Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Ecol ; 87(1): 301-314, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28994103

RESUMO

Migratory animals are widely assumed to play an important role in the long-distance dispersal of parasites, and are frequently implicated in the global spread of zoonotic pathogens such as avian influenzas in birds and Ebola viruses in bats. However, infection imposes physiological and behavioural constraints on hosts that may act to curtail parasite dispersal via changes to migratory timing ("migratory separation") and survival ("migratory culling"). There remains little consensus regarding the frequency and extent to which migratory separation and migratory culling may operate, despite a growing recognition of the importance of these mechanisms in regulating transmission dynamics in migratory animals. We quantitatively reviewed 85 observations extracted from 41 studies to examine how both infection status and infection intensity are related to changes in body stores, refuelling rates, movement capacity, phenology and survival in migratory hosts across taxa. Overall, host infection status was weakly associated with reduced body stores, delayed migration and lower survival, and more strongly associated with reduced movement. Infection intensity was not associated with changes to host body stores, but was associated with moderate negative effects on movement, phenology and survival. In conclusion, we found evidence for negative effects of infection on host phenology and survival, but the effects were relatively small. This may have implications for the extent to which migratory separation and migratory culling act to limit parasite dispersal in migratory systems. We propose a number of recommendations for future research that will further advance our understanding of how migratory separation and migratory culling may shape host-parasite dynamics along migratory routes globally.


Assuntos
Migração Animal , Aves/parasitologia , Peixes/parasitologia , Interações Hospedeiro-Parasita , Insetos/parasitologia , Longevidade , Animais , Aves/fisiologia , Peixes/fisiologia , Insetos/fisiologia
2.
Appl Environ Microbiol ; 83(17)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28625988

RESUMO

The goal of this study was to develop effective and practical field sampling methods for quantification of aerial deposition of airborne conidia of Entomophaga maimaiga over space and time. This important fungal pathogen is a major cause of larval death in invasive gypsy moth (Lymantria dispar) populations in the United States. Airborne conidia of this pathogen are relatively large (similar in size to pollen), with unusual characteristics, and require specialized methods for collection and quantification. Initially, dry sampling (settling of spores from the air onto a dry surface) was used to confirm the detectability of E. maimaiga at field sites with L. dispar deaths caused by E. maimaiga, using quantitative PCR (qPCR) methods. We then measured the signal degradation of conidial DNA on dry surfaces under field conditions, ultimately rejecting dry sampling as a reliable method due to rapid DNA degradation. We modified a chamber-style trap commonly used in palynology to capture settling spores in buffer. We tested this wet-trapping method in a large-scale (137-km) spore-trapping survey across gypsy moth outbreak regions in Pennsylvania undergoing epizootics, in the summer of 2016. Using 4-day collection periods during the period of late instar and pupal development, we detected variable amounts of target DNA settling from the air. The amounts declined over the season and with distance from the nearest defoliated area, indicating airborne spore dispersal from outbreak areas.IMPORTANCE We report on a method for trapping and quantifying airborne spores of Entomophaga maimaiga, an important fungal pathogen affecting gypsy moth (Lymantria dispar) populations. This method can be used to track dispersal of E. maimaiga from epizootic areas and ultimately to provide critical understanding of the spatial dynamics of gypsy moth-pathogen interactions.


Assuntos
Entomophthorales/isolamento & purificação , Técnicas Microbiológicas/métodos , Pólen/microbiologia , Esporos Fúngicos/isolamento & purificação , Microbiologia do Ar , Animais , Entomophthorales/genética , Entomophthorales/crescimento & desenvolvimento , Larva/microbiologia , Técnicas Microbiológicas/instrumentação , Mariposas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Estações do Ano , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento
3.
Crit Rev Microbiol ; 41(4): 508-19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24450609

RESUMO

Avian influenza viruses (AIVs) are of great concern worldwide due to their economic impact and the threat they represent to human health. As wild birds are the natural reservoirs of AIVs, understanding AIV dynamics in different avian taxa is essential for deciphering the epidemiological links between wildlife, poultry and humans. To date, only the Anatidae (ducks, geese and swans) have been widely studied. Here, we aim to shed light on the current state of knowledge on AIVs in Laridae (gulls, terns and kittiwakes) versus that in Anatidae by setting forth four fundamental questions: how, when, where and to which host species are AIVs transmitted? First, we describe ecological differences between Laridae and Anatidae and discuss how they may explain observed contrasts in preferential transmission routes and the evolution of specific AIV subtypes. Second, we highlight the dissimilarities in the temporal patterns of AIV shedding between Laridae and Anatidae and address the role that immunity likely plays in shaping these patterns. Third, we underscore that Laridae may be key in promoting intercontinental exchanges of AIVs. Finally, we emphasize the crucial epidemiological position that Laridae occupy between wildlife, domestic birds and humans.


Assuntos
Charadriiformes/virologia , Reservatórios de Doenças/veterinária , Influenza Aviária/transmissão , Influenza Humana/transmissão , Aves Domésticas/virologia , Animais , Charadriiformes/imunologia , Variação Genética , Humanos , Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Influenza Humana/virologia , Aves Domésticas/imunologia
4.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38662575

RESUMO

Understanding the link between microbial community stability and assembly processes is crucial in microbial ecology. Here, we investigated whether the impact of biotic disturbances would depend on the processes controlling community assembly. For that, we performed an experiment using soil microcosms in which microbial communities assembled through different processes were invaded by Escherichia coli. We show that the ecological assembly process of the resident community plays a significant role in invader-resident competition, invader survival, and compositional stability of the resident community. Specifically, the resident communities primarily assembled through stochastic processes were more susceptible to invader survival. Besides, E. coli invasion acts as a biotic selection pressure, leading to competition between the invader and resident taxa, suppressing the stochasticity in the resident community. Taken together, this study provides empirical evidence for the interpretation of microbial community assemblage on their (potential) ecosystem functions and services, such as the prevention of pathogen establishment and the pathogenic states of soil microbiomes.


Assuntos
Escherichia coli , Microbiota , Microbiologia do Solo , Escherichia coli/genética , Ecossistema , Interações Microbianas , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação
5.
Pathogens ; 13(8)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39204265

RESUMO

Free-living amoebae (FLA) are common in both natural and engineered freshwater ecosystems. They play important roles in biofilm control and contaminant removal through the predation of bacteria and other taxa. Bacterial predation by FLA is also thought to contribute to pathogen dispersal and infectious disease transmission in freshwater environments via the egestion of viable bacteria. Despite their importance in shaping freshwater microbial communities, the diversity and function of FLA in many freshwater ecosystems are poorly understood. In this study, we isolated and characterized FLA from two groundwater sites in Canterbury, New Zealand using microbiological, microscopic, and molecular techniques. Different methods for groundwater FLA isolation and enrichment were trialed and optimized. The ability of these isolated FLA to predate on human pathogen Legionella pneumophila was assessed. FLA were identified by 18S metagenomic amplicon sequencing. Our study showed that Acanthamoeba spp. (including A. polyphaga) and Vermamoeba veriformis were the main FLA species present in both groundwater sites examined. While most of the isolated FLA co-existed with L. pneumophila, the FLA populations in the L. pneumophila co-culture experiments predominantly consisted of A. polyphaga, Acanthamoeba spp., Naegleria spp., V. vermiformis, Paravahlkampfia spp., and Echinamoeba spp. These observations suggest that FLA may have the potential to act as reservoirs for L. pneumophila in Canterbury, New Zealand groundwater systems and could be introduced into the local drinking water infrastructure, where they may promote the survival, multiplication, and dissemination of Legionella. This research addresses an important gap in our understanding of FLA-mediated pathogen dispersal in freshwater ecosystems.

6.
J Fungi (Basel) ; 9(6)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37367555

RESUMO

Colletotrichum gloeosporioides is a species complex of agricultural importance as it causes anthracnose disease on many crop species worldwide, and strong impact regionally on Water Yam (Dioscorea alata) in the Caribbean. In this study, we conducted a genetic analysis of the fungi complex in three islands of the Lesser Antilles-Guadeloupe (Basse Terre, Grande Terre and Marie Galante), Martinique and Barbados. We specifically sampled yam fields and assessed the genetic diversity of strains with four microsatellite markers. We found a very high genetic diversity of all strains on each island, and intermediate to strong levels of genetic structure between islands. Migration rates were quite diverse either within (local dispersal) or between islands (long-distance dispersal), suggesting important roles of vegetation and climate as local barriers, and winds as an important factor in long-distance migration. Three distinct genetic clusters highlighted different species entities, though there was also evidence of frequent intermediates between two clusters, suggesting recurrent recombination between putative species. Together, these results demonstrated asymmetries in gene flow both between islands and clusters, and suggested the need for new approaches to anthracnose disease risk control at a regional level.

7.
Annu Rev Phytopathol ; 59: 191-212, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-33945696

RESUMO

Fire blight, caused by the bacterial phytopathogen Erwinia amylovora, is an economically important and mechanistically complex disease that affects apple and pear production in most geographic production hubs worldwide. We compile, assess, and present a genetic outlook on the progression of an E. amylovora infection in the host. We discuss the key aspects of type III secretion-mediated infection and systemic movement, biofilm formation in xylem, and pathogen dispersal via ooze droplets, a concentrated suspension of bacteria and exopolysaccharide components. We present an overall outlook on the genetic elements contributing to E. amylovora pathogenesis, including an exploration of the impact of floral microbiomes on E. amylovora colonization, and summarize the current knowledge of host responses to an incursion and how this response stimulates further infection and systemic spread. We hope to facilitate the identification of new, unexplored areas of research in this pathosystem that can help identify evolutionarily susceptible genetic targets to ultimately aid in the design of sustainable strategies for fire blight disease mitigation.


Assuntos
Erwinia amylovora , Malus , Pyrus , Dissecação , Erwinia amylovora/genética , Doenças das Plantas
8.
Biol Rev Camb Philos Soc ; 96(4): 1331-1348, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33663012

RESUMO

Migrations, i.e. the recurring, roundtrip movement of animals between distant and distinct habitats, occur among diverse metazoan taxa. Although traditionally linked to avoidance of food shortages, predators or harsh abiotic conditions, there is increasing evidence that parasites may have played a role in the evolution of migration. On the one hand, selective pressures from parasites can favour migratory strategies that allow either avoidance of infections or recovery from them. On the other hand, infected animals incur physiological costs that may limit their migratory abilities, affecting their speed, the timing of their departure or arrival, and/or their condition upon reaching their destination. During migration, reduced immunocompetence as well as exposure to different external conditions and parasite infective stages can influence infection dynamics. Here, we first explore whether parasites represent extra costs for their hosts during migration. We then review how infection dynamics and infection risk are affected by host migration, thereby considering parasites as both causes and consequences of migration. We also evaluate the comparative evidence testing the hypothesis that migratory species harbour a richer parasite fauna than their closest free-living relatives, finding general support for the hypothesis. Then we consider the implications of host migratory behaviour for parasite ecology and evolution, which have received much less attention. Parasites of migratory hosts may achieve much greater spatial dispersal than those of non-migratory hosts, expanding their geographical range, and providing more opportunities for host-switching. Exploiting migratory hosts also exerts pressures on the parasite to adapt its phenology and life-cycle duration, including the timing of major developmental, reproduction and transmission events. Natural selection may even favour parasites that manipulate their host's migratory strategy in ways that can enhance parasite transmission. Finally, we propose a simple integrated framework based on eco-evolutionary feedbacks to consider the reciprocal selection pressures acting on migratory hosts and their parasites. Host migratory strategies and parasite traits evolve in tandem, each acting on the other along two-way causal paths and feedback loops. Their likely adjustments to predicted climate change will be understood best from this coevolutionary perspective.


Assuntos
Migração Animal , Parasitos , Animais , Ecologia , Ecossistema , Interações Hospedeiro-Parasita
9.
Trends Parasitol ; 36(3): 239-249, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32037136

RESUMO

In marine ecosystems, oceanographic processes often govern host contacts with infectious agents. Consequently, many approaches developed to quantify pathogen dispersal in terrestrial ecosystems have limited use in the marine context. Recent applications in marine disease modeling demonstrate that physical oceanographic models coupled with biological models of infectious agents can characterize dispersal networks of pathogens in marine ecosystems. Biophysical modeling has been used over the past two decades to model larval dispersion but has only recently been utilized in marine epidemiology. In this review, we describe how biophysical models function and how they can be used to measure connectivity of infectious agents between sites, test hypotheses regarding pathogen dispersal, and quantify patterns of pathogen spread, focusing on fish and shellfish pathogens.


Assuntos
Organismos Aquáticos , Métodos Epidemiológicos , Doenças dos Peixes/epidemiologia , Peixes , Modelos Biológicos , Frutos do Mar , Animais , Organismos Aquáticos/microbiologia , Organismos Aquáticos/parasitologia , Organismos Aquáticos/virologia , Ecossistema , Peixes/microbiologia , Peixes/parasitologia , Peixes/virologia , Frutos do Mar/microbiologia , Frutos do Mar/parasitologia , Frutos do Mar/virologia
10.
Acta Parasitol ; 63(4): 728-732, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30367769

RESUMO

Two species of microsporidia, Nosema apis and Nosema ceranae, occur regularly and cause significant losses in apiculture throughout the world. N. ceranae is thought to be an emerging pathogen of the European honey bee which is replacing N. apis. Microscopic analysis of honey bees collected in Tyumen region, South-Western Siberia, suggested presence of two microsporidial pathogens slightly differing in spore size and shape. PCR detection using species-specific primer sets 312APIS and 218MITOC followed by PCR product sequencing confirmed the diagnosis of N. apis and N. ceranae, respectively. Microsporidia were present in private apiaries through 2008-2010, and among 21 colonies from 7 localities, two colonies were infected with both pathogens, while infections with N. apis only were detected in 8, and with N. ceranae only in 13 colonies. These data suggest that N. ceranae is widely spread in South-Western Siberia alongside with N. apis and is able to persist in the regions with average January temperatures below -18°C.


Assuntos
Abelhas/parasitologia , DNA Fúngico/isolamento & purificação , Nosema/isolamento & purificação , Animais , DNA Fúngico/química , Nosema/classificação , Nosema/genética , Reação em Cadeia da Polimerase , Estações do Ano , Sibéria , Especificidade da Espécie
11.
Trends Parasitol ; 32(1): 19-29, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26604163

RESUMO

Quantitatively mapping the spatial distributions of infectious diseases is key to both investigating their epidemiology and identifying populations at risk of infection. Important advances in data quality and methodologies have allowed for better investigation of disease risk and its association with environmental factors. However, incorporating dynamic human behavioural processes in disease mapping remains challenging. For example, connectivity among human populations, a key driver of pathogen dispersal, has increased sharply over the past century, along with the availability of data derived from mobile phones and other dynamic data sources. Future work must be targeted towards the rapid updating and dissemination of appropriately designed disease maps to guide the public health community in reducing the global burden of infectious disease.


Assuntos
Doenças Transmissíveis/epidemiologia , Métodos Epidemiológicos , Epidemiologia/tendências , Mapeamento Geográfico , Telefone Celular , Epidemiologia/normas , Humanos , Disseminação de Informação
12.
Front Immunol ; 4: 345, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24298271
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa