (N = 252) from two wound care clinics using consecutive sampling method. Data were obtained through screening interview, clinical examination and questionnaires. Logistic regression with stepwise backwards elimination was used to identify factors associated with moderate to severe background pain. The STROBE checklist for cross-sectional studies was used for reporting this study. RESULTS: Background pain was reported by 64% of the participants. Inferential statistical analyses suggest that between 58% and 69% of persons with chronic leg ulcers suffer from this type of pain. Factors associated with moderate to severe pain were older age, female gender, reduced sleep quality and diminished health status. In the final model, reduced sleep quality increased the likelihood of having moderate to severe pain in persons with good health status while not in persons with diminished health status. CONCLUSION: Ulcer-related background pain is common in persons with chronic leg ulcers. Older females reporting insomnia symptoms also had increased risk of moderate to severe ulcer-related background pain. These participants also perceived their health status to be better. RELEVANCE TO CLINICAL PRACTICE: This study demonstrates that ulcer-related background pain and associated factors needs more attention in clinical practice. Furthermore, nurses and other healthcare professionals should integrate biopsychosocial strategies to assess and manage ulcer-related background pain.


Assuntos
Úlcera da Perna , Úlcera Varicosa , Idoso , Estudos Transversais , Feminino , Humanos , Úlcera da Perna/complicações , Úlcera da Perna/epidemiologia , Dor , Prevalência , Úlcera
12.
J Oral Rehabil ; 48(6): 654-665, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33449396

RESUMO

BACKGROUND: The aim of this study was to investigate if intramuscular injection of sterile water can be used as a human experimental pain model that resembles clinical craniofacial muscle pain and to analyse if the effects differ between sexes. METHODS: This randomised, double-blind, placebo-controlled cross-over study included 30 healthy age-matched women and men (23.6 ± 2.4 years). At three sessions, with at least one week of washout in between, 0.2 mL of either sterile water (test-substance), hypertonic saline (58.5 mg/mL; active control) or isotonic saline (0.9 mg/mL; passive control) was randomly injected into the right masseter muscle. Pain intensity (VAS) was continuously assessed during 5 min whereafter pain duration (s) and pain area (au) were calculated; pressure pain thresholds (PPT;kPa) were recorded every 5 minutes during 30 minutes. RESULTS: Sterile water evoked pain of similar intensity (74.5 ± 49.9) as hypertonic saline (74.0 ± 50.5); whereas, isotonic saline evoked low-intensity pain (11.4 ± 23.4). The pain induced by sterile water and hypertonic saline had higher intensity (P < 0.001), longer duration (P < 0.001) and larger pain area (P < 0.001) than isotonic saline. There were no significant differences in any pain variable between sterile water and hypertonic saline. The PPT did not change significantly after any substance, except for in women 5 minutes after sterile water injection (P < 0.002). Pain duration was longer in the men for all substances (P < 0.006), while the pain area was larger in women after injection of hypertonic saline (P < 0.003). CONCLUSION: These results indicate that pain evoked by sterile water resembles clinical muscle pain and may offer a novel and simpler alternative to hypertonic saline injections.


Assuntos
Mialgia , Limiar da Dor , Adulto , Estudos Cross-Over , Feminino , Humanos , Injeções Intramusculares , Masculino , Músculo Masseter , Medição da Dor , Solução Salina Hipertônica , Água , Adulto Jovem
13.
J Neurosci ; 39(20): 3845-3855, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30862667

RESUMO

The cation channel transient receptor potential ankyrin 1 (TRPA1) plays an important role in sensing potentially hazardous substances. However, TRPA1 species differences are substantial and limit translational research. TRPA1 agonists tested previously in humans also have other targets. Therefore, the sensation generated by isolated TRPA1 activation in humans is unknown. The availability of 2-chloro-N-(4-(4-methoxyphenyl)thiazol-2-yl)-N-(3-methoxypropyl)-acetamide (JT010), a potent and specific TRPA1 agonist, allowed us to explore this issue. To corroborate the specificity of JT010, it was investigated whether the TRPA1 antagonist (1E,3E)-1-(4-fluorophenyl)-2-methyl-1-penten-3-one oxime (A-967079) abolishes JT010-elicited pain. Sixteen healthy volunteers of both sexes rated pain due to intraepidermal injections of different concentrations and combinations of the substances. The study design was a double-blind crossover study. All subjects received all types of injections, including a placebo without substances. Injections of the TRPA1 agonist dose-dependently caused pain with a half-maximal effective concentration of 0.31 µm Coinjection of A-967079 dose-dependently reduced and at a high concentration abolished JT010-induced pain. Quantification of JT010 by HPLC showed that a substantial part is adsorbed when in contact with polypropylene surfaces, but that this was overcome by handling in glass vials and injection using glass syringes. Isolated TRPA1 activation in humans causes pain. Thus, intradermal JT010 injection can serve as a tool to validate new TRPA1 antagonists concerning target engagement. More importantly, TRPA1-specific tools allow quantification of the TRPA1-dependent component in physiology and pathophysiology.SIGNIFICANCE STATEMENT This study showed that activation of the ion channel transient receptor potential ankyrin 1 (TRPA1) alone indeed suffices to elicit pain in humans, independent of other receptors previously found to be involved in pain generation. The newly established TRPA1-specific pain model allows different applications. First, it can be tested whether diseases are associated with compromised or exaggerated TRPA1-dependent painful sensations in the skin. Second, it can be investigated whether a new, possibly systemically applied drug directed against TRPA1 engages its target in humans. Further, the general possibility of quantitative inhibition of TRPA1 allows identification of the TRPA1-dependent disease component, given that the substance reaches its target. This contributes to a better understanding of pathophysiology, can lay the basis for new therapeutic approaches, and can bridge the gap between preclinical research and clinical trials.


Assuntos
Percepção da Dor/fisiologia , Dor/fisiopatologia , Canal de Cátion TRPA1/fisiologia , Acetamidas/farmacologia , Adulto , Estudos Cross-Over , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Humanos , Masculino , Modelos Neurológicos , Oximas/administração & dosagem , Dor/induzido quimicamente , Medição da Dor , Psicofísica , Canal de Cátion TRPA1/agonistas , Canal de Cátion TRPA1/antagonistas & inibidores , Tiazóis/farmacologia , Adulto Jovem
14.
J Oral Pathol Med ; 49(6): 547-554, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32531859

RESUMO

BACKGROUND: Adenosine triphosphate (ATP) and glutamate are associated with some headache conditions, and purinergic (P2X) and glutamatergic N-methyl-D-aspartate (NMDA) receptor-related processes in the medulla can modulate the effects of trigeminal nociceptive afferent inputs into the brainstem on craniofacial sensorimotor circuits. This study aimed to test whether neck muscle activity can be induced in rats by noxious stimulation of the frontal dura or superior sagittal sinus that involves P2X or NMDA receptor-dependent mechanisms. METHODS: While electromyographic activities of neck and craniofacial muscles were being recorded in anesthetized rats (n = 46), the inflammatory irritant mustard oil (0.2 µL, 20% MO) or vehicle (mineral oil) was topically applied to the dura or sinus, preceded by 10 µL of the ATP antagonist 2',3'-O-(2,4,6- trinitrophenyl) adenosine 5'-triphosphate (TNP-ATP, 0.1 mmol/L; n = 8) or 2-amino-5-phosphonopentanoic acid (APV, 0.05 mmol/L; n = 7) or phosphate-buffered saline (PBS as vehicle control; n = 10). RESULTS: Application of MO but not vehicle to the frontal dura significantly increased (P < .05) neck electromyographic activity whereas MO application to the superior sagittal sinus did not significantly increase neck electromyographic activity unless MO had previously been applied to the dura. Pre-treatment (i.t.) with TNP-ATP or APV but not vehicle control significantly reduced neck electromyographic activity evoked by MO application to the dura. CONCLUSIONS: These data suggest that noxious stimulation of the frontal dura (but not superior sagittal sinus) may enhance neck muscle activity that is P2X and NMDA receptor-dependent. These effects may contribute to neck muscle stiffness that occurs in some headache conditions.


Assuntos
Cefaleia , N-Metilaspartato , Músculos do Pescoço , Trifosfato de Adenosina , Animais , Dura-Máter , Cefaleia/complicações , N-Metilaspartato/fisiologia , Músculos do Pescoço/fisiopatologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato
15.
J Korean Med Sci ; 35(26): e225, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32627441

RESUMO

BACKGROUND: Spinal nerve ligation (SNL) model is one of the representative models of the neuropathic pain model. Neuropathic pain in a chronic post-ischemic pain (CPIP) mimics the symptoms of complex regional pain syndrome (CRPS). The administration of polydeoxyribonucleotide (PDRN), which has regenerative and anti-inflammatory effects, has been studied and is used in clinical practice treating various diseases. However, the analgesic effect of PDRN in a neuropathic pain or CRPS model remains unknown. METHODS: PDRN (3.3, 10, and 20 mg/kg) was administered into the subcutaneous (SC) layer of the hind paws of SNL and CPIP models. Mechanical anti-allodynic effects were then investigated using the von Frey test. In the immunohistochemical examination, dorsal root ganglia (DRG) and the spinal cord were harvested and examined for the expression of glial fibrillary acidic protein (GFAP) after the 20 mg PDRN injection. RESULTS: Mechanical allodynia was significantly alleviated by administration of PDRN in SNL and CPIP mice at all of the time point. As the dose of PDRN increased, the effect was greater. The 20 mg PDRN injection was found to have the most effective anti-allodynic effect. The increased expression of GFAP in DRG and the spinal cord of SNL and CPIP model decreased following the administration of PDRN than vehicle. CONCLUSION: SC administration of PDRN results in the attenuation of allodynia and activation of astrocytes in neuropathic pain or CRPS models. We propose that PDRN can have significant potential advantages in neuropathic pain treatment.


Assuntos
Síndromes da Dor Regional Complexa/tratamento farmacológico , Neuralgia/tratamento farmacológico , Polidesoxirribonucleotídeos/uso terapêutico , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Síndromes da Dor Regional Complexa/patologia , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Injeções Subcutâneas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuralgia/patologia , Medula Espinal/metabolismo , Nervos Espinhais/cirurgia
16.
BMC Oral Health ; 20(1): 179, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32600327

RESUMO

BACKGROUND: The study was aiming to optimize excessive gum chewing as an experimental model to induce jaw muscle pain and fatigue similar to those in painful TMDs with durations that would allow immediate investigations of jaw-motor function. Further, if any sex differences would be detected in the expression of pain. METHODS: This randomized, double blinded study included 31 healthy participants of both sexes. A standardized chewing protocol of either 40- or 60-min of chewing was used with a wash-out period of 1 week. Subjective fatigue, pain characteristics and functional measures were assessed. For statistical analyses, Wilcoxon Signed Rank test, Mann-Whitney Rank Sum test and Friedman's ANOVA with Tukey post-hoc test were used. RESULTS: High subjective fatigue scores that lasted up to 20 min after the end of the trial were significantly induced both in the 40- and 60-min chewing trials (P <  0.001*). Significant but mild pain was induced only in the 60-min trial (P = 0.004*) and only in men (P = 0.04*). Also, the induced pain area was significantly bigger in the 60-min trial (P = 0.009*). However, this increase in pain and pain area did not last to the first 10-min follow-up. There were no significant differences neither between the 40- and 60-min chewing trials, except regarding the pain area (P = 0.008*), nor between the sexes. CONCLUSION: Taken together, excessive chewing in its current form does not seem to be a proper pain experimental model. The model needs further adjustments in order to mimic TMD-pain especially in women and to prolong the pain duration.


Assuntos
Dor Facial/etiologia , Mastigação , Fadiga Muscular , Adulto , Goma de Mascar , Método Duplo-Cego , Feminino , Humanos , Masculino , Medição da Dor
17.
Mol Pain ; 14: 1744806918811699, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30345869

RESUMO

BACKGROUND: Etomidate is a preferred drug for the induction of general anesthesia in cardiovascular risk patients. As with propofol and other perioperatively used anesthetics, the application of aqueous etomidate formulations causes an intensive burning pain upon injection. Such algogenic properties of etomidate have been attributed to the solubilizer propylene glycol which represents 35% of the solution administered clinically. The aim of this study was to investigate the underlying molecular mechanisms which lead to injection pain of aqueous etomidate formulations. RESULTS: Activation of the nociceptive transient receptor potential (TRP) ion channels TRPA1 and TRPV1 was studied in a transfected HEK293t cell line by whole-cell voltage clamp recordings of induced inward ion currents. Calcium influx in sensory neurons of wild-type and trp knockout mice was ratiometrically measured by Fura2-AM staining. Stimulated calcitonin gene-related peptide release from mouse sciatic nerves was detected by enzyme immunoassay. Painfulness of different etomidate formulations was tested in a translational human pain model. Etomidate as well as propylene glycol proved to be effective agonists of TRPA1 and TRPV1 ion channels at clinically relevant concentrations. Etomidate consistently activated TRPA1, but there was also evidence for a contribution of TRPV1 in dependence of drug concentration ranges and species specificities. Distinct N-terminal cysteine and lysine residues seemed to mediate gating of TRPA1, although the electrophile scavenger N-acetyl-L-cysteine did not prevent its activation by etomidate. Propylene glycol-induced activation of TRPA1 and TRPV1 appeared independent of the concomitant high osmolarity. Intradermal injections of etomidate as well as propylene glycol evoked severe burning pain in the human pain model that was absent with emulsification of etomidate. CONCLUSIONS: Data in our study provided evidence that pain upon injection of clinical aqueous etomidate formulations is not an unspecific effect of hyperosmolarity but rather due to a specific action mediated by activated nociceptive TRPA1 and TRPV1 ion channels in sensory neurons.


Assuntos
Etomidato/farmacologia , Dor/fisiopatologia , Canais de Cátion TRPV/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/efeitos dos fármacos , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Cálcio/metabolismo , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dor/induzido quimicamente , Dor/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
18.
Neuroimage ; 162: 162-172, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28882631

RESUMO

The trigeminal brainstem sensory nuclear complex is the first central relay structure mediating orofacial somatosensory and nociceptive perception. Animal studies suggest a substantial involvement of neurochemical alterations at such basal CNS levels in acute and chronic pain processing. Translating this animal based knowledge to humans is challenging. Human related examining of brainstem functions are challenged by MR related peculiarities as well as applicability aspects of experimentally standardized paradigms. Based on our experience with an MR compatible human orofacial pain model, the aims of the present study were twofold: 1) from a technical perspective, the evaluation of proton magnetic resonance spectroscopy at 3 T regarding measurement accuracy of neurochemical profiles in this small brainstem nuclear complex and 2) the examination of possible neurochemical alterations induced by an experimental orofacial pain model. Data from 13 healthy volunteers aged 19-46 years were analyzed and revealed high quality spectra with significant reductions in total N-acetylaspartate (N-acetylaspartate + N-acetylaspartylglutamate) (-3.7%, p = 0.009) and GABA (-10.88%, p = 0.041) during the pain condition. These results might reflect contributions of N-acetylaspartate and N-acetylaspartylglutamate in neuronal activity-dependent physiologic processes and/or excitatory neurotransmission, whereas changes in GABA might indicate towards a reduction in tonic GABAergic functioning during nociceptive signaling. Summarized, the present study indicates the applicability of 1H-MRS to obtain neurochemical dynamics within the human trigeminal brainstem sensory nuclear complex. Further developments are needed to pave the way towards bridging important animal based knowledge with human research to understand the neurochemistry of orofacial nociception and pain.


Assuntos
Dor Facial/metabolismo , Espectroscopia de Prótons por Ressonância Magnética/métodos , Núcleos do Trigêmeo/metabolismo , Adulto , Ácido Aspártico/análogos & derivados , Ácido Aspártico/análise , Ácido Aspártico/metabolismo , Dipeptídeos/análise , Dipeptídeos/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Ácido gama-Aminobutírico/análise , Ácido gama-Aminobutírico/metabolismo
19.
Mol Pain ; 13: 1744806916683684, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28326925

RESUMO

Appropriate selection of ipsilateral or contralateral electroacupuncture (corresponding to the pain site) plays an important role in reaching its better curative effect; however, the involving brain mechanism still remains unclear. Compared with the heat pain model generally established in previous study, capsaicin pain model induces reversible cutaneous allodynia and is proved to be better simulating aspects of clinical nociceptive and neuropathic pain. In the current study, 24 subjects were randomly divided into two groups with a 2 × 2 factorial design: laterality (ipsi- or contralateral side, inter-subject) × treatment with counter-balanced at an interval of one week (verum and placebo electroacupuncture, within-subject). We observed subjective pain intensity and brain activations changes induced by capsaicin allodynia pain stimuli before and after electroacupuncture treatment at acupoint LI4 for 30 min. Analysis of variance results indicated that ipsilateral electroacupuncture treatment produced significant pain relief and wide brain signal suppressions in pain-related brain areas compared with contralateral electroacupuncture. We also found that verum electroacupuncture at either ipsi- or contralateral side to the pain site exhibited comparable significant magnitudes of analgesic effect. By contrast, placebo electroacupuncture elicited significant pain reductions only on the ipsilateral rather than contralateral side. It was inferred that placebo analgesia maybe attenuated on the region of the body (opposite to pain site) where attention was less focused, suggesting that analgesic effect of placebo electroacupuncture mainly rely on the motivation of its spatial-specific placebo responses via attention mechanism. This inference can be further supported by the evidence that the significant interaction effect of manipulation laterality and treatment was exclusively located within the default mode network, including the bilateral superior parietal lobule, inferior parietal lobule, precuneus, and left posterior cingulate cortex. It is also proved that disruptions of the default mode network may account for the cognitive and behavioral impairments in chronic pain patients. Our findings further suggested that default mode network participates in the modulation of spatial-oriented attention on placebo analgesia as a mechanism underlying the degree to which treatment side corresponding to the pain.


Assuntos
Eletroacupuntura , Lateralidade Funcional/fisiologia , Modelos Neurológicos , Manipulações Musculoesqueléticas , Neuralgia/terapia , Adulto , Ansiedade/etiologia , Encéfalo/diagnóstico por imagem , Capsaicina/toxicidade , Depressão/etiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Neuralgia/induzido quimicamente , Neuralgia/complicações , Neuralgia/diagnóstico por imagem , Oxigênio/sangue , Medição da Dor , Método Simples-Cego , Resultado do Tratamento , Adulto Jovem
20.
BMC Neurol ; 17(1): 60, 2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28335745

RESUMO

BACKGROUND: In unilateral neuropathic pain. e.g. after peripheral nerve injury, both positive and negative sensory signs occur often, accompanied by minor but equally directed contralateral sensory changes. To mimic this feature, we experimentally aimed to induce concomitant c-fibre sensitization and block in healthy subjects and analyzed the bilateral sensory changes by quantitative sensory testing (QST) using the protocol of the German Research Network on Neuropathic Pain. METHODS: Twenty eight healthy subjects were firstly randomized in 2 groups to receive either topical capsaicin (0.6%, 12 cm2, application duration: 15 min.) or a lidocaine/prilocaine patch (25/25 mg, 10 cm2, application duration: 60 min.) on the right volar forearm. Secondly, 7-14 days later in the same area either at first capsaicin (for 15 min.) and immediately afterwards local anesthetics (for 60 min.) was applied (Cap/LA), or in inversed order with the same application duration (LA/Cap). Before, after each application and 7-14 days later a QST was performed bilaterally. STATISTICS: Wilcoxon-test, ANOVA, p < 0.05. RESULTS: Single application of 0,6% capsaicin induced thermal hypoesthesia, cold hypoalgesia, heat hyperalgesia and tactile allodynia. Lidocaine/prilocaine alone induced thermal and tactile hypoesthesia as well as mechanical and cold hypoalgesia, and a heat hyperalgesia (to a smaller extent). Ipsilaterally both co-applications induced a combination of the above mentioned changes. Significant contralateral sensory changes occurred only after the co-application with concomitant sensitization and hypoesthesia and comprised increased cold (Cap/LA, LA/Cap) and mechanical detection as well as cold pain threshold (LA/Cap). CONCLUSION: The present experimental model using combined application of capsaicin and LA imitates partly the complex sensory changes observed in patients with unilateral neuropathic pain and might be used as an additional surrogate model. Only the concomitant use both agents in the same area induces both positive and negative sensory signs ipsilaterally as well as parallel contralateral sensory changes (to a lesser extent). TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT01540877 , registered on 23 February 2012.


Assuntos
Anestésicos Locais/farmacologia , Capsaicina/farmacologia , Lidocaína/farmacologia , Neuralgia/fisiopatologia , Prilocaína/farmacologia , Fármacos do Sistema Sensorial/farmacologia , Distúrbios Somatossensoriais/fisiopatologia , Adulto , Anestésicos Locais/administração & dosagem , Capsaicina/administração & dosagem , Feminino , Voluntários Saudáveis , Humanos , Hipestesia/induzido quimicamente , Hipestesia/fisiopatologia , Lidocaína/administração & dosagem , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Prilocaína/administração & dosagem , Fármacos do Sistema Sensorial/administração & dosagem , Distúrbios Somatossensoriais/induzido quimicamente , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa