Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Plant Dis ; 107(12): 3952-3957, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37415351

RESUMO

Barley leaf rust, caused by Puccinia hordei, is an important disease of barley worldwide. The pathogen can develop new races that overcome resistance genes, emphasizing the need for monitoring its virulence. This study characterized 519 P. hordei isolates collected in the United States from the 1989 to 2000 and 2010 to 2020 survey periods on 15 Rph (Reaction to Puccinia hordei) genes. We analyzed linearized infection type data to detect virulence patterns across the United States and in five geographical regions: Pacific/West (PW), Southwest (SW), Midwest (MW), Northeast (NE), and Southeast (SE). Over 32 years, we observed high mean infection scores for Rph1.a, Rph4.d, and Rph8.h; intermediate scores for Rph2.b, Rph9.i, Rph10.o, Rph11.p, and Rph13.x; and low scores for Rph3.c, Rph5.e, Rph5.f, Rph7.g, Rph9.z, Rph14.ab, and Rph15.ad. Virulence for Rph2.b, Rph3.c, Rph5.e, Rph9.z, Rph10.o, Rph11.p, and Rph13.x significantly differed between the two survey periods. From 1989 to 2020, regional patterns of virulence were found for Rph5.e, Rph5.f, Rph7.g, and Rph14.ab, while regionalities of virulence for Rph3.c, Rph9.i, Rph9.z were only observed in the 2010 to 2020 survey period. Virulence associations were also detected in the P. hordei population. Notably, isolates that were virulent to Rph5.e and Rph6.f were more likely to be avirulent to Rph7.g and Rph13.x, and vice versa. In decreasing order of effectiveness, Rph15.ad, Rph5.e, Rph3.c, Rph9.z, Rph7.g, Rph5.f, and Rph14.ab were the most effective Rph genes in the United States from 1989 to 2020. Pyramiding Rph15.ad with other widely effective Rph and adult plant resistance genes may provide long-lasting resistance against P. hordei.


Assuntos
Basidiomycota , Hordeum , Estados Unidos , Mapeamento Cromossômico , Hordeum/genética , Resistência à Doença/genética , Virulência , Basidiomycota/genética , Doenças das Plantas/genética
2.
J Appl Microbiol ; 130(4): 1259-1272, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32767623

RESUMO

AIM: To investigate the genetic and pathogenic variability of Xanthomonas oryzae pv. oryzae causing bacterial blight in rice on the remote Andaman Islands, India. METHODS AND RESULTS: A total of 27 yellow-pigmented bacterial isolates representing rice fields of Andaman Islands incited blight on the susceptible-rice cultivar, C14-8. Phenotypic, pathogenic traits and 16S rRNA gene sequences revealed their identity as X. oryzae pv. oryzae. Virulence profiling indicated the prevalence of seven pathotypes of X. oryzae pv. oryzae on the Islands. Pathotypes-VI and -VII were highly virulent, whereas the pathotype-I was less virulent. Multilocus sequence typing based on nucleotide sequence polymorphism in nine housekeeping genes dnaK; fyuA; gyrB (two loci): rpoD; fusA; gapA; gltA and lepA clustered 27 isolates into 17 sequence types (STs) segregated into two clonal-complexes (CC). While CC-I comprised of isolates from Andaman Island, the CC-II is a mixture of isolates representing mainland India and Andaman Island. The data revealed trans-boundary pathogen introduction and a consequent intra-regional diversification on these islands due to the deployment of different rice cultivars in different regions. CONCLUSIONS: Genotyping and pathotyping of sland isolates revealed seven pathotypes distributed in two clonal complexes with strong indications for trans-boundary movement and consequent diversification of the bacterial pathogen. Highly virulent pathotypes of X. oryzae pv. oryzae that could overcome combinations of R-genes, xa13+Xa21 as well as xa5+xa13 were found prevalent in the Andaman Islands SIGNIFICANCE AND IMPACT OF THE STUDY: Genetic and virulence analysis of X. oryzae pv. oryzae in the Andaman Islands revealed introduction and host-mediated regional diversification and local adaptation of X oryzae pv. oryzae. The study calls for the need of multi-gene pyramiding for durable disease resistance and establishing stringent quarantine measures for safeguarding island agricultural practices in the future.


Assuntos
Oryza/microbiologia , Doenças das Plantas/microbiologia , Xanthomonas/genética , Xanthomonas/patogenicidade , Proteínas de Bactérias/genética , Índia , Ilhas , Tipagem de Sequências Multilocus , Oryza/classificação , Polimorfismo Genético , RNA Ribossômico 16S/genética , Virulência/genética , Xanthomonas/classificação
3.
Phytopathology ; 111(1): 217-226, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33174824

RESUMO

Forty-seven potato virus A (PVA) isolates from Europe, Australia, and South America's Andean region were subjected to high-throughput sequencing, and 46 complete genomes from Europe (n = 9), Australia (n = 2), and the Andes (n = 35) obtained. These and 17 other genomes gave alignments of 63 open reading frames 9,180 nucleotides long; 9 were recombinants. The nonrecombinants formed three tightly clustered, almost equidistant phylogroups; A comprised 14 Peruvian potato isolates; W comprised 37 from potato in Peru, Argentina, and elsewhere in the world; and T contained three from tamarillo in New Zealand. When five isolates were inoculated to a potato cultivar differential, three strain groups (= pathotypes) unrelated to phylogenetic groupings were recognized. No temporal signal was detected among the dated nonrecombinant sequences, but PVA and potato virus Y (PVY) are from related lineages and ecologically similar; therefore, "relative dating" was obtained using a single maximum-likelihood phylogeny of PVA and PVY sequences and PVY's well-supported 157 CE "time to most common recent ancestor". The PVA datings obtained were supported by several independent historical coincidences. The PVA and PVY populations apparently arose in the Andes approximately 18 centuries ago, and were taken to Europe during the Columbian Exchange, radiating there after the mid-19th century potato late blight pandemic. PVA's phylogroup A population diverged more recently in the Andean region, probably after new cultivars were bred locally using newly introduced Solanum tuberosum subsp. tuberosum as a parent. Such cultivars became widely grown, and apparently generated the A × W phylogroup recombinants. Phylogroup A, and its interphylogroup recombinants, might pose a biosecurity risk.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Potyvirus , Solanum tuberosum , Argentina , Austrália , Europa (Continente) , Nova Zelândia , Filogenia , Melhoramento Vegetal , Doenças das Plantas , Potyvirus/genética
4.
Vet Res ; 51(1): 137, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203465

RESUMO

Glaesserella parasuis is an important pathogen in swine production. It acts as a primary pathogen in systemic Glässer´s disease and as a secondary pathogen in Porcine Respiratory Disease Complex. In this study, a collection of 308 isolates from carrier animals and individuals with respiratory or Glässer´s disease isolated 2012-2019 in Germany was analysed. Isolates were characterized for serovar implementing two different PCR methods. Additionally, two different PCR methods for pathotyping isolates were applied to the collection and results compared. Serovar 6 (p < 0.0001) and 9 (p = 0.0007) were correlated with carrier isolates and serovar 4 was associated with isolates from animals with respiratory disease (p = 0.015). In systemic isolates, serovar 13 was most frequently detected (18.9%). Various other serovars were isolated from all sites and the ratio of serovar 5 to serovar 12 was approximately 1:2. These two serovars together represented 14.3% of the isolates; only serovar 4 was isolated more frequently (24.7%). The pathotyping method based on the leader sequence (LS = ESPR of vta) was easy to perform and corresponded well to the clinical background information. Of the carrier isolates 72% were identified as non-virulent while 91% of the systemic isolates were classified as virulent (p < 0.0001). Results of the pathotyping PCR based on 10 different marker genes overall were in good agreement with clinical metadata as well as with results of the LS-PCR. However, the pathotyping PCR was more complicated to perform and analyze. In conclusion, a combination of the serotyping multiplex-PCR and the LS-PCR could improve identification of clinically relevant G. parasuis isolates, especially from respiratory samples.


Assuntos
Infecções por Haemophilus/veterinária , Haemophilus parasuis/genética , Haemophilus parasuis/patogenicidade , Reação em Cadeia da Polimerase/veterinária , Doenças dos Suínos/microbiologia , Virulência/genética , Animais , Alemanha , Infecções por Haemophilus/microbiologia , Reação em Cadeia da Polimerase/métodos , Sorogrupo , Sorotipagem/veterinária , Sus scrofa , Suínos
5.
J Clin Microbiol ; 57(7)2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30944194

RESUMO

Streptococcus suis is one of the most important zoonotic bacterial pathogens of pigs, causing significant economic losses to the global swine industry. S. suis is also a very successful colonizer of mucosal surfaces, and commensal strains can be found in almost all pig populations worldwide, making detection of the S. suis species in asymptomatic carrier herds of little practical value in predicting the likelihood of future clinical relevance. The value of future molecular tools for surveillance and preventative health management lies in the detection of strains that genetically have increased potential to cause disease in presently healthy animals. Here we describe the use of genome-wide association studies to identify genetic markers associated with the observed clinical phenotypes (i) invasive disease and (ii) asymptomatic carriage on the palatine tonsils of pigs on UK farms. Subsequently, we designed a multiplex PCR to target three genetic markers that differentiated 115 S. suis isolates into disease-associated and non-disease-associated groups, that performed with a sensitivity of 0.91, a specificity of 0.79, a negative predictive value of 0.91, and a positive predictive value of 0.79 in comparison to observed clinical phenotypes. We describe evaluation of our pathotyping tool, using an out-of-sample collection of 50 previously uncharacterized S. suis isolates, in comparison to existing methods used to characterize and subtype S. suis isolates. In doing so, we show our pathotyping approach to be a competitive method to characterize S. suis isolates recovered from pigs on UK farms and one that can easily be updated to incorporate global strain collections.


Assuntos
Portador Sadio/veterinária , Infecções Estreptocócicas/veterinária , Streptococcus suis/isolamento & purificação , Streptococcus suis/patogenicidade , Doenças dos Suínos/microbiologia , Animais , Portador Sadio/microbiologia , Inglaterra , Marcadores Genéticos/genética , Genoma Bacteriano/genética , Técnicas de Diagnóstico Molecular , Reação em Cadeia da Polimerase Multiplex , Tonsila Palatina/microbiologia , Infecções Estreptocócicas/microbiologia , Streptococcus suis/genética , Suínos , Virulência/genética , País de Gales
6.
J Clin Microbiol ; 55(9): 2617-2628, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28615466

RESUMO

Haemophilus parasuis is a diverse bacterial species that is found in the upper respiratory tracts of pigs and can also cause Glässer's disease and pneumonia. A previous pangenome study of H. parasuis identified 48 genes that were associated with clinical disease. Here, we describe the development of a generalized linear model (termed a pathotyping model) to predict the potential virulence of isolates of H. parasuis based on a subset of 10 genes from the pangenome. A multiplex PCR (mPCR) was constructed based on these genes, the results of which were entered into the pathotyping model to yield a prediction of virulence. This new diagnostic mPCR was tested on 143 field isolates of H. parasuis that had previously been whole-genome sequenced and a further 84 isolates from the United Kingdom from cases of H. parasuis-related disease in pigs collected between 2013 and 2014. The combination of the mPCR and the pathotyping model predicted the virulence of an isolate with 78% accuracy for the original isolate collection and 90% for the additional isolate collection, providing an overall accuracy of 83% (81% sensitivity and 93% specificity) compared with that of the "current standard" of detailed clinical metadata. This new pathotyping assay has the potential to aid surveillance and disease control in addition to serotyping data.


Assuntos
Infecções por Haemophilus/diagnóstico , Infecções por Haemophilus/veterinária , Haemophilus parasuis/genética , Haemophilus parasuis/patogenicidade , Técnicas de Diagnóstico Molecular/métodos , Doenças dos Suínos/diagnóstico , Animais , Genoma/genética , Infecções por Haemophilus/microbiologia , Haemophilus parasuis/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex , Suínos , Doenças dos Suínos/microbiologia , Virulência/genética
7.
Virol J ; 14(1): 137, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28738896

RESUMO

Low pathogenic avian influenza viruses (LPAIV) of the subtypes H5 and H7 are known to give rise to highly pathogenic (HP) phenotypes by spontaneous insertional mutations which convert a monobasic trypsin-sensitive endoproteolytical cleavage site (CS) within the hemagglutinin (HA) protein into a polybasic subtilisin-sensitive one. Sporadic outbreaks of notifiable LPAIV H7 infections are continuously recorded in Europe and in Asia, and some lineages showed zoonotic transmission. De novo generation of HPAIV H7 from LPAIV precursors has been reported several times over the past decade. Rapid differentiation between LP and HP H7 virus strains is required as a prerequisite to emplace appropriate control measures. Here, reverse transcription real-time PCR assays (RT-qPCR) were developed and evaluated that allow LP and HP pathotype identification and distinction by probe-assisted detection of the HACS. These new RT-qPCRs allow a sensitive and highly specific pathotype identification of Eurasian subtype H7 AIV in allantoic fluids as well as in diagnostic field samples. RT-qPCR assisted pathotyping presents a rapid and sensitive alternative to pathotyping by animal inoculation or nucleotide sequencing.


Assuntos
Genótipo , Técnicas de Genotipagem/métodos , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Influenza Aviária/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Ásia , Aves , Europa (Continente) , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/patogenicidade , Sensibilidade e Especificidade
8.
Avian Pathol ; 46(6): 666-675, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28660781

RESUMO

In the period from July 2008 to 2010, a disease episode resulting in serious economic losses in the major production area of the Chilean poultry industry was reported. These losses were associated with respiratory problems, increase of condemnations, drops in egg production and nephritis in breeders, laying hens and broilers due to infections with infectious bronchitis virus (IBV). Twenty-five IBV isolates were genotyped and four strains were selected for further testing by pathotyping and protectotyping. Twenty-four IBV isolates were of the Q1 genotype. The experiments also included comparing the ability of six vaccination programmes to induce virus neutralizing antibodies (VNA) in layers against four selected Chilean strains. Despite the high genetic homology in the S1 gene between the four strains, the heterogeneity in biological behaviour of these different Q1 strains was substantial. These differences were seen in embryonated eggs, in cell culture, in pathogenicity and in level of cross-protection by IBV Massachusetts (Mass) vaccination. This variability underlines the importance of testing more than one strain per serotype or genotype to determine the characteristics of a certain serotype of genotype. The combination of Mass and 793B vaccine provided a high level of protection to the respiratory tract and the kidney for each strain tested in the young birds. The combination of broad live priming using Mass and 793B vaccines and boosting with multiple inactivated IBV antigens induced the highest level of VNA against Q1 strains, which might be indicative for higher levels of protection against Q1 challenge in laying birds.


Assuntos
Galinhas/imunologia , Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Embrião de Galinha , Galinhas/virologia , Chile , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Genótipo , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/patogenicidade , Doenças das Aves Domésticas/virologia , Sorogrupo , Especificidade da Espécie , Vacinação/veterinária , Virulência
9.
Avian Pathol ; 45(6): 674-682, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27724072

RESUMO

Disease outbreak investigations were carried out in three states of Northern India namely Haryana (Rewari), Uttar Pradesh (Noida) and Delhi, where a total of 110 Indian peafowls (Pavo cristatus) showed sudden onset of nervous signs and died within a period of two weeks during June, 2012. The F (fusion) gene-based RT-PCR detection of Newcastle disease virus (NDV) in affected tissues confirmed the presence of the virus. Three NDV isolates were selected (one from each area under investigation) and further characterized. They were found to be of virulent pathotype (velogenic NDV) based on both pathogenicity assays (MDT, ICPI and IVPI) and partial F gene sequence analysis. Additionally, the phylogenetic analysis revealed that the isolates belonged to the genotype VIIi and XIII of class II avian Paramyxovirus serotype1 (APMV-1) and related closely to new emerging sub-genotypes. This is the first report regarding the presence of the fifth panzootic vNDV genotype VIIi from India. In this scenario, extensive epidemiological studies are suggested for surveillance of NDV genotypes in wild birds and poultry flocks of the country along with adopting suitable prevention and control measures.


Assuntos
Surtos de Doenças/veterinária , Galliformes/virologia , Doença de Newcastle/epidemiologia , Vírus da Doença de Newcastle , Proteínas Virais de Fusão/genética , Animais , Embrião de Galinha , Fezes/virologia , Genótipo , Índia/epidemiologia , Doença de Newcastle/patologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/isolamento & purificação , Vírus da Doença de Newcastle/patogenicidade , Filogenia , Análise de Sequência de DNA/veterinária , Organismos Livres de Patógenos Específicos
10.
Antibiotics (Basel) ; 13(8)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39200041

RESUMO

Glaesserella (Haemophilus) parasuis, the causative agent of Glässer's disease, is present in most pig farms as an early colonizer of the upper respiratory tract. It exhibits remarkable variability in virulence and antimicrobial resistance (AMR), with virulent strains capable of inducing respiratory or systemic disease. This study aimed to characterize the virulence and the AMR profiles in 65 G. parasuis isolates recovered from Spanish swine farms. Virulence was assessed using multiplex leader sequence (LS)-PCR targeting vtaA genes, with all isolates identified as clinical (presumed virulent). Pathotyping based on ten pangenome genes revealed the virulent HPS_22970 as the most frequent (83.1%). Diverse pathotype profiles were observed, with 29 unique gene combinations and two isolates carrying only potentially non-virulent pangenome genes. AMR phenotyping showed widespread resistance, with 63.3% classified as multidrug resistant, and high resistance to clindamycin (98.3%) and tylosin (93.3%). A very strong association was found between certain pathotype genes and AMR phenotypes, notably between the virulent HPS_22970 and tetracycline resistance (p < 0.001; Φ = 0.58). This study reveals the wide diversity and complexity of G. parasuis pathogenicity and AMR phenotype, emphasizing the need for the targeted characterization of clinical isolates to ensure appropriate antimicrobial treatments and the implementation of prophylactic measures against virulent strains.

11.
Mol Plant Pathol ; 24(2): 89-106, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36448235

RESUMO

BACKGROUND: Plasmodiophora brassicae is the causal agent of clubroot disease of cruciferous plants and one of the biggest threats to the rapeseed (Brassica napus) and brassica vegetable industry worldwide. DISEASE SYMPTOMS: In the advanced stages of clubroot disease wilting, stunting, yellowing, and redness are visible in the shoots. However, the typical symptoms of the disease are the presence of club-shaped galls in the roots of susceptible hosts that block the absorption of water and nutrients. HOST RANGE: Members of the family Brassicaceae are the primary host of the pathogen, although some members of the family, such as Bunias orientalis, Coronopus squamatus, and Raphanus sativus, have been identified as being consistently resistant to P. brassicae isolates with variable virulence profile. TAXONOMY: Class: Phytomyxea; Order: Plasmodiophorales; Family: Plasmodiophoraceae; Genus: Plasmodiophora; Species: Plasmodiophora brassicae (Woronin, 1877). DISTRIBUTION: Clubroot disease is spread worldwide, with reports from all continents except Antarctica. To date, clubroot disease has been reported in more than 80 countries. PATHOTYPING: Based on its virulence on different hosts, P. brassicae is classified into pathotypes or races. Five main pathotyping systems have been developed to understand the relationship between P. brassicae and its hosts. Nowadays, the Canadian clubroot differential is extensively used in Canada and has so far identified 36 different pathotypes based on the response of a set of 13 hosts. EFFECTORS AND RESISTANCE: After the identification and characterization of the clubroot pathogen SABATH-type methyltransferase PbBSMT, several other effectors have been characterized. However, no avirulence gene is known, hindering the functional characterization of the five intercellular nucleotide-binding (NB) site leucine-rich-repeat (LRR) receptors (NLRs) clubroot resistance genes validated to date. IMPORTANT LINK: Canola Council of Canada is constantly updating information about clubroot and P. brassicae as part of their Canola Encyclopedia: https://www.canolacouncil.org/canola-encyclopedia/diseases/clubroot/. PHYTOSANITARY CATEGORIZATION: PLADBR: EPPO A2 list; Annex designation 9E.


Assuntos
Brassica napus , Brassica , Plasmodioforídeos , Doenças das Plantas , Canadá
12.
J Virol Methods ; 322: 114813, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37722509

RESUMO

Newcastle disease (ND) caused by virulent avian paramyxovirus type I (APMV-1) is a WOAH and EU listed disease affecting poultry worldwide. ND exhibits different clinical manifestations that may either be neurological, respiratory and/or gastrointestinal, accompanied by high mortality. In contrast, mild or subclinical forms are generally caused by lentogenic APMV-1 and are not subject to notification. The rapid discrimination of virulent and avirulent viruses is paramount to limit the spread of virulent APMV-1. The appropriateness of molecular methods for APMV-1 pathotyping is often hampered by the high genetic variability of these viruses that affects sensitivity and inclusivity. This work presents a new array of real-time RT-PCR (RT-qPCR) assays that enable the identification of virulent and avirulent viruses in dual mode, i.e., through pathotype-specific probes and subsequent Sanger sequencing of the amplification product. Validation was performed according to the WOAH recommendations. Performance indicators on sensitivity, specificity, repeatability and reproducibility yielded favourable results. Reproducibility highlighted the need for assays optimization whenever major changes are made to the procedure. Overall, the new RT-qPCRs showed its ability to detect and pathotype all tested APMV-1 genotypes and its suitability for routine use in clinical samples.


Assuntos
Avulavirus , Doença de Newcastle , Doenças das Aves Domésticas , Animais , Avulavirus/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Reprodutibilidade dos Testes , Doença de Newcastle/diagnóstico , Vírus da Doença de Newcastle/genética , Doenças das Aves Domésticas/diagnóstico , Galinhas
13.
Avian Dis ; 67(1): 33-41, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37140109

RESUMO

A complete genome sequence of a VG/GA -like strain of avian orthoavulavirus 1 (AOAV-1) was identified by nontargeted next-generation sequencing of an oropharyngeal swab sample collected from a carcass of a 12-mo-old backyard chicken. The isolate has a fusion (F) protein cleavage site motif consistent with a low virulent AOAV-1, but it has a unique motif with phenylalanine at position 117 (112G-R-Q-G-R↓F117), which is typical for virulent AOAV-1 strains. The one nucleotide difference at the cleavage site compared to other low-virulence viruses made the isolate detectable by F-gene-specific real-time reverse transcription-PCR (rRT-PCR) developed as a diagnostic test to specifically detect virulent strains. The mean death time determined in eggs and intracerebral pathogenicity index determined in chickens classified the isolate as lentogenic. This is the first report of a lentogenic VG/GA-like virus with a phenylalanine residue at position 117 of the F protein cleavage site in the United States. In addition to concern for potential pathogenic shift of the virus through additional changes at the cleavage site, our finding warrants increased awareness of diagnosticians of potential false positive F-gene rRT-PCR tests.


Secuenciación y caracterización del genoma de un aislado similar a VG/GA del ortoavulavirus aviar 1 con un motivo único en el sitio de disociación del gene de fusión. Se identificó una secuencia genómica completa de una cepa similar a la cepa Villegas-Glisson/Universidad de Georgia (VG/GA) del ortoavulavirus aviar 1 (AOAV-1) mediante secuenciación no dirigida de nueva generación de una muestra de hisopo orofaríngeo recolectada de una gallina muerta de traspatio de 12 meses. El aislado tiene un motivo en el sitio de disociación de la proteína de fusión (F) consistente con un ortoavulavirus aviar de baja virulencia, pero tiene un motivo único con fenilalanina en la posición 117 (112G-R-Q-G-R↓F117), que es típico para cepas virulentas del AOAV-1. La diferencia de un nucleótido en el sitio de escisión en comparación con otros virus de baja virulencia hizo que el aislado fuera detectable mediante transcripción reversa y PCR en tiempo real en tiempo real específica del gene F (rtRT-PCR) desarrollada como una prueba de diagnóstico para detectar específicamente a las cepas virulentas. El tiempo medio de muerte determinado en huevos y el índice de patogenicidad intracerebral determinado en pollos clasificaron al aislado como lentogénico. Este es el primer informe en los Estados Unidos de un virus lentogénico similar a VG/GA con un residuo de fenilalanina en la posición 117 del sitio de disociación de la proteína F. Además de la preocupación por el posible cambio patogénico del virus a través de cambios adicionales en el sitio de disociación, nuestro contribuye con un mayor conocimiento por parte del personal de diagnóstico acerca de posibles falsos positivos en las pruebas rtRT-PCR del gene F.


Assuntos
Doença de Newcastle , Doenças das Aves Domésticas , Animais , Galinhas , Doenças das Aves Domésticas/patologia , Vírus da Doença de Newcastle/genética , Sequência de Bases , Virulência/genética , Filogenia
14.
Pathogens ; 11(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35456060

RESUMO

Diarrheal diseases due to foodborne Escherichia coli are the leading cause of illness in humans. Here, we performed pathogenic typing, molecular typing, and antimicrobial susceptibility tests on seventy-five isolates of E. coli isolated from stool samples of patients suffering from foodborne diseases in Busan, South Korea. All the isolates were identified as E. coli by both biochemical analysis (API 20E system) and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). The bacteria displayed entero-pathogenic E. coli (EPEC) (47.0%), entero-aggregative E. coli (EAEC) (33.3%), entero-toxigenic E. coli (ETEC) (6.6%), ETEC and EPEC (6.6%), EPEC and EAEC (4%), and ETEC and EAEC (2.7%) characteristics. The E. coli isolates were highly resistant to nalidixic acid (44.0%), tetracycline (41.3%), ampicillin (40%), ticarcillin (38.7%), and trimethoprim/sulfamethoxazole (34.7%); however, they were highly susceptible to imipenem (98.6%), cefotetan (98.6%), cefepime (94.6%), and chloramphenicol (94.6%). Although 52 strains (69.3%) showed resistance against at least 1 of the 16 antibiotics tested, 23 strains (30.7%) were susceptible to all the antibiotics. Nine different serotypes (O166, O8, O20, O25, O119, O159, O28ac, O127a, and O18), five genotypes (I to V, random-amplified polymorphic DNA), and four phenotypes (A to D, MALDI-TOF MS) were identified, showing the high level of heterogeneity between the E. coli isolates recovered from diarrheal patients in South Korea.

15.
Plant Methods ; 18(1): 91, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35780127

RESUMO

BACKGROUND: Clubroot of canola (Brassica napus), caused by the soilborne pathogen Plasmodiophora brassicae, has become a serious threat to canola production in Canada. The deployment of clubroot-resistant (CR) cultivars is the most commonly used management strategy; however, the widespread cultivation of CR canola has resulted in the emergence of new pathotypes of P. brassicae capable of overcoming resistance. Several host differential sets have been reported for pathotype identification, but such testing is time-consuming, labor-intensive, and based on phenotypic classifications. The development of rapid and objective methods that allow for efficient, cost-effective and convenient pathotyping would enable testing of a much larger number of samples in shorter times. The aim of this study was to develop two pathotyping assays, an RNase H2-dependent PCR (rhPCR) assay and a SNaPshot assay, which could quickly differentiate P. brassicae pathotypes. RESULTS: Both assays clearly distinguished between pathotype clusters in a collection of 38 single-spore isolates of P. brassicae. Additional isolates pathotyped from clubbed roots and samples from blind testing also were correctly clustered. The rhPCR assay generated clearly differentiating electrophoretic bands without non-specific amplification. The SNaPshot assay was able to detect down to a 10% relative allelic proportion in a 10:90 template mixture with both single-spore isolates and field isolates when evaluated in a relative abundance test. CONCLUSIONS: This study describes the development of two rapid and sensitive technologies for P. brassicae pathotyping. The high-throughput potential and accuracy of both assays makes them promising as SNP-based pathotype identification tools for clubroot diagnostics. rhPCR is a highly sensitive approach that can be optimized into a quantitative assay, while the main advantages of SNaPshot are its ability to multiplex samples and alleles in a single reaction and the detection of up to four allelic variants per target site.

16.
Microbiol Spectr ; 9(3): e0098921, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878298

RESUMO

We provide a novel single restriction enzyme (RE; BsaHI) digestion approach for detecting distinct pathotypes of Newcastle disease virus (NDV). After scanning 4,000 F gene nucleotide sequences in the NCBI database, we discovered a single RE (BsaHI) digestion site in the cleavage site. APMV-I "F gene" class II-specific primer-based reverse transcriptase PCR was utilized to amplify a 535-bp fragment, which was then digested with the RE (BsaHI) for pathotyping avian NDV field isolates and pigeon paramyxovirus-1 isolates. The avirulent (lentogenic and mesogenic strains) produced 189- and 346-bp fragments, respectively, but the result in velogenic strains remained undigested with 535-bp fragments. In addition, 45 field NDV isolates and 8 vaccine strains were used to confirm the approach. The sequence-based analysis also agrees with the data obtained utilizing the single RE (BsaHI) digestion approach. The proposed technique has the potential to distinguish between avirulent and virulent strains in a short time span, making it valuable in NDV surveillance and monitoring research. IMPORTANCE The extensive use of the NDV vaccine strain and the existence of avirulent NDV strains in wild birds makes it difficult to diagnose Newcastle Disease virus (NDV). The intracerebral pathogenicity index (ICPI) and/or sequencing-based identification, which are required to determine virulent NDV, are time-consuming, costly, difficult, and cruel techniques. We evaluated 4,000 F gene nucleotide sequences and discovered a restriction enzyme (RE; BsaHI) digestion technique for detecting NDV and vaccine pathotypes in a short time span, which is cost-effective and useful for field cases as well as for large-scale NDV monitoring and surveillance. The data acquired using the single RE BsaHI digestion technique agree with the sequence-based analysis.


Assuntos
Enzimas de Restrição do DNA/metabolismo , Doença de Newcastle/diagnóstico , Vírus da Doença de Newcastle/genética , Proteínas Virais de Fusão/genética , Virulência/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Galinhas/virologia , Doença de Newcastle/patologia , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/patogenicidade , Técnicas de Amplificação de Ácido Nucleico , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/virologia , RNA Viral/metabolismo , Análise de Sequência de RNA , Vacinas Virais/genética
17.
Fungal Biol ; 125(9): 733-747, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34420700

RESUMO

Genome sequence-driven molecular typing tools have the potential to uncover the population biology and genetic diversity of rapidly evolving plant pathogens like Magnaporthe oryzae. Here, we report a new molecular typing technique -a digitally portable tool for population genetic analysis of M. oryzae to decipher the genetic diversity. Our genotyping tool exploiting allelic variations in housekeeping and virulence genes coupled with pathotyping revealed a prevalence of genetically homogenous populations within a single-field and plant niches such as leaf and panicle. The M. oryzae inciting leaf-blast and panicle-blast were confirmed to be genetically identical with no or minor nucleotide polymorphism in 17 genomic loci analyzed. Genetic loci such as Mlc1, Mpg1, Mps1, Slp1, Cal, Ef-Tu, Pfk, and Pgk were highly polymorphic as indicated by the haplotype-diversity, the number of polymorphic sites, and the number of mutations. The genetically homogenous single field population showed high virulence variability or diversity on monogenic rice differentials. The study indicated that the genetic similarity displayed by the isolates collected from a particular geographical location had no consequence on their virulence pattern on rice differentials carrying single/multiple resistance genes. The data on virulence diversity showed by the identical Sequence Types (STs) is indicative of no congruence between polymorphic virulence genes-based pathotyping and conserved housekeeping genes-based genotyping.


Assuntos
Ascomicetos , Oryza , Ascomicetos/genética , Ascomicetos/patogenicidade , Genoma Fúngico/genética , Tipagem Molecular , Oryza/microbiologia , Doenças das Plantas/microbiologia , Virulência/genética
18.
Plants (Basel) ; 10(7)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34371649

RESUMO

Clubroot, caused by Plasmodiophora brassicae, is one of the most detrimental threats to crucifers worldwide and has emerged as an important disease of canola (Brassica napus) in Canada. At present, pathotypes are distinguished phenotypically by their virulence patterns on host differential sets, including the systems of Williams, Somé et al., the European Clubroot Differential set, and most recently the Canadian Clubroot Differential set and the Sinitic Clubroot Differential set. Although these are frequently used because of their simplicity of application, they are time-consuming, labor-intensive, and can lack sensitivity. Early, preventative pathotype detection is imperative to maximize productivity and promote sustainable crop production. The decreased turnaround time and increased sensitivity and specificity of genotypic pathotyping will be valuable for the development of integrated clubroot management plans, and interest in molecular techniques to complement phenotypic methods is increasing. This review provides a synopsis of current and future molecular pathotyping platforms for P. brassicae and aims to provide information on techniques that may be most suitable for the development of rapid, reliable, and cost-effective pathotyping assays.

19.
Avian Dis ; 65(4): 530-540, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35068095

RESUMO

The emergence of avian reovirus variant strains has caused negative effects in the poultry industry worldwide. Regardless of the efforts in molecular characterization and classification of these variants, information about the pathogenicity, transmissibility, and immunosuppression in chickens is limited. The genomes of two variant strains (A and B) and a classic S1133 strain (C) belonging to the same sigma C genotype 1 were compared. Additionally, these strains were used in a challenge experiment to evaluate inoculated and indirectly exposed specific-pathogen-free chickens. The whole-genome sequence analysis of the three strains revealed nucleotide identity differences in the L3, M2, and S1 genes. Strains A and B also showed homology differences in the S4 gene, despite having high homologies in all other genes. The in vivo challenge experiments showed that, whereas variant A induced high viral loads in tendons, hearts, and duodena of inoculated chickens, variant B induced high viral loads in indirectly exposed chickens. Likewise, histopathology reflected differences in the pathologic effects induced by these strains. For instance, the B and C strains induced more severe microscopic lesions compared with the A strain. Lymphoid depletion was more severe in bursas than in thymi, and inoculated birds were more affected than exposed birds. In conclusion, different pathologic outcomes in chickens were observed depending on the strain and transmission route. This study provides insights onto the relationship between pathogenicity and genomic composition of avian reoviruses.


Reovirus aviares del mismo genotipo inducen diferentes patologías en pollos. La aparición de cepas variantes del reovirus aviar ha causado efectos negativos en la industria avícola en todo el mundo. Independientemente de los esfuerzos en la caracterización molecular y clasificación de estas variantes, la información sobre la patogenicidad, transmisibilidad e inmunodepresión en pollos es limitada. Se compararon los genomas de dos cepas variantes (A y B) y una cepa S1133 clásica (C) perteneciente al mismo genotipo 1 del gene sigma C. Además, estas cepas se utilizaron en un experimento de desafío para evaluar pollos libres de patógenos específicos inoculados y expuestos indirectamente. El análisis de la secuencia del genoma completo de las tres cepas reveló diferencias de identidad de nucleótidos en los genes L3, M2 y S1. Las cepas A y B también mostraron diferencias de homología en el gene S4, a pesar de tener altas similitudes en todos los demás genes. Los experimentos de exposición in vivo mostraron que, mientras que la variante A inducía altas cargas virales en tendones, corazones y duodeno en los pollos inoculados, la variante B inducía altas cargas virales en pollos expuestos indirectamente. Asimismo, la histopatología reflejó diferencias en los efectos patológicos inducidos por estas cepas. Por ejemplo, las cepas B y C indujeron lesiones microscópicas más graves en comparación con la cepa A. La despoblación linfoide fue más severa en las bolsas que en el timo, y las aves inoculadas resultaron más afectadas que las expuestas. En conclusión, se observaron diferentes resultados patológicos en pollos según la cepa y la vía de transmisión. Este estudio proporciona información sobre la relación entre la patogenicidad y la composición genómica de los reovirus aviares.


Assuntos
Orthoreovirus Aviário , Doenças das Aves Domésticas , Infecções por Reoviridae , Animais , Galinhas , Genótipo , Orthoreovirus Aviário/genética , Infecções por Reoviridae/veterinária
20.
Plants (Basel) ; 9(6)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549220

RESUMO

Verticillium wilt (VW) is a major constraint to cotton production in Australia and worldwide. The disease is caused by a soilborne fungus, Verticillium dahliae, a highly virulent pathogen on cotton. Commonly, V. dahliae is designated into two pathotypes: defoliating (D) and non-defoliating (ND), based on induced symptoms. In the previous two survey seasons between 2017 and 2019, stems with suspected VW were sampled for the confirmation of presence and distribution of D and ND pathotypes across New South Wales (NSW), Australia. A total of 151 and 84 VW-suspected stems sampled from the 2017/18 and 2018/19 seasons, respectively, were subjected to pathogen isolation. Of these, 94 and 57 stems were positive for V. dahliae; and 18 and 20 stems sampled respectively from the two seasons yielded the D pathotype isolates. Two stems from the 2017/18 season and one stem from 2018/19 season yielded both D and ND pathotype isolates. We also successfully demonstrated the co-infection of both pathotypes in pot trials, which was driven predominantly by either of the pathotypes, and appeared independent on vegetative growth, fecundity and spore germination traits. Our study is the first report of the natural co-occurrence of both D and ND pathotypes in same field-grown cotton plants in NSW, to which a challenge to the disease management will be discussed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa