Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Biol Chem ; 298(7): 102097, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35660020

RESUMO

Hepatitis B virus (HBV) infection is a major global health problem with no established cure. Dedicator of cytokinesis 11 (DOCK11), known as a guanine nucleotide exchange factor (GEF) for Cdc42, is reported to be essential for the maintenance of HBV. However, potential therapeutic strategies targeting DOCK11 have not yet been explored. We have previously developed an in vitro virus method as a more efficient tool for the analysis of proteomics and evolutionary protein engineering. In this study, using the in vitro virus method, we screened and identified a novel antiasialoglycoprotein receptor (ASGR) antibody, ASGR3-10M, and a DOCK11-binding peptide, DCS8-42A, for potential use in HBV infection. We further constructed a fusion protein (10M-D42AN) consisting of ASGR3-10M, DCS8-42A, a fusogenic peptide, and a nuclear localization signal to deliver the peptide inside hepatocytes. We show using immunofluorescence staining that 10M-D42AN was endocytosed into early endosomes and released into the cytoplasm and nucleus. Since DCS8-42A shares homology with activated cdc42-associated kinase 1 (Ack1), which promotes EGFR endocytosis required for HBV infection, we also found that 10M-D42AN inhibited endocytosis of EGFR and Ack1. Furthermore, we show 10M-D42AN suppressed the function of DOCK11 in the host DNA repair system required for covalently closed circular DNA synthesis and suppressed HBV proliferation in mice. In conclusion, this study realizes a novel hepatocyte-specific drug delivery system using an anti-ASGR antibody, a fusogenic peptide, and DOCK11-binding peptide to provide a novel treatment for HBV.


Assuntos
Sistemas de Liberação de Medicamentos , Fatores de Troca do Nucleotídeo Guanina , Vírus da Hepatite B , Hepatite B , Anticorpos de Cadeia Única , Animais , DNA Circular/genética , Receptores ErbB/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hepatite B/tratamento farmacológico , Vírus da Hepatite B/patogenicidade , Vírus da Hepatite B/fisiologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Camundongos , Peptídeos/metabolismo , Anticorpos de Cadeia Única/metabolismo , Replicação Viral/genética
2.
J Biol Chem ; 296: 100666, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33862082

RESUMO

Heme oxygenases (HOs) play a critical role in recouping iron from the labile heme pool. The acquisition and liberation of heme iron are especially important for the survival of pathogenic bacteria. All characterized HOs, including those belonging to the HugZ superfamily, preferentially cleave free b-type heme. Another common form of heme found in nature is c-type heme, which is covalently linked to proteinaceous cysteine residues. However, mechanisms for direct iron acquisition from the c-type heme pool are unknown. Here we identify a HugZ homolog from the oligopeptide permease (opp) gene cluster of Paracoccus denitrificans that lacks any observable reactivity with heme b and show that it instead rapidly degrades c-type hemopeptides. This c-type heme oxygenase catalyzes the oxidative cleavage of the model substrate microperoxidase-11 at the ß- and/or δ-meso position(s), yielding the corresponding peptide-linked biliverdin, CO, and free iron. X-ray crystallographic analysis suggests that the switch in substrate specificity from b-to c-type heme involves loss of the N-terminal α/ß domain and C-terminal loop containing the coordinating histidine residue characteristic of HugZ homologs, thereby accommodating a larger substrate that provides its own iron ligand. These structural features are also absent in certain heme utilization/storage proteins from human pathogens that exhibit low or no HO activity with free heme. This study thus expands the scope of known iron acquisition strategies to include direct oxidative cleavage of heme-containing proteolytic fragments of c-type cytochromes and helps to explain why certain oligopeptide permeases show specificity for the import of heme in addition to peptides.


Assuntos
Proteínas de Bactérias/metabolismo , Biliverdina/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Heme/análogos & derivados , Heme/metabolismo , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Paracoccus denitrificans/enzimologia , Catálise , Cristalografia por Raios X , Heme Oxigenase (Desciclizante)/química , Especificidade por Substrato
3.
Proteins ; 90(7): 1434-1442, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35170084

RESUMO

Oligopeptide permease A (OppA) plays an important role in the nutrition of cells and various signaling processes. In archaea, OppA is a major protein present in membrane vesicles of Thermococcales. Because there being no crystal structures of archaeal OppAs determined to date, we report the crystal structure of archaeal OppA from Thermococcus kodakaraensis (TkOppA) at 2.3 Å resolution by the single-wavelength anomalous dispersion method. TkOppA consists of three domains similarly to bacterial OppAs, and the inserted regions not present in bacterial OppAs are at the periphery of the core region. An endogenous pentapeptide was bound in the pocket of domains I and III of TkOppA by hydrogen bonds of main-chain atoms of the peptide and hydrophobic interactions. No hydrogen bonds of side-chain atoms of the peptide were observed; thus, TkOppA may have low peptide selectivity but some preference for residues 2 and 3. TkOppA has a relatively large pocket and can bind a nonapeptide; therefore, it is suitable for the binding of large peptides similarly to OppAs of Gram-positive bacteria.


Assuntos
Lipoproteínas , Thermococcus , Proteínas de Bactérias/química , Proteínas de Transporte/química , Lipoproteínas/química , Proteínas de Membrana Transportadoras/metabolismo , Oligopeptídeos/química , Peptídeos/metabolismo
4.
Microbiology (Reading) ; 168(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36748525

RESUMO

Peptide transporters play important nutritional and cell signalling roles in Bacillus subtilis, which are pronounced during stationary phase adaptations and development. Three high-affinity ATP-binding cassette (ABC) family transporters are involved in peptide uptake - the oligopeptide permease (Opp), another peptide permease (App) and a less well-characterized dipeptide permease (Dpp). Here we report crystal structures of the extracellular substrate binding proteins, OppA and DppE, which serve the Opp and Dpp systems, respectively. The structure of OppA was determined in complex with endogenous peptides, modelled as Ser-Asn-Ser-Ser, and with the sporulation-promoting peptide Ser-Arg-Asn-Val-Thr, which bind with K d values of 0.4 and 2 µM, respectively, as measured by isothermal titration calorimetry. Differential scanning fluorescence experiments with a wider panel of ligands showed that OppA has highest affinity for tetra- and penta-peptides. The structure of DppE revealed the unexpected presence of a murein tripeptide (MTP) ligand, l-Ala-d-Glu-meso-DAP, in the peptide binding groove. The mode of MTP binding in DppE is different to that observed in the murein peptide binding protein, MppA, from Escherichia coli, suggesting independent evolution of these proteins from an OppA-like precursor. The presence of MTP in DppE points to a role for Dpp in the uptake and recycling of cell wall peptides, a conclusion that is supported by analysis of the genomic context of dpp, which revealed adjacent genes encoding enzymes involved in muropeptide catabolism in a gene organization that is widely conserved in Firmicutes.


Assuntos
Bacillus subtilis , Peptidoglicano , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Peptidoglicano/metabolismo , Proteínas de Bactérias/metabolismo , Oligopeptídeos , Proteínas de Membrana Transportadoras/metabolismo , Escherichia coli/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo
5.
Plant Cell Environ ; 44(6): 1908-1920, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33797764

RESUMO

Yellow Stripe-Like (YSL) proteins are a family of plant transporters that are typically involved in transition metal homeostasis. Three of the four YSL clades (I, II and IV) transport metals complexed with the non-proteinogenic amino acid nicotianamine or its derivatives. No such capability has been shown for any member of clade III, but the link between these YSLs and metal homeostasis could be masked by functional redundancy. We studied the role of the clade III YSL protein MtSYL7 in Medicago truncatula nodules. MtYSL7, which encodes a plasma membrane-bound protein, is mainly expressed in the pericycle and cortex cells of the root nodules. Yeast complementation assays revealed that MtSYL7 can transport short peptides. M. truncatula transposon insertion mutants with decreased expression of MtYSL7 had lower nitrogen fixation rates and showed reduced plant growth whether grown in symbiosis with rhizobia or not. YSL7 mutants accumulated more copper and iron in the nodules, which is likely to result from the increased expression of iron uptake and delivery genes in roots. Taken together, these data suggest that MtYSL7 plays an important role in the transition metal homeostasis of nodules and symbiotic nitrogen fixation.


Assuntos
Medicago truncatula/fisiologia , Fixação de Nitrogênio/fisiologia , Proteínas de Plantas/metabolismo , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Proteínas de Plantas/genética , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Transporte Proteico , Rhizobium , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose
6.
J Biol Chem ; 294(17): 6822-6830, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30846564

RESUMO

We report the identification of citrocin, a 19-amino acid-long antimicrobial lasso peptide from the bacteria Citrobacter pasteurii and Citrobacter braakii We refactored the citrocin gene cluster and heterologously expressed it in Escherichia coli We determined citrocin's NMR structure in water and found that is reminiscent of that of microcin J25 (MccJ25), an RNA polymerase-inhibiting lasso peptide that hijacks the TonB-dependent transporter FhuA to gain entry into cells. Citrocin has moderate antimicrobial activity against E. coli and Citrobacter strains. We then performed an in vitro RNA polymerase (RNAP) inhibition assay using citrocin and microcin J25 against E. coli RNAP. Citrocin has a higher minimal inhibition concentration than microcin J25 does against E. coli but surprisingly is ∼100-fold more potent as an RNAP inhibitor. This suggests that citrocin uptake by E. coli is limited. We found that unlike MccJ25, citrocin's activity against E. coli relied on neither of the two proton motive force-linked systems, Ton and Tol-Pal, for transport across the outer membrane. The structure of citrocin contains a patch of positive charge consisting of Lys-5 and Arg-17. We performed mutagenesis on these residues and found that the R17Y construct was matured into a lasso peptide but no longer had activity, showing the importance of this side chain for antimicrobial activity. In summary, we heterologously expressed and structurally and biochemically characterized an antimicrobial lasso peptide, citrocin. Despite being similar to MccJ25 in sequence, citrocin has an altered activity profile and does not use the same outer-membrane transporter to enter susceptible cells.


Assuntos
Antibacterianos/química , Citrobacter/química , Peptídeos/química , Antibacterianos/farmacologia , Citrobacter/efeitos dos fármacos , Descoberta de Drogas , Estabilidade de Medicamentos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Família Multigênica , Mutagênese , Peptídeos/genética , Peptídeos/farmacologia , Conformação Proteica
7.
J Biol Chem ; 294(3): 1070-1082, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30455346

RESUMO

In nontypeable Haemophilus influenzae (NTHi), the oligopeptide-binding protein (OppA) serves as the substrate-binding protein (SBP) of the oligopeptide transport system responsible for the import of peptides. We solved the crystal structure of nthiOppA in complex with hydrophobic peptides of various sizes. Our novel hexapeptide complex demonstrates the flexibility of the nthiOppA-binding cavity to expand and accommodate the longer peptide while maintaining similar protein-peptide interactions of smaller peptide complexes. In addition to acquiring peptides from the host environment, as a heme auxotroph NTHi utilizes host hemoproteins as a source of essential iron. OppA is a member of the Cluster C SBP family, and unlike other SBP families, some members recognize two distinctly different substrates. DppA (dipeptide), MppA (murein tripeptide), and SapA (antimicrobial peptides) are Cluster C proteins known to also transport heme. We observed nthiOppA shares this heme-binding characteristic and established heme specificity and affinity by surface plasmon resonance (SPR) of the four Cluster C proteins in NTHi. Ligand-docking studies predicted a distinct heme-specific cleft in the binding pocket, and using SPR competition assays, we observed that heme does not directly compete with peptide in the substrate-binding pocket. Additionally, we identified that the individual nthiOppA domains differentially contribute to substrate binding, with one domain playing a dominant role in heme binding and the other in peptide binding. Our results demonstrate the multisubstrate specificity of nthiOppA and the role of NTHi Cluster C proteins in the heme-uptake pathway for this pathogen.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte/química , Haemophilus influenzae/química , Heme/química , Lipoproteínas/química , Proteínas de Bactérias/genética , Sítios de Ligação , Proteínas de Transporte/genética , Cristalografia por Raios X , Haemophilus influenzae/genética , Heme/genética , Lipoproteínas/genética
8.
Proc Natl Acad Sci U S A ; 114(50): 13182-13187, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29180426

RESUMO

POT transporters represent an evolutionarily well-conserved family of proton-coupled transport systems in biology. An unusual feature of the family is their ability to couple the transport of chemically diverse ligands to an inwardly directed proton electrochemical gradient. For example, in mammals, fungi, and bacteria they are predominantly peptide transporters, whereas in plants the family has diverged to recognize nitrate, plant defense compounds, and hormones. Although recent structural and biochemical studies have identified conserved sites of proton binding, the mechanism through which transport is coupled to proton movement remains enigmatic. Here we show that different POT transporters operate through distinct proton-coupled mechanisms through changes in the extracellular gate. A high-resolution crystal structure reveals the presence of ordered water molecules within the peptide binding site. Multiscale molecular dynamics simulations confirm proton transport occurs through these waters via Grotthuss shuttling and reveal that proton binding to the extracellular side of the transporter facilitates a reorientation from an inward- to outward-facing state. Together these results demonstrate that within the POT family multiple mechanisms of proton coupling have likely evolved in conjunction with variation of the extracellular gate.


Assuntos
Proteínas de Bactérias/química , Proteínas de Membrana Transportadoras/química , Peptídeos/metabolismo , Prótons , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Membrana Transportadoras/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Xanthomonas/química , Xanthomonas/metabolismo
9.
Proc Natl Acad Sci U S A ; 114(4): E438-E447, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28069938

RESUMO

ABC transporters form one of the largest protein superfamilies in all domains of life, catalyzing the movement of diverse substrates across membranes. In this key position, ABC transporters can mediate multidrug resistance in cancer therapy and their dysfunction is linked to various diseases. Here, we describe the 2.7-Å X-ray structure of heterodimeric Thermus thermophilus multidrug resistance proteins A and B (TmrAB), which not only shares structural homology with the antigen translocation complex TAP, but is also able to restore antigen processing in human TAP-deficient cells. TmrAB exhibits a broad peptide specificity and can concentrate substrates several thousandfold, using only one single active ATP-binding site. In our structure, TmrAB adopts an asymmetric inward-facing state, and we show that the C-terminal helices, arranged in a zipper-like fashion, play a crucial role in guiding the conformational changes associated with substrate transport. In conclusion, TmrAB can be regarded as a model system for asymmetric ABC exporters in general, and for TAP in particular.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Bactérias/química , Thermus thermophilus , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Catálise , Linhagem Celular , Resistência a Múltiplos Medicamentos , Humanos , Modelos Moleculares , Conformação Proteica , Thermus thermophilus/metabolismo
10.
J Bacteriol ; 201(20)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31358613

RESUMO

The gastric pathogen Helicobacter pylori has limited ability to use carbohydrates as a carbon source, relying instead on exogenous amino acids and peptides. Uptake of certain peptides by H. pylori requires an ATP binding cassette (ABC) transporter annotated dipeptide permease (Dpp). The transporter specificity is determined by its cognate substrate-binding protein DppA, which captures ligands in the periplasm and delivers them to the permease. Here, we show that, unlike previously characterized DppA proteins, H. pylori DppA binds, with micromolar affinity, peptides of diverse amino acid sequences ranging between two and eight residues in length. We present analysis of the 1.45-Å-resolution crystal structure of its complex with the tetrapeptide STSA, which provides a structural rationale for the observed broad specificity. Analysis of the molecular surface revealed a ligand-binding pocket that is large enough to accommodate peptides of up to nine residues in length. The structure suggests that H. pylori DppA is able to recognize a wide range of peptide sequences by forming interactions primarily with the peptide main chain atoms. The loop that terminates the peptide-binding pocket in DppAs from other bacteria is significantly shorter in the H. pylori protein, providing an explanation for its ability to bind longer peptides. The subsites accommodating the two N-terminal residues of the peptide ligand make the greatest contribution to the protein-ligand binding energy, in agreement with the observation that dipeptides bind with affinity close to that of longer peptides.IMPORTANCE The World Health Organization listed Helicobacter pylori as a high-priority pathogen for antibiotic development. The potential of using peptide transporters in drug design is well recognized. We discovered that the substrate-binding protein of the ABC transporter for peptides, termed dipeptide permease, is an unusual member of its family in that it directly binds peptides of diverse amino acid sequences, ranging between two and eight residues in length. We also provided a structural rationale for the observed broad specificity. Since the ability to import peptides as a source of carbon is critical for H. pylori, our findings will inform drug design strategies based on inhibition or fusion of membrane-impermeant antimicrobials with peptides.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Helicobacter pylori/crescimento & desenvolvimento , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Peptídeos/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Helicobacter pylori/metabolismo , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos
11.
Amino Acids ; 51(7): 999-1008, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31073693

RESUMO

The previous studies demonstrated that carnosine (ß-alanyl-L-histidine) inhibits the growth of tumor cells in vitro and in vivo. Considering carnosine for the treatment of glioblastoma, we investigated which proton-coupled oligopeptide transporters (POTs) are present in glioblastoma cells and how they contribute to the uptake of carnosine. Therefore, mRNA expression of the four known POTs (PEPT1, PEPT2, PHT1, and PHT2) was examined in three glioblastoma cell lines, ten primary tumor cell cultures, in freshly isolated tumor tissue and in healthy brain. Using high-performance liquid chromatography coupled to mass spectrometry, the uptake of carnosine was investigated in the presence of competitive inhibitors and after siRNA-mediated knockdown of POTs. Whereas PEPT1 mRNA was not detected in any sample, expression of the three other transporters was significantly increased in tumor tissue compared to healthy brain. In cell culture, PHT1 expression was comparable to expression in tumor tissue, PHT2 exhibited a slightly reduced expression, and PEPT2 expression was reduced to normal brain tissue levels. In the cell line LN405, the competitive inhibitors ß-alanyl-L-alanine (inhibits all transporters) and L-histidine (inhibitor of PHT1/2) both inhibited the uptake of carnosine. SiRNA-mediated knockdown of PHT1 and PHT2 revealed a significantly reduced uptake of carnosine. Interestingly, despite its low expression at the level of mRNA, knockdown of PEPT2 also resulted in decreased uptake. In conclusion, our results demonstrate that the transporters PEPT2, PHT1, and PHT2 are responsible for the uptake of carnosine into glioblastoma cells and full function of all three transporters is required for maximum uptake.


Assuntos
Neoplasias Encefálicas/metabolismo , Carnosina/metabolismo , Glioblastoma/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Simportadores/metabolismo , Adulto , Idoso , Encéfalo/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Feminino , Histidina/metabolismo , Humanos , Masculino , Espectrometria de Massas , Proteínas de Membrana Transportadoras/genética , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Oligopeptídeos/metabolismo , Transportador 1 de Peptídeos/metabolismo , RNA Interferente Pequeno/metabolismo , Simportadores/genética
12.
Biochim Biophys Acta Biomembr ; 1860(4): 868-877, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28847505

RESUMO

The uptake of nutrients, including metals, amino acids and peptides are required for many biological processes. Pathogenic bacteria scavenge these essential nutrients from microenvironments to survive within the host. Pathogens must utilize a myriad of mechanisms to acquire these essential nutrients from the host while mediating the effects of toxicity. Bacteria utilize several transport proteins, including ATP-binding cassette (ABC) transporters to import and expel substrates. ABC transporters, conserved across all organisms, are powered by the energy from ATP to move substrates across cellular membranes. In this review, we will focus on nutrient uptake, the role of ABC importers at the host-pathogen interface, and explore emerging therapies to combat pathogenesis. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Bactérias/química , Modelos Moleculares , Conformação Proteica , Transportadores de Cassetes de Ligação de ATP/classificação , Transportadores de Cassetes de Ligação de ATP/metabolismo , Bactérias/metabolismo , Bactérias/patogenicidade , Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Proteínas de Bactérias/metabolismo , Transporte Biológico , Interações Hospedeiro-Patógeno , Virulência
13.
Biochim Biophys Acta Biomembr ; 1860(2): 250-256, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29108892

RESUMO

Cell-penetrating peptides and antimicrobial peptides share physicochemical characteristics and mechanisms of interaction with biological membranes, hence, termed as membrane active peptides. The present study aims at evaluating AMP activity of CPPs. LDP-NLS and LDP are Latarcin 1 derived cell-penetrating peptides and in the current study we have evaluated antifungal and cell-penetrating properties of these CPPs in Fusarium solani. We observed that LDP-NLS and LDP exhibited excellent antifungal activity against the fungus. Cellular uptake experiments with LDP-NLS and LDP showed that LDP-NLS acted as a CPP but LDP uptake into fungal spores and hyphae was negligible. CPP and AMP activity of mutated version of LDP-NLS was also evaluated and it was observed that both the activities of the peptide were compromised, signifying the importance of arginines and lysines present in LDP-NLS for initial interaction of membrane active peptides with biological membranes. Dextrans and Propidium Iodide uptake studies revealed that the mode of entry of LDP-NLS into fungal hyphae is through pore formation. Also, both LDP-NLS and LDP showed no cytotoxicity when infiltered into leaf tissues. Overall, our results suggest that LDP-NLS and LDP are selectively cytotoxic to F. solani and can be a potent peptide based antifungal agents.


Assuntos
Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Penetradores de Células/farmacologia , Fusarium/efeitos dos fármacos , Venenos de Aranha/farmacologia , Sequência de Aminoácidos , Antifúngicos/química , Peptídeos Catiônicos Antimicrobianos/química , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Fusarium/fisiologia , Hifas/efeitos dos fármacos , Hifas/fisiologia , Testes de Sensibilidade Microbiana , Phaseolus/citologia , Phaseolus/efeitos dos fármacos , Folhas de Planta/citologia , Folhas de Planta/efeitos dos fármacos , Venenos de Aranha/química , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento
14.
Appl Environ Microbiol ; 84(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29728377

RESUMO

The import of nonnatural molecules is a recurring problem in fundamental and applied aspects of microbiology. The dipeptide permease (Dpp) of Escherichia coli is an ABC-type multicomponent transporter system located in the cytoplasmic membrane, which is capable of transporting a wide range of di- and tripeptides with structurally and chemically diverse amino acid side chains into the cell. Given this low degree of specificity, Dpp was previously used as an entry gate to deliver natural and nonnatural cargo molecules into the cell by attaching them to amino acid side chains of peptides, in particular, the γ-carboxyl group of glutamate residues. However, the binding affinity of the substrate-binding protein dipeptide permease A (DppA), which is responsible for the initial binding of peptides in the periplasmic space, is significantly higher for peptides consisting of standard amino acids than for peptides containing side-chain modifications. Here, we used adaptive laboratory evolution to identify strains that utilize dipeptides containing γ-substituted glutamate residues more efficiently and linked this phenotype to different mutations in DppA. In vitro characterization of these mutants by thermal denaturation midpoint shift assays and isothermal titration calorimetry revealed significantly higher binding affinities of these variants toward peptides containing γ-glutamyl amides, presumably resulting in improved uptake and therefore faster growth in media supplemented with these nonstandard peptides.IMPORTANCE Fundamental and synthetic biology frequently suffer from insufficient delivery of unnatural building blocks or substrates for metabolic pathways into bacterial cells. The use of peptide-based transport vectors represents an established strategy to enable the uptake of such molecules as a cargo. We expand the scope of peptide-based uptake and characterize in detail the obtained DppA mutant variants. Furthermore, we highlight the potential of adaptive laboratory evolution to identify beneficial insertion mutations that are unlikely to be identified with existing directed evolution strategies.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Mutação , Peptídeos/metabolismo , Proteínas Periplásmicas de Ligação/genética , Proteínas Periplásmicas de Ligação/metabolismo , Amidas/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Dipeptídeos , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Ácido Glutâmico/metabolismo , Glutationa/metabolismo , Cinética , Proteínas de Membrana Transportadoras/genética , Redes e Vias Metabólicas , Especificidade por Substrato , gama-Glutamiltransferase/genética , gama-Glutamiltransferase/metabolismo
16.
J Biol Chem ; 291(15): 7902-14, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-26888085

RESUMO

Arginine-rich peptides can penetrate cells and consequently be used as delivery agents in various cellular applications. The activity of these reagents is often context-dependent, and the parameters that impact cell entry are not fully understood, giving rise to variability and limiting progress toward their usage. Herein, we report that the cytosolic penetration of linear polyarginine peptides is dependent on the oxidation state of the cell. In particular, we find that hypoxia and cellular antioxidants inhibit cell penetration. In contrast, oxidants promote cytosolic cell entry with an efficiency proportional to the level of reactive oxygen species generated within membranes. Moreover, an antibody that binds to oxidized lipids inhibits cell penetration, whereas extracellularly administered pure oxidized lipids enhance peptide transport into cells. Overall, these data indicate that oxidized lipids are capable of mediating the transport of polyarginine peptides across membranes. These data may also explain variability in cell-penetrating peptide performance in different experimental conditions. These new findings therefore provide new opportunities for the rational design of future cell-permeable compounds and for the optimization of delivery protocols.


Assuntos
Membrana Celular/metabolismo , Peptídeos Penetradores de Células/metabolismo , Citosol/metabolismo , Fibroblastos/metabolismo , Peptídeos/metabolismo , Transporte Biológico , Técnicas de Cultura de Células , Linhagem Celular , Humanos , Lipídeos de Membrana/metabolismo , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
17.
J Biol Chem ; 291(18): 9700-11, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26945935

RESUMO

CD98hc functions as an amino acid (AA) transporter (together with another subunit) and integrin signaling enhancer. It is overexpressed in highly proliferative cells in both physiological and pathological conditions. CD98hc deletion induces strong impairment of cell proliferation in vivo and in vitro Here, we investigate CD98hc-associated AA transport in cell survival and proliferation. By using chimeric versions of CD98hc, the two functions of the protein can be uncoupled. Although recovering the CD98hc AA transport capacity restores the in vivo and in vitro proliferation of CD98hc-null cells, reconstitution of the integrin signaling function of CD98hc is unable to restore in vitro proliferation of those cells. CD98hc-associated transporters (i.e. xCT, LAT1, and y(+)LAT2 in wild-type cells) are crucial to control reactive oxygen species and intracellular AA levels, thus sustaining cell survival and proliferation. Moreover, in CD98hc-null cells the deficiency of CD98hc/xCT cannot be compensated, leading to cell death by ferroptosis. Supplementation of culture media with ß-mercaptoethanol rescues CD98hc-deficient cell survival. Under such conditions null cells show oxidative stress and intracellular AA imbalance and, consequently, limited proliferation. CD98hc-null cells also present reduced intracellular levels of branched-chain and aromatic amino acids (BCAAs and ARO AAs, respectively) and induced expression of peptide transporter 1 (PEPT1). Interestingly, external supply of dipeptides containing BCAAs and ARO AAs rescues cell proliferation and compensates for impaired uptake of CD98hc/LAT1 and CD98hc/y(+)LAT2. Our data establish CD98hc as a master protective gene at the cross-road of redox control and AA availability, making it a relevant therapeutic target in cancer.


Assuntos
Aminoácidos/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Estresse Oxidativo , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+L de Transporte de Aminoácidos , Aminoácidos/genética , Animais , Transporte Biológico Ativo/fisiologia , Linhagem Celular , Sobrevivência Celular/fisiologia , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Cadeias Leves da Proteína-1 Reguladora de Fusão/genética , Cadeias Leves da Proteína-1 Reguladora de Fusão/metabolismo , Deleção de Genes , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Espécies Reativas de Oxigênio/metabolismo
18.
Biochim Biophys Acta Biomembr ; 1859(2): 167-176, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27836642

RESUMO

CyLoP-1 is a cysteine-rich cell-penetrating peptide derived from nuclear localization sequence of snake toxin, crotamine. The peptide has shown cytoplasmic uptake in mammalian cells at lower concentrations. In the present study, the cell-penetrating and antimicrobial activity of the peptide has been studied by employing mammalian cells, plant cells as well as bacterial and fungal pathogens. The study shows that the peptide acts as an effective CPP and a cargo-delivery vector for not only mammalian cells but also for plant cells. Besides this, the peptide also possesses antimicrobial activity against representative pathogens tested. It is shown to be effective in killing methicillin-resistant Staphylococcus aureus. We have observed that the presence of cysteine residues in the peptide play a major role in conferring cell-penetrating as well as antimicrobial activity to the peptide since there is a significant decline in these activities when cysteine residues are replaced with serine residues. Our findings are significant for the proposition that CyLoP-1 is an efficient membrane-active peptide with both cell-penetrating and antimicrobial activity. Hence, it can be further evaluated for its application in the field of drug-delivery, plant biotechnology and as a peptide-antibiotic.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/metabolismo , Peptídeos Penetradores de Células/farmacologia , Oligopeptídeos/farmacologia , Animais , Linhagem Celular Tumoral , Venenos de Crotalídeos/metabolismo , Crotalus/metabolismo , Cisteína/metabolismo , Células HeLa , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos
19.
Am J Physiol Gastrointest Liver Physiol ; 312(6): G580-G591, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28336547

RESUMO

Despite the fact that many membrane proteins carry extracellular glycans, little is known about whether the glycan chains also affect protein function. We recently demonstrated that the proton-coupled oligopeptide transporter 1 (PEPT1) in the intestine is glycosylated at six asparagine residues (N50, N406, N439, N510, N515, and N532). Mutagenesis-induced disruption of the individual N-glycosylation site N50, which is highly conserved among mammals, was detected to significantly enhance the PEPT1-mediated inward transport of peptides. Here, we show that for the murine protein the inhibition of glycosylation at sequon N50 by substituting N50 with glutamine, lysine, or cysteine or by replacing S52 with alanine equally altered PEPT1 transport kinetics in oocytes. Furthermore, we provide evidence that the uptake of [14C]glycyl-sarcosine in immortalized murine small intestinal (MODE-K) or colonic epithelial (PTK-6) cells stably expressing the PEPT1 transporter N50Q is also significantly increased relative to the wild-type protein. By using electrophysiological recordings and tracer flux studies, we further demonstrate that the rise in transport velocity observed for PEPT1 N50Q is bidirectional. In line with these findings, we show that attachment of biotin derivatives, comparable in weight with two to four monosaccharides, to the PEPT1 N50C transporter slows down the transport velocity. In addition, our experiments provide strong evidence that glycosylation of PEPT1 confers resistance against proteolytic cleavage by proteinase K, whereas a remarkable intrinsic stability against trypsin, even in the absence of N-linked glycans, was detected.NEW & NOTEWORTHY This study highlights the role of N50-linked glycans in modulating the bidirectional transport activity of the murine peptide transporter PEPT1. Electrophysiological and tracer flux measurements in Xenopus oocytes have shown that removal of the N50 glycans increases the maximal peptide transport rate in the inward and outward directions. This effect could be largely reversed by replacement of N50 glycans with structurally dissimilar biotin derivatives. In addition, N-glycans were detected to stabilize PEPT1 against proteolytic cleavage.


Assuntos
Dipeptídeos/metabolismo , Endopeptidase K/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise , Simportadores/metabolismo , Animais , Transporte Biológico , Biotinilação , Linhagem Celular , Glicosilação , Cinética , Potenciais da Membrana , Camundongos , Mutação , Transportador 1 de Peptídeos , Estabilidade Proteica , Simportadores/genética , Transfecção , Tripsina/metabolismo , Xenopus laevis
20.
Metab Eng ; 39: 60-70, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27989807

RESUMO

Semipermeable membranes of cells frequently pose an obstacle in metabolic engineering by limiting uptake of substrates, intermediates, or xenobiotics. Previous attempts to overcome this barrier relied on the promiscuous nature of peptide transport systems, but often suffered from low versatility or chemical instability. Here, we present an alternative strategy to transport cargo molecules across the inner membrane of Escherichia coli based on chemical synthesis of a stable cargo-peptide vector construct, transport through the peptide import system, and efficient intracellular release of the cargo by the promiscuous enzyme γ-glutamyl transferase (GGT). Retaining the otherwise periplasmic GGT in the cytoplasm was critical for the functionality of the system, as was fine-tuning its expression in order to minimize toxic effects associated to cytoplasmic GGT expression. Given the established protocols of peptide synthesis and the flexibility of peptide transport and GGT, the system is expected to be suitable for a broad range of cargoes.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Engenharia Metabólica/métodos , Peptídeos/metabolismo , gama-Glutamiltransferase/metabolismo , Transporte Biológico Ativo/fisiologia , Vias Biossintéticas/fisiologia , Escherichia coli/genética , Melhoramento Genético/métodos , Líquido Intracelular/metabolismo , Proteínas de Membrana Transportadoras/genética , Redes e Vias Metabólicas/fisiologia , Peptídeos/genética , gama-Glutamiltransferase/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa