Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(44): e2201092119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36279451

RESUMO

The World Health Organization estimates that over 90% of the world's population is exposed to hazardous levels of local air pollution. Air pollution is markedly worse in low- and middle-income countries, yet air-quality monitoring is typically sparse. In 2008, the US Embassy in Beijing began tweeting hourly air-quality information from a newly installed pollution monitor, dramatically improving the information on air quality available to Beijing residents. Since then, the United States has installed over 50 monitors around the world, tweeting real-time reports on air quality in those locations. Using spatially granular measurements of local air pollution from satellite data that span the globe, we employ variation in whether and when US embassies installed monitors to evaluate the impact of air-quality information on pollution. We estimate that embassy monitors led to reductions in fine particulate concentration levels in host countries of 2 to 4 µg/m3. Our central estimate of the annual monetized benefit of the decrease in premature mortality due to this reduction in pollution is $127 million for the median city in 2019. Our findings point to the substantial benefits of improving the availability and salience of air-quality information in low- and middle-income countries.


Assuntos
Poluição do Ar , Material Particulado , Estados Unidos , Material Particulado/análise , Saúde Global , Poluição do Ar/análise , Mortalidade Prematura , Renda
2.
Environ Res ; 252(Pt 4): 118915, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615792

RESUMO

Surface particulates collected from the workshop floors of three major e-waste recycling sites (Taizhou, Qingyuan, and Guiyu) in China were analyzed for tetrabromobisphenol A/S (TBBPA/S) and their derivatives to investigate the environmental pollution caused by e-waste recycling activities. Mean concentrations of total TBBPA/S analogs in surface particulates were 31,471-116,059 ng/g dry weight (dw). TBBPA, TBBPA-BGE, and TBBPA-BDBPE were the most frequently detected in particulates with average concentration ranges of 17,929-78,406, 5601-15,842, and 5929-21,383 ng/g dw, respectively. Meanwhile, TBBPA, TBBPA-BGE, and TBBPA-BDBPE were the most abundant TBBPA/S analogs, accounting for around 96% of the total. The composition profiles of TBBPA/S analogs differed significantly among three e-waste sites. Similarly, principal component analysis uncovered different pollution patterns among different sites. The discrepancy in the profiles of TBBPA/S analogs largely relied on the e-waste types recycled in different areas. E-waste recycling led to the release of TBBPA/S analogs, and TBBPA/S analogs produced differentiation during migration from source (surface particulates) to nearby soil. More researches are necessary to find a definite relationship between pollution status and e-waste types and study differentiation behavior of TBBPA/S analogs in migration and diffusion from source to environmental medium.


Assuntos
Resíduo Eletrônico , Monitoramento Ambiental , Bifenil Polibromatos , Reciclagem , Bifenil Polibromatos/análise , China , Resíduo Eletrônico/análise , Material Particulado/análise
3.
J Occup Environ Hyg ; 21(2): 119-125, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37967319

RESUMO

Air quality in a cancer facility is integral to the success of patient treatment. The organization must be committed to providing a patient care environment free of physical and biological hazards that result from construction and demolition activities. This project intended to safely demolish a derelict building in Texas while minimizing air quality risks and impacts to nearby hospitals and a proximal cancer hospital. Two of the neighboring facilities were less than 18 feet (5.5 m) away from the demolition location. Adjacent facilities included inpatient and outpatient cancer treatment clinics, a large data center, a pediatric hospital complex, and a heart institute. Plans to minimize infection risks and dust for respective facilities were designed before implosion and remained in place until total debris removal. Risk assessments of nearby buildings were completed to determine the appropriate precautions and physical barriers needed. Culturable and non-culturable fungal air samples were collected during implosion to verify the management of outside contaminants. Additionally, continuous particulate and routine sampling for culturable and non-culturable fungi were performed for approximately 7 months after the project demolition. Air sampling results from 32 internal areas indicated that most areas remained at pre-implosion background levels. Areas that experienced elevated particle counts were cleaned and resampled, and baseline values returned to pre-implosion levels within 12 hr. Fungal air sampling results were acceptable based on predetermined infection control guidelines. The building was successfully demolished via implosion with no injuries and minimal damage to nearby facilities. The team learned that an integrated approach to project management that includes all stakeholders is essential to success. Contingency planning should account for all variables; no assumptions should be made. Staffing plans should be reviewed to ensure the sampling strategy developed can be implemented appropriately.


Assuntos
Poluição do Ar , Criança , Humanos , Poluição do Ar/análise , Poeira , Controle de Infecções , Hospitais , Microbiologia do Ar
4.
Environ Monit Assess ; 196(7): 659, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916809

RESUMO

First-ever measurements of particulate matter (PM2.5, PM10, and TSP) along with gaseous pollutants (CO, NO2, and SO2) were performed from June 2019 to April 2020 in Faisalabad, Metropolitan, Pakistan, to assess their seasonal variations; Summer 2019, Autumn 2019, Winter 2019-2020, and Spring 2020. Pollutant measurements were carried out at 30 locations with a 3-km grid distance from the Sitara Chemical Industry in District Faisalabad to Bhianwala, Sargodha Road, Tehsil Lalian, District Chiniot. ArcGIS 10.8 was used to interpolate pollutant concentrations using the inverse distance weightage method. PM2.5, PM10, and TSP concentrations were highest in summer, and lowest in autumn or winter. CO, NO2, and SO2 concentrations were highest in summer or spring and lowest in winter. Seasonal average NO2 and SO2 concentrations exceeded WHO annual air quality guide values. For all 4 seasons, some sites had better air quality than others. Even in these cleaner sites air quality index (AQI) was unhealthy for sensitive groups and the less good sites showed Very critical AQI (> 500). Dust-bound carbon and sulfur contents were higher in spring (64 mg g-1) and summer (1.17 mg g-1) and lower in autumn (55 mg g-1) and winter (1.08 mg g-1). Venous blood analysis of 20 individuals showed cadmium and lead concentrations higher than WHO permissible limits. Those individuals exposed to direct roadside pollution for longer periods because of their occupation tended to show higher Pb and Cd blood concentrations. It is concluded that air quality along the roadside is extremely poor and potentially damaging to the health of exposed workers.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Material Particulado , Paquistão , Humanos , Poluentes Atmosféricos/análise , Material Particulado/análise , Poluição do Ar/estatística & dados numéricos , Estações do Ano , Organização Mundial da Saúde , Dióxido de Enxofre/análise , Cidades , Dióxido de Nitrogênio/análise , Exposição Ambiental/estatística & dados numéricos , Monóxido de Carbono/análise
5.
Mol Pharm ; 20(8): 4268-4276, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37382286

RESUMO

Particles in biopharmaceutical products present high risks due to their detrimental impacts on product quality and safety. Identification and quantification of particles in drug products are important to understand particle formation mechanisms, which can help develop control strategies for particle formation during the formulation development and manufacturing process. However, existing analytical techniques such as microflow imaging and light obscuration measurement lack the sensitivity and resolution to detect particles with sizes smaller than 2 µm. More importantly, these techniques are not able to provide chemical information to determine particle composition. In this work, we overcome these challenges by applying the stimulated Raman scattering (SRS) microscopy technique to monitor the C-H Raman stretching modes of the proteinaceous particles and silicone oil droplets formed in the prefilled syringe barrel. By comparing the relative signal intensity and spectral features of each component, most particles can be classified as protein-silicone oil aggregates. We further show that morphological features are poor indicators of particle composition. Our method has the capability to quantify aggregation in protein therapeutics with chemical and spatial information in a label-free manner, potentially allowing high throughput screening or investigation of aggregation mechanisms.


Assuntos
Agregados Proteicos , Óleos de Silicone , Óleos de Silicone/química , Análise Espectral Raman , Proteínas/química , Microscopia , Tamanho da Partícula
6.
Artigo em Inglês | MEDLINE | ID: mdl-36960711

RESUMO

Exposure to outdoor air pollutants poses a risk for both non-carcinogenic and carcinogenic respiratory disease outcomes. A standardized health risk assessment (US EPA) utilizes air quality data, body mass and breathing rates to determine potential risk. This health risk assessment study assesses the hazard quotient (HQ) for total PM2.5 and trace elemental constituents (Br, Cl, K, Ni, S, Si, Ti and U) exposure in Pretoria, South Africa. The World Health Organization (WHO) air quality guideline (5 µg m-3) and the yearly South African National Ambient Air Quality Standard (NAAQS) (20 µg m-3) were the references dosages for total PM2.5. A total of 350 days was sampled in Pretoria, South Africa. The mean total PM2.5 concentration during the 34-month study period was 23.2 µg m-3 (0.7-139 µg m-3). The HQ for total PM2.5 was 1.17, 3.47 and 3.78 for adults, children and infants. Non-carcinogenic risks for trace elements K, Cl, S and Si were above 1 for adults. Seasonally, Si was the highest during autumn for adults (1.9) and during spring for S (5.5). The HQ values for K and Cl were highest during winter. The exposure to Ni posed a risk for cancer throughout the year and for As during winters.


Assuntos
Poluentes Atmosféricos , Oligoelementos , Adulto , Criança , Lactente , Humanos , Material Particulado/análise , África do Sul , Monitoramento Ambiental , Poluentes Atmosféricos/análise , Medição de Risco
7.
Toxicol Appl Pharmacol ; 457: 116294, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36283442

RESUMO

Hexavalent chromium [Cr(VI)] is a well-known and widespread environmental contaminant associated with a variety of adverse health effects, in particular lung cancer. The primary route of exposure in humans is through inhalation. Particulate forms of Cr(VI) are the most potent but in vivo studies are difficult. Intratracheal instillation requires highly trained surgical procedures which also limits the number of repeated exposures possible and thus requires high doses. Inhalation studies can deliver lower more chronic doses but are expensive and generate dangerous aerosols. We evaluated an oropharyngeal aspiration exposure route for zinc chromate particles in Wistar rats. Animals were treated once per week for 90 days. We found chromium accumulated in the lungs, blood, and reproductive tissues of all treated animals. Additionally, we found inflammatory indicators in the lung were elevated and circulating lymphocytes had increased chromosomal damage. These results show oropharyngeal aspiration provides a practicable exposure route for chronic and sub-chronic exposures of Cr(VI) particles.

8.
Respir Res ; 23(1): 186, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836168

RESUMO

BACKGROUND: Some evidences have shown the association between air pollution exposure and the development of interstitial lung diseases. However, the effect of air pollution on the progression of restrictive ventilatory impairment and diffusion capacity reduction is unknown. This study aimed to evaluate the effects of long-term exposure to ambient air pollution on the change rates of total lung capacity, residual volume, and diffusion capacity among the elderly. METHODS: From 2016 to 2018, single-breath helium dilution with the diffusion capacity of carbon monoxide was performed once per year on 543 elderly individuals. Monthly concentrations of ambient fine particulate matters (PM2.5) and nitric dioxide (NO2) at the individual residential address were estimated using a hybrid Kriging/Land-use regression model. Linear mixed models were used to evaluate the association between long-term (12 months) exposure to air pollution and lung function with adjustment for potential covariates, including basic characteristics, indoor air pollution (second-hand smoke, cooking fume, and incense burning), physician diagnosed diseases (asthma and chronic airway diseases), dusty job history, and short-term (lag one month) air pollution exposure. RESULTS: An interquartile range (5.37 ppb) increase in long-term exposure to NO2 was associated with an additional rate of decline in total lung volume (- 1.8% per year, 95% CI: - 2.8 to - 0.9%), residual volume (- 3.3% per year, 95% CI: - 5.0 to - 1.6%), ratio of residual volume to total lung volume (- 1.6% per year, 95% CI: - 2.6 to - 0.5%), and diffusion capacity (- 1.1% per year, 95% CI: - 2.0 to - 0.2%). There is no effect on the transfer factor (ratio of diffusion capacity to alveolar volume). The effect of NO2 remained robust after adjustment for PM2.5 exposure. CONCLUSIONS: Long-term exposure to ambient NO2 is associated with an accelerated decline in static lung volume and diffusion capacity in the elderly. NO2 related air pollution may be a risk factor for restrictive lung disorders.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Idoso , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Estudos de Coortes , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Pulmão , Dióxido de Nitrogênio , Material Particulado/efeitos adversos , Material Particulado/análise
9.
Cell Biol Toxicol ; 38(1): 31-41, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34021430

RESUMO

Anti-inflammatory and proinflammatory responses in macrophages are influenced by cellular metabolism. Macrophages are the primary phagocyte in mucosal environments (i.e., intestinal tract and lungs) acting as first-line defense against microorganisms and environmental pollutants. Given the extensive contamination of our food and water sources with microplastics, we aimed to examine the metabolic response in macrophages to microplastic particles (MPs). Utilizing murine macrophages, we assessed the metabolic response of macrophages after polystyrene MP phagocytosis. The phagocytosis of MP by macrophages induced a metabolic shift toward glycolysis and a reduction in mitochondrial respiration that was associated with an increase of cell surface markers CD80 and CD86 and cytokine gene expression associated with glycolysis. The gastrointestinal consequences of this metabolic switch in the context of an immune response remain uncertain, but the global rise of plastic pollution and MP ingestion potentially poses an unappreciated health risk. Macrophage phagocytosis of microplastics alters cellular metabolism. - Macrophages cannot degrade PS MP. - MP phagocytosis increases glycolysis in murine macrophages. - MP phagocytosis reduces mitochondrial respiration in murine macrophages.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Trato Gastrointestinal , Macrófagos/química , Camundongos , Microplásticos/toxicidade , Plásticos , Poliestirenos/toxicidade , Poluentes Químicos da Água/análise
10.
Toxicol Pathol ; 50(7): 836-857, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36165586

RESUMO

The 2022 annual National Toxicology Program Satellite Symposium, entitled "Pathology Potpourri," was held in Austin, Texas at the Society of Toxicologic Pathology's 40th annual meeting during a half-day session on Sunday, June 19. The goal of this symposium was to present and discuss challenging diagnostic pathology and/or nomenclature issues. This article presents summaries of the speakers' talks along with select images that were used by the audience for voting and discussion. Various lesions and topics covered during the symposium included induced and spontaneous neoplastic and nonneoplastic lesions in the mouse lung, spontaneous lesions in the reproductive tract of a female cynomolgus macaque, induced vascular lesions in a mouse asthma model and interesting case studies in a rhesus macaque, dog and genetically engineered mouse model.


Assuntos
Toxicologia , Camundongos , Feminino , Animais , Cães , Macaca mulatta , Macaca fascicularis
11.
Anal Bioanal Chem ; 414(29-30): 8389-8400, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36260127

RESUMO

A novel simple and functional colorimetric methodology for on-site environmental water analysis was proposed. This method combines coloration of the analyte and extraction of the colored species on dispersed particulates during their sedimentation in the same container. The whole analysis can be performed within 15 min by comprising the addition of 1 mL of sample solution into a 1.5-mL microtube containing the powders of coloring reagents and the sedimentable fine particulates as an adsorbent. The analyte is determined by comparing the sediment color with the standard color by visual inspection or the color information of the photo image. The potential of this methodology was demonstrated through developing colorimetry for Fe2+ with o-phenanthroline, NO2- by azo-dye formation, HCHO by the MBTH method, and PO43- by the 4-aminoantipyrine method based on the enzyme reactions. The material, size, amount of the adsorbent particles, and other conditions were optimized for each analytes. The advantages of the methodology were as follows: high sensitivity, easy controllability of the sensitivity over the wide range by the amount, size, and material of the particulates, lower interference from the colored matrix components due to obtaining the color data from not the aqueous phase but the sedimented particulates, and acceleration of the color development rate by the particulates as seen in NO2- determination as consequence shorten the operation time. A simple device equipped with twin cells was proposed for on-site analysis which contains two successive different coloring operations. The developed methods were successfully applied to the environmental water samples with the good agreement of the results with those by the usual instrumental methods.


Assuntos
Colorimetria , Dióxido de Nitrogênio , Colorimetria/métodos , Extração em Fase Sólida/métodos , Água , Compostos Azo
12.
Philos Trans A Math Phys Eng Sci ; 380(2221): 20210139, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35220760

RESUMO

Wood-burning stoves, in Kenya and Mexico, are reviewed. With a Kenyan stove, burning charcoal, only 24% of the energy released reached the cooking pot. Initially, the proportion of CO in the leaving gases was 3%. Indoor concentrations of particulate matter (less than 2.5 µm diameter) can be abnormally high near a stove. Decarbonization, by using H2, is facilitated by a distribution system. Replacement by H2 would ultimately rest upon wind or water power, or it being a by-product in the production of heavier hydrocarbons from CH4. The averaged burning rate in the Kenyan stove was 10 kW, over 20 min, with an initial peak value of about 30 kW. A possible replacement is a hob, composed of an array of small diameter H2 jet flames. As an example, combustion of a 2 mm internal diameter H2 jet flame, with a H2 exit velocity of 27.2 m s-1, would release 0.84 kW. Bearing in mind its improved efficiency, a single compact hob with an array of about 10 jets would suffice. A difficulty is the low mass-specific energy of H2. H2 has a high acoustic velocity, and both high velocity subsonic combustion and blending with natural gas are briefly discussed. This article is part of the theme issue 'Developing resilient energy systems'.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Hidrogênio , Quênia , Material Particulado/análise , Madeira/química
13.
Part Fibre Toxicol ; 19(1): 61, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109745

RESUMO

BACKGROUND: Exposure to air pollutants is one of the major environmental health risks faced by populations globally. Information about inhaled particle deposition dose is crucial in establishing the dose-response function for assessing health-related effects due to exposure to air pollution. OBJECTIVE: This study aims to quantify the respiratory tract deposition (RTD) of equivalent black carbon (BC) particles in healthy young adults during a real-world commuting scenario, analyze factors affecting RTD of BC, and provide key parameters for the assessment of RTD. METHODS: A novel in situ method was applied to experimentally determine the RTD of BC particles among subjects in the highly polluted megacity of Metro Manila, Philippines. Exposure measurements were made for 40 volunteers during public transport and walking. RESULTS: The observed BC exposure concentration was up to 17-times higher than in developed regions. The deposition dose rate (DDR) of BC was up to 3 times higher during commute inside a public transport compared to walking (11.6 versus 4.4 µg hr-1, respectively). This is twice higher than reported in similar studies. The average BC mass deposition fraction (DF) was found to be 43 ± 16%, which can in large be described by individual factors and does not depend on gender. CONCLUSIONS: Commuting by open-sided public transport, commonly used in developing regions, poses a significant health risk due to acquiring extremely high doses of carcinogenic traffic-related pollutants. There is an urgent need to drastically update air pollution mitigation strategies for reduction of dangerously high emissions of BC in urban setting in developing regions. The presented mobile measurement set-up to determine respiratory tract deposition dose is a practical and cost-effective tool that can be used to investigate respiratory deposition in challenging environments.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Carbono , Humanos , Filipinas , Sistema Respiratório , Fuligem/análise , Fuligem/toxicidade , Meios de Transporte , Emissões de Veículos/análise , Emissões de Veículos/toxicidade , Adulto Jovem
14.
Arch Toxicol ; 96(12): 3201-3217, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35984461

RESUMO

Thermal spray coating is an industrial process in which molten metal is sprayed at high velocity onto a surface as a protective coating. An automated electric arc wire thermal spray coating aerosol generator and inhalation exposure system was developed to simulate an occupational exposure and, using this system, male Sprague-Dawley rats were exposed to stainless steel PMET720 aerosols at 25 mg/m3 × 4 h/day × 9 day. Lung injury, inflammation, and cytokine alteration were determined. Resolution was assessed by evaluating these parameters at 1, 7, 14 and 28 d after exposure. The aerosols generated were also collected and characterized. Macrophages were exposed in vitro over a wide dose range (0-200 µg/ml) to determine cytotoxicity and to screen for known mechanisms of toxicity. Welding fumes were used as comparative particulate controls. In vivo lung damage, inflammation and alteration in cytokines were observed 1 day post exposure and this response resolved by day 7. Alveolar macrophages retained the particulates even after 28 day post-exposure. In line with the pulmonary toxicity findings, in vitro cytotoxicity and membrane damage in macrophages were observed only at the higher doses. Electron paramagnetic resonance showed in an acellular environment the particulate generated free radicals and a dose-dependent increase in intracellular oxidative stress and NF-kB/AP-1 activity was observed. PMET720 particles were internalized via clathrin and caveolar mediated endocytosis as well as actin-dependent pinocytosis/phagocytosis. The results suggest that compared to stainless steel welding fumes, the PMET 720 aerosols were not as overtly toxic, and the animals recovered from the acute pulmonary injury by 7 days.


Assuntos
Poluentes Ocupacionais do Ar , Soldagem , Ratos , Animais , Masculino , Aço Inoxidável/toxicidade , Poluentes Ocupacionais do Ar/toxicidade , NF-kappa B , Actinas , Fator de Transcrição AP-1 , Ratos Sprague-Dawley , Aerossóis e Gotículas Respiratórios , Soldagem/métodos , Exposição por Inalação/efeitos adversos , Pulmão , Poeira , Inflamação/patologia , Citocinas , Clatrina/farmacologia
15.
Ecotoxicol Environ Saf ; 247: 114275, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356528

RESUMO

Metal-organic frameworks (MOF) are emerging materials with fantastic properties and wide applications. The release of metal ions from MOF materials is usually regarded as the origin of soluble MOF toxicity. However, whether the stable MOF particulates would induce environmental hazards is not clear. Herein, we aimed to reveal the particulate toxicity of MOF materials using the insoluble UiO-66 as the representative MOF and Phanerochaete chrysosporium as the model microorganism. UiO-66 nanoparticles (NPs) were synthesized by solvothermal method and their diameter was 68.4 ± 8.5 nm. UiO-66 NPs were stable in the culture system and the dissolution rate of 500 mg/L group was 0.26% after 14 d incubation. UiO-66 NPs did not affect the fungus growth according to the fresh weight increases and unchanged dry weights. Fungus mycelia kept even at concentrations up to 500 mg/L. Ultrastructural observation showed that UiO-66 NPs did not enter the fungal cells, but slightly destroyed the cell wall. UiO-66 NPs inhibited the laccase activity and promoted the activity of manganese peroxidase. The overall impact on the decomposition activity of P. chrysosporium was low in dye coloration test and sawdust degradation assay. Meaningful oxidative stress was aroused by UiO-66 NPs, as indicated by the decreases of catalase, glutathione, and total superoxide dismutase, and the increases of H2O2. Our results collectively suggested that the MOF particulates could induce mild mechanical damage to fungi and the toxicity was low comparing to other instable MOF materials.


Assuntos
Estruturas Metalorgânicas , Phanerochaete , Ácidos Ftálicos , Peróxido de Hidrogênio , Poeira
16.
Molecules ; 27(9)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35566249

RESUMO

Exposure to particulate matter (PM) is related to various respiratory diseases, and this affects the respiratory immune system. Alveolar macrophages (AMs), which are defenders against pathogens, play a key role in respiratory inflammation through cytokine production and cellular interactions. Coconut oil demonstrates antioxidant and anti-inflammatory properties, and it is consumed worldwide for improved health. However, reports on the protective effects of coconut oil on the PM-induced respiratory immune system, especially in AMs, are limited. In this study, we generated artificial PM (APM) with a diameter approximately of 30 nm by controlling the temperature, and compared its cytotoxicity with diesel exhaust particles (DEP). We also investigated the antioxidant and anti-inflammatory effects of coconut oil in APM− and DEP−stimulated AMs, and the underlying molecular mechanisms. Our results showed that APM and DEP had high cytotoxicity in a dose-dependent manner in AMs. In particular, APM or DEP at 100 µg/mL significantly decreased cell viability (p < 0.05) and significantly increased oxidative stress markers such as reactive oxygen species (p < 0.01); the GSSH/GSH ratio (p < 0.01); and cytokine production, such as tumor necrosis factor-α (p < 0.001), interleukin (IL)-1ß (p < 0.001), and IL-6 (p < 0.001). The expression of the genes for chemokine (C-X-C motif) ligand-1 (p < 0.05) and monocyte chemoattractant protein-1 (p < 0.001); and the proteins toll-like receptor (TLR) 4 (p < 0.01), mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (p < 0.001), p38 (p < 0.001); and extracellular receptor-activated kinase (p < 0.001), were also upregulated by PM. These parameters were reversed upon treatment with coconut oil in APM− or DEP−stimulated AMs. In conclusion, coconut oil can reduce APM− or DEP−induced inflammation by regulating the TLR4/MAPK pathway in AMs, and it may protect against adverse respiratory effects caused by PM exposure.


Assuntos
Macrófagos Alveolares , Material Particulado , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Óleo de Coco , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estresse Oxidativo , Material Particulado/metabolismo , Material Particulado/toxicidade , Emissões de Veículos
17.
Angew Chem Int Ed Engl ; 61(7): e202110990, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34841648

RESUMO

The mechanism of separation methods, for example, liquid chromatography, is realized through rapid multiple adsorption-desorption steps leading to the dynamic equilibrium state in a mixture of molecules with different partition coefficients. Sorting of colloidal particles, including protein complexes, cells, and viruses, is limited due to a high energy barrier, up to millions kT, required to detach particles from the interface, which is in dramatic contrast to a few kT for small molecules. Such a strong interaction renders particle adsorption quasi-irreversible. The dynamic adsorption-desorption equilibrium is approached very slowly, if ever attainable. This limitation is alleviated with a local oscillating repulsive mechanical force generated at the microstructured stimuli-responsive polymer interface to switch between adsorption and mechanical-force-facilitated desorption of the particles. Such a dynamic regime enables the separation of colloidal mixtures based on the particle-polymer interface affinity, and it could find use in research, diagnostics, and industrial-scale label-free sorting of highly asymmetric mixtures of colloids and cells.


Assuntos
Polímeros/química , Adsorção , Coloides/química , Tamanho da Partícula
18.
Environ Sci Technol ; 55(1): 571-580, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33295764

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are potentially carcinogenic pollutants emitted by diesel engines, both in the gas phase and adsorbed onto the surface of particulate matter (PM). There remains limited understanding of the complex and dynamic competing mechanisms of PAH formation, growth and oxidation in the gas phase, and their adsorption onto soot and how these processes impact on the abundance and composition of exhaust PAH. Therefore, this paper presents analysis of gas and particulate samples taken from the cylinder and exhaust of a diesel engine during combustion of fossil diesel with the 16 US-EPA priority PAH species identified and quantified. In-cylinder results showed that gas-phase PAHs were more abundant than soot-bound PAHs in the engine cylinder. The in-cylinder PAHs included 2- to 6-ring PAHs; however, 6-ring PAHs were not observed in the soot samples collected from the engine exhaust. Levels of both PM and the total in-cylinder PAHs decreased following a peak at 10 CAD ATDC but subsequently increased significantly during the late combustion phase. The B[a]P equivalence of PM in the engine cylinder increased during the period of early diffusion to late combustion phase, following an initial decrease during the period of premixed to early diffusion combustion.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Fuligem , Emissões de Veículos/análise
19.
Part Fibre Toxicol ; 18(1): 27, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34340691

RESUMO

BACKGROUND: This study aims to investigate the effects of water soluble particulate matter (WSPM) on the viability and protein expression profile of human lung adenocarcinoma cell A549 in the Bayou Obo rare earth mining area, and explore the influence of WSPM on the A549 cell cycle. RESULTS: It was found that WSPM can inhibit the viability of A549 cells and induce cell arrest in the G2/M phase. Compared with controls, exposure to WSPM10 and WSPM2.5 induced 134 and 116 proteins to be differentially expressed in A549 cells, respectively. In addition, 33 and 31 differentially expressed proteins were further confirmed, and was consistent with the proteomic analysis. The most prominent enrichment in ribosome-associated proteins were presented. When RPL6, RPL13, or RPL18A gene expression was inhibited, A549 cells were arrested in the G1 phase, affecting the expression of Cyclin D1, p21, RB1, Cyclin A2, Cyclin B1, CDC25A, CDK2, CHEK2 and E2F1. Furthermore, the La3+, Ce3+, Nd3+ and F- in WSPM also inhibited the viability of A549 cells. After 24 h of exposure to 2 mM of NaF, A549 cells were also arrested in the G2/M phase, while the other three compounds did not have this effect. These four compounds affected the cell cycle regulatory factors in A549 cells, mainly focusing on effecting the expression of CDK2, CDK4, RB1, ATM, TP53 and MDM2 genes. These results are consistent with the those from WSPM exposure. CONCLUSIONS: These results revealed that WSPM from rare earth mines decreased the viability of A549 cells, and induced cell cycle G2/M phase arrest, and even apoptosis, which may be independent of the NF-κB/MYD88 pathway, and be perceived by the TLR4 receptor. The dysfunction of the cell cycle is correlated to the down-expression of ribosomal proteins (RPs). However, it is not the direct reason for the A549 cell arrest in the G2/M phase. La3+, Ce3+, and F- are probably the main toxic substances in WSPM, and may be regulate the A549 cell cycle by affecting the expression of genes, such as MDM2, RB1, ATM, TP53, E2F1, CDK2 and CDK4. These results indicate the importance for further research into the relationship between APM and lung cancer.


Assuntos
Neoplasias Pulmonares , Água , Apoptose , Ciclo Celular , Divisão Celular , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/genética , Mineração , Proteínas de Neoplasias , Proteômica , Proteínas Ribossômicas
20.
Regul Toxicol Pharmacol ; 127: 105069, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34718075

RESUMO

Several epidemiology studies have been conducted in Ohio communities where industrial facilities with manganese emissions are located. New information not addressed in the published papers for this research has been disclosed by U.S. federal agencies pursuant to the Freedom of Information Act. This paper describes the newly available information, presents statistical analyses of the new summary data, and explores how this information potentially impacts the conclusions of the published research. Based on a statistical analysis of the newly available data, we found very few, and no consistent, statistical differences for various illnesses, self-reported symptoms, and neuropsychological/neuromotor test results between one community with a manganese emission source and a control town that were part of the initial research. Further, we determined that the distribution of total suspended particulate manganese air concentrations did not correlate with the distribution of the more biologically relevant respirable manganese concentrations when data from two communities with potential manganese emissions were combined. These results are important, particularly in determining whether the studies should influence regulatory reference values related to manganese. We recommend that the full health effects data set associated with the published research be made available and re-evaluated to address the issues identified in this paper.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Manganês/análise , Instalações Industriais e de Manufatura , Saúde Pública , Adulto , Idoso , Feminino , Saúde , Comportamentos Relacionados com a Saúde , Humanos , Masculino , Saúde Mental , Pessoa de Meia-Idade , Ohio , Tamanho da Partícula , Fatores Sociodemográficos , Estados Unidos , United States Environmental Protection Agency
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa