Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Cell ; 174(4): 908-916.e12, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30033365

RESUMO

Some phages encode anti-CRISPR (acr) genes, which antagonize bacterial CRISPR-Cas immune systems by binding components of its machinery, but it is less clear how deployment of these acr genes impacts phage replication and epidemiology. Here, we demonstrate that bacteria with CRISPR-Cas resistance are still partially immune to Acr-encoding phage. As a consequence, Acr-phages often need to cooperate in order to overcome CRISPR resistance, with a first phage blocking the host CRISPR-Cas immune system to allow a second Acr-phage to successfully replicate. This cooperation leads to epidemiological tipping points in which the initial density of Acr-phage tips the balance from phage extinction to a phage epidemic. Furthermore, both higher levels of CRISPR-Cas immunity and weaker Acr activities shift the tipping points toward higher initial phage densities. Collectively, these data help elucidate how interactions between phage-encoded immune suppressors and the CRISPR systems they target shape bacteria-phage population dynamics.


Assuntos
Bacteriófagos/imunologia , Sistemas CRISPR-Cas/imunologia , Terapia de Imunossupressão , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/virologia , Evolução Molecular , Modelos Teóricos , Pseudomonas aeruginosa/genética
2.
Malar J ; 23(1): 197, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926854

RESUMO

BACKGROUND: Although Tanzania adopted and has been implementing effective interventions to control and eventually eliminate malaria, the disease is still a leading public health problem, and the country experiences heterogeneous transmission. Recent studies reported the emergence of parasites with artemisinin partial resistance (ART-R) in Kagera region with high prevalence (> 10.0%) in two districts of Karagwe and Kyerwa. This study assessed the prevalence and predictors/risk of malaria infections among asymptomatic individuals living in a hyperendemic area where ART-R has emerged in Kyerwa District of Kagera region, north-western Tanzania. METHODS: This was a community-based cross-sectional survey which was conducted in July and August 2023 and involved individuals aged ≥ 6 months from five villages in Kyerwa district. Demographic, anthropometric, clinical, parasitological, type of house inhabited and socio-economic status (SES) data were collected using electronic capture tools run on Open Data Kit (ODK) software. Predictors/risks of malaria infections were determined by univariate and multivariate logistic regression, and the results were presented as crude (cORs) and adjusted odds ratios (aORs), with 95% confidence intervals (CIs). RESULTS: Overall, 4454 individuals were tested using rapid diagnostic tests (RDTs), and 1979 (44.4%) had positive results. The prevalence of malaria infections ranged from 14.4% to 68.5% and varied significantly among the villages (p < 0.001). The prevalence and odds of infections were significantly higher in males (aOR = 1.28, 95% CI 1.08 -1.51, p = 0.003), school children (aged 5-≤10 years (aOR = 3.88, 95% CI 3.07-4.91, p < 0.001) and 10-≤15 years (aOR = 4.06, 95% CI 3.22-5.13, p < 0.001)) and among individuals who were not using bed nets (aOR = 1.22, 95% CI 1.03-1.46, p = 0.024). The odds of malaria infections were also higher in individuals with lower SES (aOR = 1.42, 95% CI 1.17-1.72, p < 0.001), and living in houses without windows (aOR = 2.08, 95% CI 1.46-2.96, p < 0.001), partially open (aOR = 1.33, 95% CI 1.11-1.58, p = 0.002) or fully open windows (aOR = 1.30, 95%CI 1.05-1.61, p = 0.015). CONCLUSION: The five villages had a high prevalence of malaria infections and heterogeneity at micro-geographic levels. Groups with higher odds of malaria infections included school children, males, and individuals with low SES, living in poorly constructed houses or non-bed net users. These are important baseline data from an area with high prevalence of parasites with ART-R and will be useful in planning interventions for these groups, and in future studies to monitor the trends and potential spread of such parasites, and in designing a response to ART-R.


Assuntos
Antimaláricos , Artemisininas , Tanzânia/epidemiologia , Masculino , Prevalência , Feminino , Humanos , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Estudos Transversais , Criança , Pré-Escolar , Adolescente , Adulto , Adulto Jovem , Antimaláricos/uso terapêutico , Antimaláricos/farmacologia , Pessoa de Meia-Idade , Lactente , Resistência a Medicamentos , Malária/epidemiologia , Idoso , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Fatores de Risco , Plasmodium falciparum/efeitos dos fármacos
3.
Int J Mol Sci ; 25(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38928313

RESUMO

Wheat powdery mildew is an important fungal disease that seriously jeopardizes wheat production, which poses a serious threat to food safety. SJ106 is a high-quality, disease-resistant spring wheat variety; this disease resistance is derived from Wheat-wheatgrass 33. In this study, the powdery mildew resistance genes in SJ106 were located at the end of chromosome 6DS, a new disease resistance locus tentatively named PmSJ106 locus. This interval was composed of a nucleotide-binding leucine-rich repeat (NLR) gene cluster containing 19 NLR genes. Five NLRs were tandem duplicated genes, and one of them (a coiled coil domain-nucleotide binding site-leucine-rich repeat (CC-NBS-LRR; CNL) type gene, TaRGA5-like) expressed 69-836-fold in SJ106 compared with the susceptible control. The genome DNA and cDNA sequences of TaRGA5-like were amplified from SJ106, which contain several nucleotide polymorphisms in LRR regions compared with susceptible individuals and Chinese Spring. Overexpression of TaRGA5-like significantly increased resistance to powdery mildew in susceptible receptor wheat Jinqiang5. However, Virus induced gene silence (VIGS) of TaRGA5-like resulted in only a small decrease of SJ106 in disease resistance, presumably compensated by other NLR duplicated genes. The results suggested that TaRGA5-like confers partial powdery mildew resistance in SJ106. As a member of the PmSJ106 locus, TaRGA5-like functioned together with other NLR duplicated genes to improve wheat resistance to powdery mildew. Wheat variety SJ106 would become a novel and potentially valuable germplasm for powdery mildew resistance.


Assuntos
Ascomicetos , Resistência à Doença , Proteínas NLR , Doenças das Plantas , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas NLR/genética , Ascomicetos/patogenicidade , Mapeamento Cromossômico , Genes de Plantas , Família Multigênica , Regulação da Expressão Gênica de Plantas , Cromossomos de Plantas/genética
4.
BMC Plant Biol ; 23(1): 610, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041043

RESUMO

Common bean (Phaseolus vulgaris) is one of the legume crops most consumed worldwide and bean rust is one of the most severe foliar biotrophic fungal diseases impacting its production. In this work, we searched for new sources of rust resistance (Uromyces appendiculatus) in a representative collection of the Portuguese germplasm, known to have accessions with an admixed genetic background between Mesoamerican and Andean gene pools. We identified six accessions with incomplete hypersensitive resistance and 20 partially resistant accessions of Andean, Mesoamerican, and admixed origin. We detected 11 disease severity-associated single-nucleotide polymorphisms (SNPs) using a genome-wide association approach. Six of the associations were related to partial (incomplete non-hypersensitive) resistance and five to incomplete hypersensitive resistance, and the proportion of variance explained by each association varied from 4.7 to 25.2%. Bean rust severity values ranged from 0.2 to 49.1% and all the infection types were identified, reflecting the diversity of resistance mechanisms deployed by the Portuguese germplasm.The associations with U. appendiculatus partial resistance were located in chromosome Pv08, and with incomplete hypersensitive resistance in chromosomes Pv06, Pv07, and Pv08, suggesting an oligogenic inheritance of both types of resistance. A resolution to the gene level was achieved for eight of the associations. The candidate genes proposed included several resistance-associated enzymes, namely ß-amylase 7, acyl-CoA thioesterase, protein kinase, and aspartyl protease. Both SNPs and candidate genes here identified constitute promising genomics targets to develop functional molecular tools to support bean rust resistance precision breeding.


Assuntos
Phaseolus , Phaseolus/genética , Phaseolus/microbiologia , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Genômica
5.
Malar J ; 22(1): 167, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237307

RESUMO

BACKGROUND: Malaria control is highly dependent on the effectiveness of artemisinin-based combination therapy (ACT), the current frontline malaria curative treatment. Unfortunately, the emergence and spread of parasites resistant to artemisinin (ART) derivatives in Southeast Asia and South America, and more recently in Rwanda and Uganda (East Africa), compromise their long-term use in sub-Saharan Africa, where most malaria deaths occur. METHODS: Here, ex vivo susceptibility to dihydroartemisinin (DHA) was evaluated from 38 Plasmodium falciparum isolates collected in 2017 in Thiès (Senegal) expressed in the Ring-stage Survival Assay (RSA). Both major and minor variants were explored in the three conserved-encoding domains of the pfkelch13 gene, the main determinant of ART resistance using a targeted-amplicon deep sequencing (TADS) approach. RESULTS: All samples tested in the ex vivo RSA were found to be susceptible to DHA (parasite survival rate < 1%). The non-synonymous mutations K189T and K248R in pfkelch13 were observed each in one isolate, as major (99%) or minor (5%) variants, respectively. CONCLUSION: The results suggest that ART is still fully effective in the Thiès region of Senegal in 2017. Investigations combining ex vivo RSA and TADS are a useful approach for monitoring ART resistance in Africa.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Parasitos , Animais , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Falciparum/parasitologia , Senegal , Resistência a Medicamentos/genética , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Plasmodium falciparum , Uganda , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico , Sequenciamento de Nucleotídeos em Larga Escala , Mutação
6.
Phytopathology ; 113(5): 866-872, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37129265

RESUMO

Powdery mildew on Lathyrus sativus (grass pea) is commonly caused by Erysiphe pisi, the causal agent of pea powdery mildew. E. trifolii could also pose an additional threat to grass pea, as it does to pea (Pisum sativum). In order to understand the potential threat and the availability of resistance sources, the response to both pathogens was analyzed on a worldwide germplasm collection of 189 grass pea accessions. Infection type and disease severity (DS) of grass pea accessions, independently inoculated with E. pisi and E. trifolii, were evaluated under controlled conditions. A wide range of responses were detected, with the previously uncharacterized partial resistance to E. trifolii in grass pea detected less frequently and uncorrelated with partial resistance against E. pisi. To test for the lack of correlation at the genetic level, an exploratory association mapping study was undertaken by statistically combining grass pea collection DS scores against both pathogens, with 5,651 previously screened genotype-by-sequencing-based single nucleotide polymorphisms (SNP). Mostly different genetic regions in grass pea were identified as being associated with the response to E. trifolii and E. pisi, anticipating an independent genetic basis that requires further validation in larger germplasm collections, with higher SNP densities. This study proposes common and unique partial resistance components against two different powdery mildews, implying the need for complementary approaches to introduce resistance to both pathogens into new grass pea varieties. The identified sources of resistance and predicted genomic targets will assist in breeding for resistance to multiple powdery mildews.


Assuntos
Ascomicetos , Lathyrus , Ascomicetos/fisiologia , Lathyrus/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Melhoramento Vegetal
7.
Phytopathology ; 113(10): 1898-1907, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37147578

RESUMO

Septoria nodorum blotch (SNB), caused by Parastagonospora nodorum, is a major disease of winter wheat that occurs frequently in the central and southeastern United States. Quantitative resistance to SNB in wheat is determined by various disease resistance components and their interaction with environmental factors. A study was conducted in North Carolina from 2018 to 2020 to characterize SNB lesion size and growth rate and to quantify the effects of temperature and relative humidity on lesion expansion in winter wheat cultivars with different levels of resistance. Disease was initiated in the field by spreading P. nodorum-infected wheat straw in experimental plots. Cohorts (groups of foliar lesions arbitrarily selected and tagged as an observational unit) were sequentially selected and monitored throughout each season. Lesion area was measured at regular intervals, and weather data were collected using in-field data loggers and the nearest weather stations. Final mean lesion area was approximately seven times greater on susceptible than on moderately resistant cultivars, and lesion growth rate was approximately four times higher on susceptible than on moderately resistant cultivars. Across trials and cultivars, temperature had a strong effect of increasing lesion growth rates (P < 0.001), while relative humidity had no significant effect (P = 0.34). Lesion growth rate declined slightly and steadily over the duration of cohort assessment. Our results demonstrate that restricting lesion growth is an important component of SNB resistance in the field and suggest that the ability to limit lesion size may be a useful breeding goal.


Assuntos
Doenças das Plantas , Triticum , Humanos , Estações do Ano , Melhoramento Vegetal , Tempo (Meteorologia) , North Carolina
8.
Plant Dis ; 107(10): 3113-3122, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37102726

RESUMO

Common bean (Phaseolus vulgaris L.) is one of the most important food legumes worldwide, and its production is severely affected by fungal diseases such as powdery mildew. Portugal has a diverse germplasm, with accessions of Andean, Mesoamerican, and admixed origin, making it a valuable resource for common bean genetic studies. In this work, we evaluated the response of a Portuguese collection of 146 common bean accessions to Erysiphe diffusa infection, observing a wide range of disease severity and different levels of compatible and incompatible reactions, revealing the presence of different resistance mechanisms. We identified 11 incompletely hypersensitive resistant and 80 partially resistant accessions. We performed a genome-wide association study to clarify its genetic control, resulting in the identification of eight disease severity-associated single-nucleotide polymorphisms, spread across chromosomes Pv03, Pv09, and Pv10. Two of the associations were unique to partial resistance and one to incomplete hypersensitive resistance. The proportion of variance explained by each association varied between 15 and 86%. The absence of a major locus, together with the relatively small number of loci controlling disease severity, suggested an oligogenic inheritance of both types of resistance. Seven candidate genes were proposed, including a disease resistance protein (toll interleukin 1 receptor-nucleotide binding site-leucine-rich repeat class), an NF-Y transcription factor complex component, and an ABC-2 type transporter family protein. This work contributes with new resistance sources and genomic targets valuable to develop selection molecular tools and support powdery mildew resistance precision breeding in common bean.


Assuntos
Ascomicetos , Phaseolus , Mapeamento Cromossômico/métodos , Phaseolus/genética , Phaseolus/microbiologia , Portugal , Ascomicetos/fisiologia , Estudo de Associação Genômica Ampla , Melhoramento Vegetal
9.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37046998

RESUMO

Phytophthora root and stem rot caused by Phytophthora sojae Kaufmann and Gerdemann is a soil-borne disease severely affecting soybean production worldwide. Losses caused by P. sojae can be controlled by both major genes and quantitative trait locus. Here, we tested 112 short-season soybean cultivars from Northeast China for resistance to P. sojae. A total of 58 germplasms were resistant to 7-11 P. sojae strains. Among these, Mengdou 28 and Kejiao 10-262 may harbor either Rps3a or multiple Rps genes conferring resistance to P. sojae. The remaining 110 germplasms produced 91 reaction types and may contain new resistance genes or gene combinations. Partial resistance evaluation using the inoculum layer method revealed that 34 soybean germplasms had high partial resistance, with a mean disease index lower than 30. Combining the results of resistance and partial resistance analyses, we identified 35 excellent germplasm resources as potential elite materials for resistance and tolerance in future breeding programs. In addition, we compared the radicle inoculation method with the inoculum layer method to screen for partial resistance to P. sojae. Our results demonstrate that the radicle inoculation method could potentially replace the inoculum layer method to identify partial resistance against P. sojae, and further verification with larger samples is required in the future.


Assuntos
Resistência à Doença , Phytophthora , Resistência à Doença/genética , Glycine max/genética , Estações do Ano , Doenças das Plantas/genética , Melhoramento Vegetal , Genótipo
10.
J Exp Bot ; 73(7): 2238-2250, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35090009

RESUMO

Crops are exposed to myriad abiotic and biotic stressors with negative consequences. Two stressors that are expected to increase under climate change are drought and infestation with herbivorous insects, including important aphid species. Expanding our understanding of the impact drought has on the plant-aphid relationship will become increasingly important under future climate scenarios. Here we use a previously characterized plant-aphid system comprising a susceptible variety of barley, a wild relative of barley with partial aphid resistance, and the bird cherry-oat aphid to examine the drought-plant-aphid relationship. We show that drought has a negative effect on plant physiology and aphid fitness, and provide evidence to suggest that plant resistance influences aphid responses to drought stress. Furthermore, we show that the expression of thionin genes, plant defensive compounds that contribute to aphid resistance, increase in susceptible plants exposed to drought stress but remain at constant levels in the partially resistant plant, suggesting that they play an important role in determining the success of aphid populations. This study highlights the role of plant defensive processes in mediating the interactions between the environment, plants, and herbivorous insects.


Assuntos
Afídeos , Hordeum , Animais , Afídeos/fisiologia , Secas , Grão Comestível , Herbivoria , Hordeum/genética , Hordeum/metabolismo
11.
Plant Dis ; 106(2): 373-381, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34282925

RESUMO

Pathogen adaptation can threaten the durability of partial resistance. Mixed plantings of susceptible and partially resistant varieties may prolong the effectiveness of partial resistance, but little is known about how continued exposure to a susceptible genotype can change the aggressiveness of pathogen isolates adapted to a source of partial resistance. The objective of this study was to examine the effects of continued exposure to a highly susceptible tobacco genotype on isolates of Phytophthora nicotianae that had been adapted to partial resistance. Isolates of P. nicotianae previously adapted to two sources of partial resistance were continually exposed to either the original host of adaptation or a susceptible host. After six generations of host exposure, isolates obtained from the partially resistant and the susceptible hosts were compared for their aggressiveness on the resistant host and for differences in expression of genes associated with pathogenicity and aggressiveness. Results suggested that exposure to the susceptible tobacco genotype reduced aggressiveness of isolates adapted to partial resistance in K 326 Wz/- but not of isolates adapted to partial resistance in Fla 301. Quantification of pathogenicity-associated gene expression using qRT-PCR suggested the rapid change in aggressiveness of isolates adapted to Wz-sourced partial resistance may have resulted from modification in gene expression in multiple genes.


Assuntos
Phytophthora , Genótipo , Phytophthora/genética , Nicotiana/genética , Virulência
12.
Malar J ; 20(1): 451, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34856982

RESUMO

BACKGROUND: The devastating public health impact of malaria has prompted the need for effective interventions. Malaria control gained traction after the introduction of artemisinin-based combination therapy (ACT). However, the emergence of artemisinin (ART) partial resistance in Southeast Asia and emerging reports of delayed parasite sensitivity to ACT in African parasites signal a gradual trend towards treatment failure. Monitoring the prevalence of mutations associated with artemisinin resistance in African populations is necessary to stop resistance in its tracks. Mutations in Plasmodium falciparum genes pfk13, pfcoronin and pfatpase6 have been linked with ART partial resistance. METHODS: Findings from published research articles on the prevalence of pfk13, pfcoronin and pfatpase6 polymorphisms in Africa were collated. PubMed, Embase and Google Scholar were searched for relevant articles reporting polymorphisms in these genes across Africa from 2014 to August 2021, for pfk13 and pfcoronin. For pfatpase6, relevant articles between 2003 and August 2021 were retrieved. RESULTS: Eighty-seven studies passed the inclusion criteria for this analysis and reported 742 single nucleotide polymorphisms in 37,864 P. falciparum isolates from 29 African countries. Five validated-pfk13 partial resistance markers were identified in Africa: R561H in Rwanda and Tanzania, M476I in Tanzania, F446I in Mali, C580Y in Ghana, and P553L in an Angolan isolate. In Tanzania, three (L263E, E431K, S769N) of the four mutations (L263E, E431K, A623E, S769N) in pfatpase6 gene associated with high in vitro IC50 were reported. pfcoronin polymorphisms were reported in Senegal, Gabon, Ghana, Kenya, and Congo, with P76S being the most prevalent mutation. CONCLUSIONS: This meta-analysis provides an overview of the prevalence and widespread distribution of pfk13, pfcoronin and pfatpase6 mutations in Africa. Understanding the phenotypic consequences of these mutations can provide information on the efficacy status of artemisinin-based treatment of malaria across the continent.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Resistência a Medicamentos/efeitos dos fármacos , Plasmodium falciparum , Proteínas de Protozoários/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Proteínas de Protozoários/metabolismo
13.
Phytopathology ; 111(4): 695-702, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32781903

RESUMO

Aphanomyces root rot is a major disease in many pea growing regions worldwide. Development of resistant varieties is necessary to manage the disease. Near isogenic lines (NILs) carrying resistance alleles at main quantitative trait loci (QTLs) were developed by marker-assisted backcrossing. This study aimed to evaluate the aggressiveness of diverse French isolates of Aphanomyces euteiches on NILs carrying different resistance QTLs. Forty-three A. euteiches isolates from different French pea growing regions were tested for aggressiveness on eight NILs carrying single or combinations of resistance QTLs and two susceptible or resistant control lines, in controlled conditions. Three clusters of isolates, unrelated to geographical origin, were identified, including 37, 56, and 7% of isolates with high, moderate, and low average levels of aggressiveness, respectively. Three groups of pea lines were also identified. The first group consisted of a pea resistant control line, moderately to highly resistant to all of the isolates. The second group included five NILs carrying a major-effect resistance allele at QTL Ae-Ps7.6, with a medium to broad range of effects on the isolates. The third group consisted of three NILs carrying minor-effect resistance alleles, with a narrow range of effects on the isolates. The results suggest that highly aggressive isolates occur naturally, which may be selected by future partially resistant pea varieties carrying QTLs and increase the risk of erosion of QTL effect. QTL pyramiding strategies for a higher level and a broader range of effect of quantitative resistance on A. euteiches populations will be required for breeding for durable pea resistant varieties.


Assuntos
Aphanomyces , Aphanomyces/genética , Pisum sativum/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Locos de Características Quantitativas/genética
14.
Plant Dis ; 105(7): 1960-1966, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33245258

RESUMO

Black shank is a devastating disease of tobacco caused by Phytophthora nicotianae. Host resistance has been an integral part of black shank management but after the loss of Php single-gene resistance following its widespread deployment in the 1990s, growers have relied on varieties with varying levels of partial resistance. Partial resistance is effective in suppressing disease, but continued exposure can result in an increase in pathogen aggressiveness that threatens durability of the resistance to P. nicotianae. Aggressiveness components in P. nicotianae were characterized following adaptation on two sources of partial resistance, Fla 301 and the Wz genomic region from Nicotiana rustica. An aggressive isolate of the two major races of P. nicotianae, race 0 and race 1, was adapted for either one/two or five/six generations on the two resistance sources, giving four sets of isolates based on race, number of generations of adaptation, and source of resistance. Across the four sets of isolates, adapted isolates infected higher proportions of tobacco root tips, produced more sporangia per infected root tip, and caused larger lesions than their respective nonadapted isolates of the same race and from the same resistance source. Adapted isolates also produced more aggressive zoospore progeny than the nonadapted isolates. Adaptation to partial resistance involves multiple aggressiveness components and results in the increased aggressiveness observed for P. nicotianae. These results improve our knowledge on the nature of P. nicotianae adaptation to partial resistance in tobacco and indicate that different resistance sources are likely to select for similar aggressiveness components in the pathogen.


Assuntos
Phytophthora , Phytophthora/genética , Doenças das Plantas , Nicotiana
15.
Plant Biotechnol J ; 18(6): 1376-1383, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31742855

RESUMO

Because of the frequent breakdown of major resistance (R) genes, identification of new partial R genes against rice blast disease is an important goal of rice breeding. In this study, we used a core collection of the Rice Diversity Panel II (C-RDP-II), which contains 584 rice accessions and are genotyped with 700 000 single-nucleotide polymorphism (SNP) markers. The C-RDP-II accessions were inoculated with three blast strains collected from different rice-growing regions in China. Genome-wide association study identified 27 loci associated with rice blast resistance (LABRs). Among them, 22 LABRs were not associated with any known blast R genes or QTLs. Interestingly, a nucleotide-binding site leucine-rich repeat (NLR) gene cluster exists in the LABR12 region on chromosome 4. One of the NLR genes is highly conserved in multiple partially resistant rice cultivars, and its expression is significantly up-regulated at the early stages of rice blast infection. Knockout of this gene via CRISPR-Cas9 in transgenic plants partially reduced blast resistance to four blast strains. The identification of this new non-strain specific partial R gene, tentatively named rice blast Partial Resistance gene 1 (PiPR1), provides genetic material that will be useful for understanding the partial resistance mechanism and for breeding durably resistant cultivars against blast disease of rice.


Assuntos
Magnaporthe , Oryza , China , Mapeamento Cromossômico , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Oryza/genética , Doenças das Plantas/genética
16.
Plant Dis ; 104(6): 1638-1646, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32310718

RESUMO

Phytophthora nicotianae is an oomycete that causes black shank, one of the most economically important diseases affecting tobacco production worldwide. Identification and introgression of novel genetic variability affecting partial genetic resistance to this pathogen is important because of the increased durability of partial resistance over time as compared with genes conferring immunity. A previous mapping study identified a quantitative trait locus (QTL), hereafter designated as Phn15.1, with a major effect on P. nicotianae resistance in tobacco. In this research, we describe significantly improved resistance of nearly isogenic lines (NILs) of flue-cured tobacco carrying the introgressed Phn15.1 region derived from highly resistant cigar tobacco cultivar Beinhart 1000. The Phn15.1 region appeared to act in an additive or partially dominant manner to positively affect resistance. To more finely resolve the position of the gene or genes underlying the Phn15.1 effect, the QTL was mapped with an increased number of molecular markers (single-nucleotide polymorphisms) identified to reside within the region. Development and evaluation of subNILs containing varying amounts of Beinhart 1000-derived Phn15.1-associated genetic material permitted the localization of the QTL to a genetic interval of approximately 2.7 centimorgans. Importantly, we were able to disassociate the Beinhart 1000 Phn15.1 resistance alleles from a functional NtCPS2 allele(s) which contributes to the accumulation of a diterpene leaf surface exudate considered undesirable for flue-cured and burley tobacco. Information from this research should be of value for marker-assisted introgression of Beinhart 1000-derived partial black shank resistance into flue-cured and burley tobacco breeding programs.


Assuntos
Phytophthora , Alelos , Doenças das Plantas , Locos de Características Quantitativas , Nicotiana
17.
Int J Mol Sci ; 21(6)2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245192

RESUMO

Basal or partial resistance has been considered race-non-specific and broad-spectrum. Therefore, the identification of genes or quantitative trait loci (QTLs) conferring basal resistance and germplasm containing them is of significance in breeding crops with durable resistance. In this study, we performed a bulked segregant analysis coupled with whole-genome sequencing (BSA-seq) to identify QTLs controlling basal resistance to blast disease in an F2 population derived from two rice varieties, 02428 and LiXinGeng (LXG), which differ significantly in basal resistance to rice blast. Four candidate QTLs, qBBR-4, qBBR-7, qBBR-8, and qBBR-11, were mapped on chromosomes 4, 7, 8, and 11, respectively. Allelic and genotypic association analyses identified a novel haplotype of the durable blast resistance gene pi21 carrying double deletions of 30 bp and 33 bp in 02428 (pi21-2428) as a candidate gene of qBBR-4. We further assessed haplotypes of Pi21 in 325 rice accessions, and identified 11 haplotypes among the accessions, of which eight were novel types. While the resistant pi21 gene was found only in japonica before, three Chinese indica varieties, ShuHui881, Yong4, and ZhengDa4Hao, were detected carrying the resistant pi21-2428 allele. The pi21-2428 allele and pi21-2428-containing rice germplasm, thus, provide valuable resources for breeding rice varieties, especially indica rice varieties, with durable resistance to blast disease. Our results also lay the foundation for further identification and functional characterization of the other three QTLs to better understand the molecular mechanisms underlying rice basal resistance to blast disease.


Assuntos
Mapeamento Cromossômico/métodos , Resistência à Doença/genética , Oryza/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Alelos , Sequência de Aminoácidos , Ascomicetos , Genes de Plantas , Ligação Genética , Haplótipos , Mutação INDEL , Proteínas de Plantas/metabolismo , Domínios Proteicos Ricos em Prolina/genética , Domínios e Motivos de Interação entre Proteínas/genética , Locos de Características Quantitativas , Alinhamento de Sequência , Deleção de Sequência , Sequenciamento Completo do Genoma
18.
Plant J ; 96(5): 966-981, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30195273

RESUMO

Phytoalexin glyceollins are soybean-specific antimicrobial compounds that are derived from the isoflavonoid pathway. They are synthesized by soybean in response to extrinsic stress such as pathogen attack or injury, thereby conferring partial resistance if synthesized rapidly at the site of infection and at the required concentration. Soybean produces multiple forms of glyceollins that result from the differential prenylation reaction catalyzed by prenyltransferases (PTs) on either the C-2 or C-4 carbon of a pterocarpan glycinol. The soybean genome contains 77 PT-encoding genes (GmPTs) where at least 11 are (iso)flavonoid-specific. Transcript accumulation of five candidates GmPTs was increased in response to Phytophthora sojae infection, suggesting their role in phytoalexin synthesis. The induced GmPTs localize to plastids and display tissue-specific expression. We have in this study identified two additional GmPTs: an isoflavone dimethylallyltransferase 3 (IDT3); and a glycinol 2-dimethylallyl transferase GmPT01. GmPT01 prenylates (-)-glycinol at the C-2 position, localizes in the plastid, and exhibits root-specific gene expression. Furthermore, its expression is induced rapidly in response to stress, and is associated with a quantitative trait loci linked with resistance to P. sojae. Based on these results, we conclude that GmPT01 are possibly one of the loci involved in conferring partial resistance against stem and root rot disease in soybean.


Assuntos
Dimetilaliltranstransferase/metabolismo , Glycine max/enzimologia , Metiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Pterocarpanos/biossíntese , Dimetilaliltranstransferase/genética , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Redes e Vias Metabólicas , Metiltransferases/genética , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Pterocarpanos/metabolismo , Alinhamento de Sequência , Glycine max/genética , Glycine max/metabolismo
19.
BMC Plant Biol ; 19(1): 31, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30665361

RESUMO

BACKGROUND: Diseases caused by Pseudomonas syringae (Ps) are recognized as the most damaging factors in fruit trees with a significant economic and sanitary impact on crops. Among them, bacterial canker of apricot is exceedingly difficult to control due to a lack of efficient prophylactic measures. Several sources of partial resistance have been identified among genetic resources but the underlying genetic pattern has not been elucidated thus far. In this study, we phenotyped bacterial canker susceptibility in an apricot core-collection of 73 accessions over 4 years by measuring canker and superficial browning lengths issued from artificial inoculations in the orchard. In order to investigate the genetic architecture of partial resistance, we performed a genome-wide association study using best linear unbiased predictors on genetic (G) and genetic x year (G × Y) interaction effects extracted from linear mixed models. Using a set of 63,236 single-nucleotide polymorphism markers genotyped in the germplasm over the whole genome, multi-locus and multi-variate mixed models aimed at mapping the resistance while controlling for relatedness between individuals. RESULTS: We detected 11 significant associations over 7 candidate loci linked to disease resistance under the two most severe years. Colocalizations between G and G × Y terms indicated a modulation on allelic effect depending on environmental conditions. Among the candidate loci, two loci on chromosomes 5 and 6 had a high impact on both canker length and superficial browning, explaining 41 and 26% of the total phenotypic variance, respectively. We found unexpected long-range linkage disequilibrium (LD) between these two markers revealing an inter-chromosomal LD block linking the two underlying genes. This result supports the hypothesis of a co-adaptation effect due to selection through population demography. Candidate genes annotations suggest a functional pathway involving abscisic acid, a hormone mainly known for mediating abiotic stress responses but also reported as a potential factor in plant-pathogen interactions. CONCLUSIONS: Our study contributed to the first detailed characterization of the genetic determinants of partial resistance to bacterial canker in a Rosaceae species. It provided tools for fruit tree breeding by identifying progenitors with favorable haplotypes and by providing major-effect markers for a marker-assisted selection strategy.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Prunus armeniaca/microbiologia , Resistência à Doença , Desequilíbrio de Ligação/genética , Polimorfismo de Nucleotídeo Único/genética , Pseudomonas syringae/patogenicidade , Locos de Características Quantitativas/genética
20.
J Exp Bot ; 70(15): 4011-4026, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31173098

RESUMO

Aphids, including the bird cherry-oat aphid (Rhopalosiphum padi), are significant agricultural pests. The wild relative of barley, Hordeum spontaneum 5 (Hsp5), has been described to be partially resistant to R. padi, with this resistance proposed to involve higher thionin and lipoxygenase gene expression. However, the specificity of this resistance to aphids and its underlying mechanistic processes are unknown. In this study, we assessed the specificity of Hsp5 resistance to aphids and analysed differences in aphid probing and feeding behaviour on Hsp5 and a susceptible barley cultivar (Concerto). We found that partial resistance in Hsp5 to R. padi extends to two other aphid pests of grasses. Using the electrical penetration graph technique, we show that partial resistance is mediated by phloem- and mesophyll-based resistance factors that limit aphid phloem ingestion. To gain insight into plant traits responsible for partial resistance, we compared non-glandular trichome density, defence gene expression, and phloem composition of Hsp5 with those of the susceptible barley cultivar Concerto. We show that Hsp5 partial resistance involves elevated basal expression of thionin and phytohormone signalling genes, and a reduction in phloem quality. This study highlights plant traits that may contribute to broad-spectrum partial resistance to aphids in barley.


Assuntos
Afídeos/patogenicidade , Hordeum/metabolismo , Hordeum/parasitologia , Células do Mesofilo/metabolismo , Células do Mesofilo/parasitologia , Floema/metabolismo , Floema/parasitologia , Doenças das Plantas/parasitologia , Animais , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa