Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Annu Rev Neurosci ; 45: 63-85, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34985919

RESUMO

Locomotion is a universal motor behavior that is expressed as the output of many integrated brain functions. Locomotion is organized at several levels of the nervous system, with brainstem circuits acting as the gate between brain areas regulating innate, emotional, or motivational locomotion and executive spinal circuits. Here we review recent advances on brainstem circuits involved in controlling locomotion. We describe how delineated command circuits govern the start, speed, stop, and steering of locomotion. We also discuss how these pathways interface between executive circuits in the spinal cord and diverse brain areas important for context-specific selection of locomotion. A recurrent theme is the need to establish a functional connectome to and from brainstem command circuits. Finally, we point to unresolved issues concerning the integrated function of locomotor control.


Assuntos
Tronco Encefálico , Locomoção , Encéfalo , Tronco Encefálico/fisiologia , Locomoção/fisiologia , Medula Espinal/fisiologia
2.
Brain ; 146(3): 1053-1064, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35485491

RESUMO

Free-water imaging can predict and monitor dopamine system degeneration in people with Parkinson's disease. It can also enhance the sensitivity of traditional diffusion tensor imaging (DTI) metrics for indexing neurodegeneration. However, these tools are yet to be applied to investigate cholinergic system degeneration in Parkinson's disease, which involves both the pedunculopontine nucleus and cholinergic basal forebrain. Free-water imaging, free-water-corrected DTI and volumetry were used to extract structural metrics from the cholinergic basal forebrain and pedunculopontine nucleus in 99 people with Parkinson's disease and 46 age-matched controls. Cognitive ability was tracked over 4.5 years. Pearson's partial correlations revealed that free-water-corrected DTI metrics in the pedunculopontine nucleus were associated with performance on cognitive tasks that required participants to make rapid choices (behavioural flexibility). Volumetric, free-water content and DTI metrics in the cholinergic basal forebrain were elevated in a sub-group of people with Parkinson's disease with evidence of cognitive impairment, and linear mixed modelling revealed that these metrics were differently associated with current and future changes to cognition. Free water and free-water-corrected DTI can index cholinergic degeneration that could enable stratification of patients in clinical trials of cholinergic interventions for cognitive decline. In addition, degeneration of the pedunculopontine nucleus impairs behavioural flexibility in Parkinson's disease, which may explain this region's role in increased risk of falls.


Assuntos
Prosencéfalo Basal , Doença de Parkinson , Núcleo Tegmental Pedunculopontino , Humanos , Doença de Parkinson/complicações , Imagem de Tensor de Difusão , Prosencéfalo Basal/diagnóstico por imagem , Colinérgicos , Água , Neurônios Colinérgicos
3.
Acta Pharmacol Sin ; 45(6): 1160-1174, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38438581

RESUMO

Nicotinic acetylcholine receptors (nAChRs) regulate pain pathways with various outcomes depending on receptor subtypes, neuron types, and locations. But it remains unknown whether α4ß2 nAChRs abundantly expressed in the substantia nigra pars reticulata (SNr) have potential to mitigate hyperalgesia in pain states. We observed that injection of nAChR antagonists into the SNr reduced pain thresholds in naïve mice, whereas injection of nAChR agonists into the SNr relieved hyperalgesia in mice, subjected to capsaicin injection into the lower hind leg, spinal nerve injury, chronic constriction injury, or chronic nicotine exposure. The analgesic effects of nAChR agonists were mimicked by optogenetic stimulation of cholinergic inputs from the pedunculopontine nucleus (PPN) to the SNr, but attenuated upon downregulation of α4 nAChRs on SNr GABAergic neurons and injection of dihydro-ß-erythroidine into the SNr. Chronic nicotine-induced hyperalgesia depended on α4 nAChRs in SNr GABAergic neurons and was associated with the reduction of ACh release in the SNr. Either activation of α4 nAChRs in the SNr or optogenetic stimulation of the PPN-SNr cholinergic projection mitigated chronic nicotine-induced hyperalgesia. Interestingly, mechanical stimulation-induced ACh release was significantly attenuated in mice subjected to either capsaicin injection into the lower hind leg or SNI. These results suggest that α4 nAChRs on GABAergic neurons mediate a cholinergic analgesic circuit in the SNr, and these receptors may be effective therapeutic targets to relieve hyperalgesia in acute and chronic pain, and chronic nicotine exposure.


Assuntos
Neurônios GABAérgicos , Hiperalgesia , Camundongos Endogâmicos C57BL , Receptores Nicotínicos , Animais , Receptores Nicotínicos/metabolismo , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/fisiologia , Masculino , Hiperalgesia/metabolismo , Hiperalgesia/tratamento farmacológico , Camundongos , Parte Reticular da Substância Negra/metabolismo , Parte Reticular da Substância Negra/efeitos dos fármacos , Nicotina/farmacologia , Analgésicos/farmacologia , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Capsaicina/farmacologia , Acetilcolina/metabolismo , Optogenética , Limiar da Dor/efeitos dos fármacos
4.
BMC Biol ; 21(1): 135, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280580

RESUMO

BACKGROUND: Based on their anatomical location, rostral projections of nuclei are classified as ascending circuits, while caudal projections are classified as descending circuits. Upper brainstem neurons participate in complex information processing and specific sub-populations preferentially project to participating ascending or descending circuits. Cholinergic neurons in the upper brainstem have extensive collateralizations in both ascending and descending circuits; however, their single-cell projection patterns remain unclear because of the lack of comprehensive characterization of individual neurons. RESULTS: By combining fluorescent micro-optical sectional tomography with sparse labeling, we acquired a high-resolution whole-brain dataset of pontine-tegmental cholinergic neurons (PTCNs) and reconstructed their detailed morphology using semi-automatic reconstruction methods. As the main source of acetylcholine in some subcortical areas, individual PTCNs had abundant axons with lengths up to 60 cm and 5000 terminals and innervated multiple brain regions from the spinal cord to the cortex in both hemispheres. Based on various collaterals in the ascending and descending circuits, individual PTCNs were grouped into four subtypes. The morphology of cholinergic neurons in the pedunculopontine nucleus was more divergent, whereas the laterodorsal tegmental nucleus neurons contained richer axonal branches and dendrites. In the ascending circuits, individual PTCNs innervated the thalamus in three different patterns and projected to the cortex via two separate pathways. Moreover, PTCNs targeting the ventral tegmental area and substantia nigra had abundant collaterals in the pontine reticular nuclei, and these two circuits contributed oppositely to locomotion. CONCLUSIONS: Our results suggest that individual PTCNs have abundant axons, and most project to various collaterals in the ascending and descending circuits simultaneously. They target regions with multiple patterns, such as the thalamus and cortex. These results provide a detailed organizational characterization of cholinergic neurons to understand the connexional logic of the upper brainstem.


Assuntos
Axônios , Tronco Encefálico , Tronco Encefálico/fisiologia , Axônios/fisiologia , Ponte/anatomia & histologia , Ponte/fisiologia , Encéfalo , Neurônios Colinérgicos
5.
Hum Brain Mapp ; 44(9): 3781-3794, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37186095

RESUMO

The pedunculopontine nucleus (PPN) is a small brainstem structure and has attracted attention as a potentially effective deep brain stimulation (DBS) target for the treatment of Parkinson's disease (PD). However, the in vivo location of PPN remains poorly described and barely visible on conventional structural magnetic resonance (MR) images due to a lack of high spatial resolution and tissue contrast. This study aims to delineate the PPN on a high-resolution (HR) atlas and investigate the visibility of the PPN in individual quantitative susceptibility mapping (QSM) images. We combine a recently constructed Montreal Neurological Institute (MNI) space unbiased QSM atlas (MuSus-100), with an implicit representation-based self-supervised image super-resolution (SR) technique to achieve an atlas with improved spatial resolution. Then guided by a myelin staining histology human brain atlas, we localize and delineate PPN on the atlas with improved resolution. Furthermore, we examine the feasibility of directly identifying the approximate PPN location on the 3.0-T individual QSM MR images. The proposed SR network produces atlas images with four times the higher spatial resolution (from 1 to 0.25 mm isotropic) without a training dataset. The SR process also reduces artifacts and keeps superb image contrast for further delineating small deep brain nuclei, such as PPN. Using the myelin staining histological atlas as guidance, we first identify and annotate the location of PPN on the T1-weighted (T1w)-QSM hybrid MR atlas with improved resolution in the MNI space. Then, we relocate and validate that the optimal targeting site for PPN-DBS is at the middle-to-caudal part of PPN on our atlas. Furthermore, we confirm that the PPN region can be identified in a set of individual QSM images of 10 patients with PD and 10 healthy young adults. The contrast ratios of the PPN to its adjacent structure, namely the medial lemniscus, on images of different modalities indicate that QSM substantially improves the visibility of the PPN both in the atlas and individual images. Our findings indicate that the proposed SR network is an efficient tool for small-size brain nucleus identification. HR QSM is promising for improving the visibility of the PPN. The PPN can be directly identified on the individual QSM images acquired at the 3.0-T MR scanners, facilitating a direct targeting of PPN for DBS surgery.


Assuntos
Estimulação Encefálica Profunda , Núcleo Tegmental Pedunculopontino , Adulto Jovem , Humanos , Imageamento por Ressonância Magnética/métodos , Núcleo Tegmental Pedunculopontino/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Estimulação Encefálica Profunda/métodos
6.
Mov Disord ; 38(10): 1850-1860, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37461292

RESUMO

BACKGROUND: Long-term use of levodopa for Parkinson's disease (PD) treatment is often hindered by development of motor complications, including levodopa-induced dyskinesia (LID). The substantia nigra pars reticulata (SNr) and globus pallidus internal segment (GPi) are the output nuclei of the basal ganglia. Dysregulation of SNr and GPi activity contributes to PD pathophysiology and LID. OBJECTIVE: The objective of this study was to determine whether direct modulation of SNr GABAergic neurons and SNr projections to the pedunculopontine nucleus (PPN) regulates PD symptoms and LID in a mouse model. METHODS: We expressed Cre-recombinase activated channelrhodopsin-2 (ChR2) or halorhodopsin adeno-associated virus-2 (AAV2) vectors selectively in SNr GABAergic neurons of Vgat-IRES-Cre mice in a 6-hydroxydopamine model of PD to investigate whether direct optogenetic modulation of SNr neurons or their projections to the PPN regulates PD symptoms and LID expression. The forepaw stepping task, mouse LID rating scale, and open-field locomotion were used to assess akinesia and LID to test the effect of SNr modulation. RESULTS: Akinesia was improved by suppressing SNr neuron activity with halorhodopsin. LID was significantly reduced by increasing SNr neuronal activity with ChR2, which did not interfere with the antiakinetic effect of levodopa. Optical stimulation of ChR2 in SNr projections to the PPN recapitulated direct SNr stimulation. CONCLUSIONS: Modulation of SNr GABAergic neurons alters akinesia and LID expression in a manner consistent with the rate model of basal ganglia circuitry. Moreover, the projections from SNr to PPN likely mediate the antidyskinetic effect of increasing SNr neuronal activity, identifying a potential novel role for the PPN in LID. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Parte Reticular da Substância Negra , Camundongos , Animais , Levodopa/efeitos adversos , Halorrodopsinas , Neurônios GABAérgicos , Substância Negra
7.
Alzheimers Dement ; 19(10): 4549-4563, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36919460

RESUMO

INTRODUCTION: Degeneration of cortical cholinergic projections from the nucleus basalis of Meynert (NBM) is characteristic of dementia with Lewy bodies (DLB) and Alzheimer's disease (AD), whereas involvement of cholinergic projections from the pedunculopontine nucleus (PPN) to the thalamus is less clear. METHODS: We studied both cholinergic projection systems using a free water-corrected diffusion tensor imaging (DTI) model in the following cases: 46 AD, 48 DLB, 35 mild cognitive impairment (MCI) with AD, 38 MCI with Lewy bodies, and 71 controls. RESULTS: Free water in the NBM-cortical pathway was increased in both dementia and MCI groups compared to controls and associated with cognition. Free water along the PPN-thalamus tract was increased only in DLB and related to visual hallucinations. Results were largely replicated in an independent cohort. DISCUSSION: While NBM-cortical projections degenerate early in AD and DLB, the thalamic cholinergic input from the PPN appears to be more selectively affected in DLB and might associate with visual hallucinations. HIGHLIGHTS: Free water in the NBM-cortical cholinergic pathways is increased in AD and DLB. NBM-cortical pathway integrity is related to overall cognitive performance. Free water in the PPN-thalamus cholinergic pathway is only increased in DLB, not AD. PPN-thalamus pathway integrity might be related to visual hallucinations in DLB.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Humanos , Doença de Alzheimer/metabolismo , Doença por Corpos de Lewy/diagnóstico por imagem , Imagem de Tensor de Difusão , Alucinações/complicações , Colinérgicos , Água
8.
J Biol Phys ; 49(4): 463-482, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572243

RESUMO

Excessive neural synchronization of neural populations in the beta (ß) frequency range (12-35 Hz) is intimately related to the symptoms of hypokinesia in Parkinson's disease (PD). Studies have shown that delayed feedback stimulation strategies can interrupt excessive neural synchronization and effectively alleviate symptoms associated with PD dyskinesia. Work on optimizing delayed feedback algorithms continues to progress, yet it remains challenging to further improve the inhibitory effect with reduced energy expenditure. Therefore, we first established a neural mass model of the cortex-basal ganglia-thalamus-pedunculopontine nucleus (CBGTh-PPN) closed-loop system, which can reflect the internal properties of cortical and basal ganglia neurons and their intrinsic connections with thalamic and pedunculopontine nucleus neurons. Second, the inhibitory effects of three delayed feedback schemes based on the external globus pallidum (GPe) on ß oscillations were investigated separately and compared with those based on the subthalamic nucleus (STN) only. Our results show that all four delayed feedback schemes achieve effective suppression of pathological ß oscillations when using the linear delayed feedback algorithm. The comparison revealed that the three GPe-based delayed feedback stimulation strategies were able to have a greater range of oscillation suppression with reduced energy consumption, thus improving control performance effectively, suggesting that they may be more effective for the relief of Parkinson's motor symptoms in practical applications.


Assuntos
Doença de Parkinson , Núcleo Subtalâmico , Humanos , Retroalimentação , Gânglios da Base/patologia , Gânglios da Base/fisiologia , Tálamo/patologia , Tálamo/fisiologia , Núcleo Subtalâmico/patologia , Núcleo Subtalâmico/fisiologia , Doença de Parkinson/patologia
9.
J Neurosci ; 41(40): 8390-8402, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34413208

RESUMO

The pedunculopontine nucleus (PPN) is a reticular collection of neurons at the junction of the midbrain and pons, playing an important role in modulating posture and locomotion. Deep brain stimulation of the PPN has been proposed as an emerging treatment for patients with Parkinson's disease (PD) or multiple system atrophy (MSA) who have gait-related atypical parkinsonian syndromes. In this study, we investigated PPN activities during gait to better understand its functional role in locomotion. Specifically, we investigated whether PPN activity is rhythmically modulated by gait cycles during locomotion. PPN local field potential (LFP) activities were recorded from PD or MSA patients with gait difficulties during stepping in place or free walking. Simultaneous measurements from force plates or accelerometers were used to determine the phase within each gait cycle at each time point. Our results showed that activities in the alpha and beta frequency bands in the PPN LFPs were rhythmically modulated by the gait phase within gait cycles, with a higher modulation index when the stepping rhythm was more regular. Meanwhile, the PPN-cortical coherence was most prominent in the alpha band. Both gait phase-related modulation in the alpha/beta power and the PPN-cortical coherence in the alpha frequency band were spatially specific to the PPN and did not extend to surrounding regions. These results suggest that alternating PPN modulation may support gait control. Whether enhancing alternating PPN modulation by stimulating in an alternating fashion could positively affect gait control remains to be tested.SIGNIFICANCE STATEMENT The therapeutic efficacy of pedunculopontine nucleus (PPN) deep brain stimulation (DBS) and the extent to which it can improve quality of life are still inconclusive. Understanding how PPN activity is modulated by stepping or walking may offer insight into how to improve the efficacy of PPN DBS in ameliorating gait difficulties. Our study shows that PPN alpha and beta activity was modulated by the gait phase, and that this was most pronounced when the stepping rhythm was regular. It remains to be tested whether enhancing alternating PPN modulation by stimulating in an alternating fashion could positively affect gait control.


Assuntos
Ritmo alfa/fisiologia , Ritmo beta/fisiologia , Estimulação Encefálica Profunda/métodos , Marcha/fisiologia , Núcleo Tegmental Pedunculopontino/fisiologia , Idoso , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/fisiopatologia , Atrofia de Múltiplos Sistemas/terapia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia
10.
Clin Exp Hypertens ; 44(4): 366-371, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35261308

RESUMO

BACKGROUND: The pedunculopontine tegmental nucleus (PPT) is involved in cardiovascular regulation. The presence of mu (µ) opioid receptors in the PPT nucleus has been determined. In the present study, the role of this nucleus in normotensive conditions and then the role of these receptors on cardiovascular function in hypotension induced by hemorrhage (HEM) were investigated. METHOD: Animals were divided into the following groups: Group 1: control, Group 2: HEM, Group 3: morphine at dose 100 nmol (a general opioid receptor agonist), Group 4: naloxone at dose 100 nmol (a general opioid receptor antagonist), Group 5: morphine + HEM, and Group 6: naloxone + HEM. After anesthesia, two femoral arteries were cannulated to record the cardiovascular parameters and blood withdrawal. Two minutes after induction of HEM, drugs were injected into the nucleus, and cardiovascular parameters were measured. Changes (Δ) in cardiovascular responses due to drug injection and HEM were calculated and compared to control and HEM groups. RESULTS: HEM significantly reduced changes in systolic and mean arterial pressures and increased heart rate changes compared to control. Morphine microinjection in normotensive and HEM rats significantly decreased systolic blood pressure, mean arterial pressure, and heart rate, and naloxone significantly increased all these parameters. CONCLUSION: This study showed that the PPT nucleus plays a role in modulating the cardiovascular responses induced by HEM. The µ opioid receptor of the PPT nucleus in the normotensive and HEM rats have inhibitory effects on blood pressure and heart rate mainly, and these effects are eliminated by naloxone microinjection.


Assuntos
Hipotensão , Núcleo Tegmental Pedunculopontino , Animais , Ratos , Pressão Sanguínea , Receptores Opioides , Naloxona/farmacologia , Artéria Femoral , Hemorragia , Derivados da Morfina , Receptores Opioides mu
11.
Acta Neurochir (Wien) ; 164(2): 575-585, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35029762

RESUMO

OBJECTIVES: Gait-related symptoms like postural instability and gait disorders (PIGD) inexorably worsen with Parkinson's disease (PD) deterioration and become refractory to current available medical treatment and deep brain stimulation (DBS) of conventional targets. Pedunculopontine nucleus (PPN) deep brain stimulation (DBS) is a promising method to treat PIGD. This prospective study aimed to clarify the clinical application of PPN-DBS and to explore effects of caudal PPN stimulation on PIGD. METHODS: Five consecutive PD patients with severe medication-resistant postural instability and gait disorders accepted caudal PPN-DBS. LEAD-DBS toolbox was used to reconstruct and visualize the electrodes based on pre- and postoperative images. Outcomes were assessed with Movement Disorder Society (MDS)-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS), gait-specific questionnaires, and objective gait analysis with GAITRite system. RESULTS: MDS-UPDRS subitems 35-38 scores were improved at postoperative 6 months (mean, 4.40 vs 11.00; p = 0.0006) and 12 months (mean, 5.60 vs 11.00; p = 0.0013) compared with baseline, and scores at 6 months were slightly lower than scores at 12 months (mean, 4.40 vs 5.60; p = 0.0116). Gait and Falls Questionnaire, New Freezing of Gait Questionnaire, and Falls Questionnaire scores also significantly improved at postoperative 6 months and 12 months compared with baseline. In addition, cadence, bilateral step length, and bilateral stride length significantly increased when PPN On-stimulation compared with Off-stimulation. CONCLUSIONS: This study suggested that caudal PPN low-frequency stimulation improved PIGD for PD patients at the 6- and 12-month period.


Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha , Doença de Parkinson , Núcleo Tegmental Pedunculopontino , Estimulação Encefálica Profunda/métodos , Marcha , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Núcleo Tegmental Pedunculopontino/fisiologia , Estudos Prospectivos
12.
Neuromodulation ; 25(6): 925-934, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34435731

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) has been reported to improve gait disturbances in Parkinson's disease (PD); however, there are controversies on the radiological and electrophysiological techniques for intraoperative and postoperative confirmation of the target and determination of optimal stimulation parameters. OBJECTIVES: We investigated the correlation between the location of the estimated PPN (ePPN) and neuronal activity collected during intraoperative electrophysiological mapping to evaluate the role of microelectrode recording (MER) in identifying the effective stimulation site in two PD patients. MATERIALS AND METHODS: Bilateral PPN DBS was performed in two patients who had suffered from levodopa refractory gait disturbance. They had been implanted previously with DBS in the internal globus pallidus and the subthalamic nucleus, respectively. The PPN was determined on MRI and identified by intraoperative MER. Neuronal activity recorded was analyzed for mean discharge rate, bursting, and oscillatory activity. The effects were assessed by clinical ratings for motor signs before and after surgery. RESULTS: The PPN location was detected by MER. Groups of neurons characterized by tonic discharges were found 9-10 mm below the thalamus. The mean discharge rate in the ePPN was 19.1 ± 15.1 Hz, and 33% of the neurons of the ePPN responded with increased discharge rate during passive manipulation of the limbs and orofacial structures. PPN DBS with bipolar stimulation at a frequency range 10-30 Hz improved gait disturbances in both patients. Although PPN DBS provided therapeutic effects post-surgery in both cases, the effects waned after a year in case 1 and three years in case 2. CONCLUSIONS: Estimation of stimulation site within the PPN is possible by combining physiological guidance using MER and MRI findings. The PPN is a potential target for gait disturbances, although the efficacy of PPN DBS may depend on the location of the electrode and the stimulation parameters.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Tegmental Pedunculopontino , Núcleo Subtalâmico , Estimulação Encefálica Profunda/métodos , Globo Pálido/fisiologia , Humanos , Microeletrodos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Núcleo Tegmental Pedunculopontino/fisiologia , Núcleo Subtalâmico/diagnóstico por imagem
13.
Eur J Neurosci ; 53(8): 2835-2847, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33426708

RESUMO

Pedunculopontine nucleus (PPN) cholinergic neurons are implicated in freezing of gait in Parkinson's disease (PD) and motor stereotypy in normal animals, but the causal role of these neurons on specific gait parameters and treatment-induced dyskinesia remains speculative. Therefore, we examined whether selective cholinergic lesion of the rostral PPN affects PD motor and gait deficits, L-DOPA-induced dyskinesia and motor improvement, and DA-agonist-induced dyskinesia. Sprague-Dawley rats were assigned to one unilaterally lesioned group: Sham lesion, PPN cholinergic lesion with diphtheria urotensin II fusion toxin, medial forebrain bundle dopamine lesion with 6-hydroxydopamine, or dual acetylcholine and dopamine lesion. We used gait analysis and forepaw adjusting steps to examine PD gait and motor deficits. Forepaw adjusting steps were also used to assess motor improvement with L-DOPA treatment. The abnormal involuntary movements scale measured L-DOPA and dopamine D1- and D2-receptor agonist-induced dyskinesia. Lesions, verified via tyrosine hydroxylase and choline acetyltransferase immunohistochemistry reduced an average of 95% of nigral dopamine neurons and 80% of PPN cholinergic neurons, respectively. Rats receiving acetylcholine and dual lesion demonstrated enhanced freezing, and acetylcholine lesioned rats exhibited increased print area and stand index. Dopamine and dual lesion produced similar forepaw adjusting steps task on and off L-DOPA. Relative to DA lesioned rats, dual lesioned rats displayed reduced L-DOPA and DA agonist-induced dyskinesia at specific time points. Our results indicate that PPN cholinergic neurons affect gait parameters related to postural stability. Therefore, therapeutically targeting PPN cholinergic neurons could reduce intractable postural instability in PD without affecting motor benefits or side effects of L-DOPA treatment.


Assuntos
Discinesias , Transtornos Neurológicos da Marcha , Doença de Parkinson , Animais , Colinérgicos , Modelos Animais de Doenças , Marcha , Levodopa , Oxidopamina/toxicidade , Ratos , Ratos Sprague-Dawley
14.
J Neural Transm (Vienna) ; 128(5): 659-670, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33779812

RESUMO

Deep brain stimulation of the pedunculopontine nucleus is a promising surgical procedure for the treatment of Parkinsonian gait and balance dysfunction. It has, however, produced mixed clinical results that are poorly understood. We used tractography with the aim to rationalise this heterogeneity. A cohort of eight patients with postural instability and gait disturbance (Parkinson's disease subtype) underwent pre-operative structural and diffusion MRI, then progressed to deep brain stimulation targeting the pedunculopontine nucleus. Pre-operative and follow-up assessments were carried out using the Gait and Falls Questionnaire, and Freezing of Gait Questionnaire. Probabilistic diffusion tensor tractography was carried out between the stimulating electrodes and both cortical and cerebellar regions of a priori interest. Cortical surface reconstructions were carried out to measure cortical thickness in relevant areas. Structural connectivity between stimulating electrode and precentral gyrus (r = 0.81, p = 0.01), Brodmann areas 1 (r = 0.78, p = 0.02) and 2 (r = 0.76, p = 0.03) were correlated with clinical improvement. A negative correlation was also observed for the superior cerebellar peduncle (r = -0.76, p = 0.03). Lower cortical thickness of the left parietal lobe and bilateral premotor cortices were associated with greater pre-operative severity of symptoms. Both motor and sensory structural connectivity of the stimulated surgical target characterises the clinical benefit, or lack thereof, from surgery. In what is a challenging region of brainstem to effectively target, these results provide insights into how this can be better achieved. The mechanisms of action are likely to have both motor and sensory components, commensurate with the probable nature of the underlying dysfunction.


Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha , Doença de Parkinson , Núcleo Tegmental Pedunculopontino , Marcha , Transtornos Neurológicos da Marcha/diagnóstico por imagem , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Núcleo Tegmental Pedunculopontino/diagnóstico por imagem
15.
Stereotact Funct Neurosurg ; 99(4): 287-294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33279909

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) has been investigated for the treatment of levodopa-refractory gait dysfunction in parkinsonian disorders, with equivocal results so far. OBJECTIVES: To summarize the clinical outcomes of PPN-DBS-treated patients at our centre and elicit any patterns that may guide future research. MATERIALS AND METHODS: Pre- and post-operative objective overall motor and gait subsection scores as well as patient-reported outcomes were recorded for 6 PPN-DBS-treated patients, 3 with Parkinson's disease (PD), and 3 with progressive supranuclear palsy (PSP). Electrodes were implanted unilaterally in the first 3 patients and bilaterally in the latter 3, using an MRI-guided MRI-verified technique. Stimulation was initiated at 20-30 Hz and optimized in an iterative manner. RESULTS: Unilaterally treated patients did not demonstrate significant improvements in gait questionnaires, UPDRS-III or PSPRS scores or their respective gait subsections. This contrasted with at least an initial response in bilaterally treated patients. Diurnal cycling of stimulation in a PD patient with habituation to the initial benefit reproduced substantial improvements in freezing of gait (FOG) 3 years post-operatively. Among the PSP patients, 1 with a parkinsonian subtype had a sustained improvement in FOG while another with Richardson syndrome (PSP-RS) did not benefit. CONCLUSIONS: PPN-DBS remains an investigational treatment for levodopa-refractory FOG. This series corroborates some previously reported findings: bilateral stimulation may be more effective than unilateral stimulation; the response in PSP patients may depend on the disease subtype; and diurnal cycling of stimulation to overcome habituation merits further investigation.


Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha , Doença de Parkinson , Núcleo Tegmental Pedunculopontino , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Humanos , Levodopa , Doença de Parkinson/terapia
16.
J Neurosci ; 39(24): 4727-4737, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-30952811

RESUMO

The main excitatory inputs to the striatum arising from the cortex and the thalamus innervate both striatal spiny projection neurons and interneurons. These glutamatergic inputs to striatal GABAergic interneurons have been suggested to regulate the spike timing of striatal projection neurons via feedforward inhibition. Understanding how different excitatory inputs are integrated within the striatal circuitry and how they regulate striatal output is crucial for understanding basal ganglia function and related behaviors. Here, using VGLUT2 mice from both sexes, we report the existence of a glutamatergic projection from the mesencephalic locomotor region to the striatum that avoids the spiny neurons and selectively innervates interneurons. Specifically, optogenetic activation of glutamatergic axons from the pedunculopontine nucleus induced monosynaptic excitation in most recorded striatal cholinergic interneurons and GABAergic fast-spiking interneurons. Optogenetic stimulation in awake head-fixed mice consistently induced an increase in the firing rate of putative cholinergic interneurons and fast-spiking interneurons. In contrast, this stimulation did not induce excitatory responses in spiny neurons but rather disynaptic inhibitory responses ex vivo and a decrease in their firing rate in vivo, suggesting a feedforward mechanism mediating the inhibition of spiny projection neurons through the selective activation of striatal interneurons. Furthermore, unilateral stimulation of pedunculopontine nucleus glutamatergic axons in the striatum induced ipsilateral head rotations consistent with the inhibition of striatal output neurons. Our results demonstrate the existence of a unique interneuron-specific midbrain glutamatergic input to the striatum that exclusively recruits feedforward inhibition mechanisms.SIGNIFICANCE STATEMENT Glutamatergic inputs to the striatum have been shown to target both striatal projection neurons and interneurons and have been proposed to regulate spike timing of the projection neurons in part through feedforward inhibition. Here, we reveal the existence of a midbrain source of glutamatergic innervation to the striatum, originating in the pedunculopontine nucleus. Remarkably, this novel input selectively targets striatal interneurons, avoiding the projection neurons. Furthermore, we show that this selective innervation of interneurons can regulate the firing of the spiny projection neurons and inhibit the striatal output via feedforward inhibition. Together, our results describe a unique source of excitatory innervation to the striatum which selectively recruits feedforward inhibition of spiny neurons without any accompanying excitation.


Assuntos
Interneurônios/fisiologia , Neostriado/citologia , Neostriado/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Núcleo Tegmental Pedunculopontino/citologia , Núcleo Tegmental Pedunculopontino/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Animais Geneticamente Modificados , Axônios/fisiologia , Gânglios da Base/fisiologia , Feminino , Locomoção/fisiologia , Masculino , Mesencéfalo/fisiologia , Camundongos , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Optogenética , Sistema Nervoso Parassimpático/fisiologia , Proteína Vesicular 2 de Transporte de Glutamato/genética
17.
Mov Disord ; 35(5): 789-799, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31922282

RESUMO

BACKGROUND: Dysfunction of the mesencephalic locomotor region has been implicated in gait disorders. However, the role of its 2 components, the pedunculopontine and the cuneiform nuclei, in locomotion is poorly understood in primates. OBJECTIVES: To analyze the effect of cuneiform lesions on gait and balance in 2 monkeys and to compare them with those obtained after cholinergic pedunculopontine lesions in 4 monkeys and after lesions in both the cuneiform and pedunculopontine nuclei in 1 monkey. METHODS: After each stereotactic lesion, we performed a neurological examination and gait and balance assessments with kinematic measures during a locomotor task. The 3-dimensional location of each lesion was analyzed on a common brainstem space. RESULTS: After each cuneiform lesion, we observed a contralateral cervical dystonia including an increased tone in the proximal forelimb and an increase in knee angle, back curvature and walking speed. Conversely, cholinergic pedunculopontine lesions increased tail rigidity and back curvature and an imbalance of the muscle tone between the ipsi- and contralateral hindlimb with decreased knee angles. The walking speed was decreased. Moreover, pedunculopontine lesions often resulted in a longer time to waking postsurgery. CONCLUSIONS: The location of the lesions and their behavioral effects revealed a somatotopic organization of muscle tone control, with the neck and forelimb represented within the cuneiform nucleus and hindlimb and tail represented within the pedunculopontine nucleus. Cuneiform lesions increased speed, whereas pedunculopontine lesions decreased it. These findings confirm the complex and specific role of the cuneiform and pedunculopontine nuclei in locomotion and suggest the role of the pedunculopontine in sleep control. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Mesencéfalo , Núcleo Tegmental Pedunculopontino , Animais , Tronco Encefálico , Locomoção , Núcleo Tegmental Pedunculopontino/diagnóstico por imagem , Primatas
18.
Mov Disord ; 35(7): 1199-1207, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32400071

RESUMO

BACKGROUND: There is an urgent need to identify individuals at risk of postural instability and gait difficulties, and the resulting propensity for falls, in Parkinson's disease. OBJECTIVES: Given known relationships between posture and gait and degeneration of the cholinergic pedunculopontine nucleus, we investigated whether metrics of pedunculopontine nucleus microstructural integrity hold independent utility for predicting future postural instability and gait difficulties and whether they could be combined with other candidate biomarkers to improve prognostication of these symptoms. METHODS: We used stereotactic mapping of the pedunculopontine nucleus and diffusion tensor imaging to extract baseline pedunculopontine nucleus diffusivity metrics in 147 participants with Parkinson's disease and 65 controls enrolled in the Parkinson's Progression Markers Initiative. We also recorded known candidate markers of posture and gait changes: loss of caudate dopamine and CSF ß-amyloid 1-42 levels at baseline; as well as longitudinal progression motor symptoms over 72-months. RESULTS: Survival analyses revealed that reduced dopamine in the caudate and increased axial diffusivity in the pedunculopontine nucleus incurred independent risk of postural instability and gait difficulties. Binary logistic regression and receiver operating characteristics analysis in 117 participants with complete follow-up data at 60 months revealed that only pedunculopontine nucleus microstructure provided more accurate discriminative ability for predicting future postural instability and gait difficulties than clinical and demographic variables alone. CONCLUSION: Dopaminergic and cholinergic loss incur independent risk for future postural instability and gait difficulties, and pedunculopontine nucleus microstructure can be used to prognosticate these symptoms from early Parkinson's disease stages. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha , Doença de Parkinson , Núcleo Tegmental Pedunculopontino , Imagem de Tensor de Difusão , Marcha , Transtornos Neurológicos da Marcha/diagnóstico por imagem , Transtornos Neurológicos da Marcha/etiologia , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Núcleo Tegmental Pedunculopontino/diagnóstico por imagem , Equilíbrio Postural
19.
Neurochem Res ; 45(4): 709-719, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31950450

RESUMO

Deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) has been proposed as a treatment strategy for gait disorder in patients with Parkinson's disease (PD). We thus performed a systematic review and meta-analysis of randomized and nonrandomized controlled trials to assess the effect of this treatment on gait disorder in patients with PD. We systematically searched PubMed, Cochrane, Web of Knowledge, Wan Fang and WIP for randomized and nonrandomized controlled trials (published before July 29, 2014; no language restrictions) comparing PPN-DBS with other treatments. We assessed pooled data using a random effects model and a fixed effects model. Of 130 identified studies, 14 were eligible and were included in our analysis (N = 82 participants). Compared to those presurgery, the Unified Parkinson Disease Rating Scale (UPDRS) 27-30 scores for patients were lowered by PPN-DBS [3.94 (95% confidence interval, CI = 1.23 to 6.65)]. The UPDRS 13 and 14 scores did not improve with levodopa treatment [0.43 (- 0.35 to 1.20); 0.35 (- 0.50 to 1.19)], whereas the UPDRS 27-30 scores could be improved by the therapy [1.42 (95% CI 0.34 to 2.51)]. The Gait and Falls Questionnaire and UPDRS 13 and 14 scores showed significant improvements after PPN-DBS under the medication-off (MED-OFF) status [15.44 (95% CI = 8.44 to 22.45); 1.57 (95% CI = 0.84 to 2.30); 1.34 (95% CI = 0.84 to 1.84)]. PPN-DBS is a potential therapeutic target that could improve gait and fall disorders in patients with PD. Our findings will help improve the clinical application of DBS in PD patients with gait disorder.


Assuntos
Estimulação Encefálica Profunda/métodos , Transtornos Neurológicos da Marcha/terapia , Doença de Parkinson/terapia , Núcleo Tegmental Pedunculopontino/fisiologia , Ensaios Clínicos como Assunto , Humanos
20.
Cell Mol Life Sci ; 76(14): 2799-2815, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30734834

RESUMO

The pedunculopontine nucleus (PPN) is a part of the reticular activating system which is composed of cholinergic, glutamatergic and GABAergic neurons. Early electrophysiological studies characterized and grouped PPN neurons based on certain functional properties (i.e., the presence or absence of the A-current, spike latency, and low threshold spikes). Although other electrophysiological characteristics of these neurons were also described (as high threshold membrane potential oscillations, great differences in spontaneous firing rate and the presence or absence of the M-current), systematic assessment of these properties and correlation of them with morphological markers are still missing. In this work, we conducted electrophysiological experiments on brain slices of genetically identified cholinergic neurons in the PPN. Electrophysiological properties were compared with rostrocaudal location of the neuronal soma and selected morphometric features obtained with post hoc reconstruction. We found that functional subgroups had different proportions in the rostral and caudal subregions of the nucleus. Neurons with A-current can be divided to early-firing and late-firing neurons, where the latter type was found exclusively in the caudal subregion. Similar to this, different parameters of high threshold membrane potential oscillations also showed characteristic rostrocaudal distribution. Furthermore, based on our data, we propose that high threshold oscillations rather emerge from neuronal somata and not from the proximal dendrites. In summary, we demonstrated the existence and spatial distribution of functional subgroups of genetically identified PPN cholinergic neurons, which are in accordance with differences found in projection and in vivo functional findings of the subregions. Being aware of functional differences of PPN subregions will help the design and analysis of experiments using genetically encoded opto- and chemogenetic markers for in vivo experiments.


Assuntos
Acetilcolina/metabolismo , Potenciais de Ação , Neurônios Colinérgicos/fisiologia , Núcleo Tegmental Pedunculopontino/fisiologia , Animais , Potenciais da Membrana , Camundongos , Camundongos Transgênicos , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa