Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.837
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 209(8): 909-927, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619436

RESUMO

Background: An estimated 3 billion people, largely in low- and middle-income countries, rely on unclean fuels for cooking, heating, and lighting to meet household energy needs. The resulting exposure to household air pollution (HAP) is a leading cause of pneumonia, chronic lung disease, and other adverse health effects. In the last decade, randomized controlled trials of clean cooking interventions to reduce HAP have been conducted. We aim to provide guidance on how to interpret the findings of these trials and how they should inform policy makers and practitioners.Methods: We assembled a multidisciplinary working group of international researchers, public health practitioners, and policymakers with expertise in household air pollution from within academia, the American Thoracic Society, funders, nongovernmental organizations, and global organizations, including the World Bank and the World Health Organization. We performed a literature search, convened four sessions via web conference, and developed consensus conclusions and recommendations via the Delphi method.Results: The committee reached consensus on 14 conclusions and recommendations. Although some trials using cleaner-burning biomass stoves or cleaner-cooking fuels have reduced HAP exposure, the committee was divided (with 55% saying no and 45% saying yes) on whether the studied interventions improved measured health outcomes.Conclusions: HAP is associated with adverse health effects in observational studies. However, it remains unclear which household energy interventions reduce exposure, improve health, can be scaled, and are sustainable. Researchers should engage with policy makers and practitioners working to scale cleaner energy solutions to understand and address their information needs.


Assuntos
Poluição do Ar , Países em Desenvolvimento , Humanos , Biomassa , Consenso , Sociedades , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Observacionais como Assunto
2.
Cancer Causes Control ; 35(2): 281-292, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37733135

RESUMO

PURPOSE: Gallbladder cancers (GBC), unique to certain geographical regions, are lethal digestive tract cancers, disproportionately affecting women, with limited information on risk factors. METHODS: We evaluated the association between household cooking fuel and GBC risk in a hospital-based case-control study conducted in the North-East and East Indian states of Assam and Bihar. We explored the potential mediation by diet, fire-vents, 'daily exposure duration' and parity (among women). We recruited biopsy-confirmed GBC (n = 214) men and women aged 30-69 years between 2019 and 2021, and controls frequency-matched by age, sex and region (n = 166). Information about cooking fuel, lifestyle, personal and family history, female reproductive factors, socio-demographics, and anthropometrics was collected. We tested associations using multivariable logistic regression analyses. RESULTS: All participants (73.4% women) were categorised based on predominant cooking fuel use. Group-1: LPG (Liquefied Petroleum Gas) users in the previous 20 years and above without concurrent biomass use (26.15%); Group-2: LPG users in the previous 20 years and above with concurrent secondary biomass use (15.9%); Group-3: Biomass users for ≥ 20 years (57.95%). Compared to group-1, accounting for confounders, GBC risk was higher in group-2 [OR: 2.02; 95% CI: 1.00-4.07] and group-3 [OR: 2.01; 95% CI: 1.08-3.73] (p-trend:0.020). These associations strengthened among women that attenuated with high daily consumption of fruits-vegetables but not with fire-vents, 'daily exposure duration' or parity. CONCLUSION: Biomass burning was associated with a high-risk for GBC and should be considered as a modifiable risk factor for GBC. Clean cooking fuel can potentially mitigate, and a healthy diet can partially reduce the risk among women.


Assuntos
Poluição do Ar em Ambientes Fechados , Neoplasias da Vesícula Biliar , Petróleo , Masculino , Gravidez , Humanos , Feminino , Neoplasias da Vesícula Biliar/epidemiologia , Neoplasias da Vesícula Biliar/etiologia , Poluição do Ar em Ambientes Fechados/efeitos adversos , Estudos de Casos e Controles , Culinária , Fatores de Risco , Índia/epidemiologia
3.
Arch Microbiol ; 206(7): 296, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856816

RESUMO

Environmental contamination from petroleum refinery operations has increased due to the rapid population growth and modernization of society, necessitating urgent repair. Microbial remediation of petroleum wastewater by prominent bacterial cultures holds promise in circumventing the issue of petroleum-related pollution. Herein, the bacterial culture was isolated from petroleum-contaminated sludge samples for the valorization of polyaromatic hydrocarbons and biodegradation of petroleum wastewater samples. The bacterial strain was screened and identified as Bacillus subtilis IH-1. After six days of incubation, the bacteria had degraded 25.9% of phenanthrene and 20.3% of naphthalene. The treatment of wastewater samples was assessed using physico-chemical and Fourier-transform infrared spectroscopy analysis, which revealed that the level of pollutants was elevated and above the allowed limits. Following bacterial degradation, the reduction in pollution parameters viz. EC (82.7%), BOD (87.0%), COD (80.0%), total phenols (96.3%), oil and grease (79.7%), TKN (68.8%), TOC (96.3%) and TPH (52.4%) were observed. The reduction in pH and heavy metals were also observed after bacterial treatment. V. mungo was used in the phytotoxicity test, which revealed at 50% wastewater concentration the reduction in biomass (30.3%), root length (87.7%), shoot length (93.9%), and seed germination (30.0%) was observed in comparison to control. When A. cepa root tips immersed in varying concentrations of wastewater samples, the mitotic index significantly decreased, suggesting the induction of cytotoxicity. However, following the bacterial treatment, there was a noticeable decrease in phytotoxicity and cytotoxicity. The bacterial culture produces lignin peroxidase enzyme and has the potential to degrade the toxic pollutants of petroleum wastewater. Therefore the bacterium may be immobilised or directly used at reactor scale or pilot scale study to benefit the industry and environmental safety.


Assuntos
Bacillus subtilis , Biodegradação Ambiental , Petróleo , Águas Residuárias , Bacillus subtilis/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Águas Residuárias/microbiologia , Águas Residuárias/química , Petróleo/metabolismo , Petróleo/toxicidade , Fenantrenos/metabolismo , Fenantrenos/análise , Fenantrenos/toxicidade , Naftalenos/metabolismo , Naftalenos/toxicidade , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Esgotos/microbiologia , Metais Pesados/metabolismo , Metais Pesados/toxicidade , Metais Pesados/análise
4.
Chem Rec ; 24(5): e202400015, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38629935

RESUMO

Substantial amounts of low-value light petroleum fractions and low-value heavy petroleum fractions, such as light naphtha, HVGO, and vacuum residue, are generated during the upgrading and refining of conventional and unconventional petroleum resources. The oil industry emphasizes economic diversification, aiming to produce high-value products from these low petroleum fractions through cost-effective and sustainable methods. Controlled autoxidation (oxidation with air) has the potential to produce industrially important oxygenates, including alcohols, and ketones, from the low-value light petroleum fractions. The produced alcohols can also be converted to olefin through catalytic dehydration. Following controlled autoxidation, the low-value heavy petroleum fractions can be utilized to produce value-added products, including carbon fiber precursors. It would reduce the production cost of a highly demandable product, carbon fiber. This review highlights the prospect of developing an alternative, sustainable, and economic method to produce value-added products from the low-value petroleum fractions following a controlled autoxidation approach.

5.
Int Microbiol ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286952

RESUMO

Direct combustion of sulfur-enriched liquid fuel oil causes sulfur oxide emission, which is one of the main contributors to air pollution. Biodesulfurization is a promising and eco-friendly method to desulfurize a wide range of thiophenic compounds present in fuel oil. Previously, numerous bacterial strains from genera such as Rhodococcus, Corynebacterium, Gordonia, Nocardia, Mycobacterium, Mycolicibacterium, Paenibacillus, Shewanella, Sphingomonas, Halothiobacillus, and Bacillus have been reported to be capable of desulfurizing model thiophenic compounds or fossil fuels. In the present study, we report a new desulfurizing bacterium, Tsukamurella sp. 3OW, capable of desulfurization of dibenzothiophene through the carbon-sulfur bond cleavage 4S pathway. The bacterium showed a high affinity for the hydrocarbon phase and broad substrate specificity towards various thiophenic compounds. The overall genome-related index analysis revealed that the bacterium is closely related to Tsukamurella paurometabola species. The genomic pool of strain 3OW contains 57 genes related to sulfur metabolism, including the key dszABC genes responsible for dibenzothiophene desulfurization. The DBT-adapted cells of the strain 3OW displayed significant resilience and viability in elevated concentrations of crude oil. The bacterium showed a 19 and 37% reduction in the total sulfur present in crude and diesel oil, respectively. Furthermore, FTIR analysis indicates that the oil's overall chemistry remained unaltered following biodesulfurization. This study implies that Tsukamurella paurometabola species, previously undocumented in the context of biodesulfurization, has good potential for application in the biodesulfurization of petroleum oils.

6.
Environ Sci Technol ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137011

RESUMO

Photo-dissolution, the photochemical production of water-soluble species from oil, can transfer oil-derived dissolved organic carbon (DOC) from floating surface slicks to the underlying seawater. Photo-dissolution was likely a quantitatively relevant fate process for the Macondo crude oil spilled during the 2010 Deepwater Horizon spill, but the importance of photo-dissolution for other oils is poorly constrained. This study evaluated the photo-dissolution reactivities (apparent quantum yields) and modeled rates for oils with diverse physical properties and chemical compositions, including an ultra low sulfur fuel oil (ULSFO). Photo-dissolution from UV (310 nm) light was strongly positively correlated with the fraction of small, gas-oil range compounds (

7.
Environ Sci Technol ; 58(23): 10162-10174, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38810212

RESUMO

Residential biomass burning is an important source of black carbon (BC) exposure among rural communities in low- and middle-income countries. We collected 7165 personal BC samples and individual/household level information from 3103 pregnant women enrolled in the Household Air Pollution Intervention Network trial. Women in the intervention arm received free liquefied petroleum gas stoves and fuel throughout pregnancy; women in the control arm continued the use of biomass stoves. Median (IQR) postintervention BC exposures were 9.6 µg/m3 (5.2-14.0) for controls and 2.8 µg/m3 (1.6-4.8) for the intervention group. Using mixed models, we characterized predictors of BC exposure and assessed how exposure contrasts differed between arms by select predictors. Primary stove type was the strongest predictor (R2 = 0.42); the models including kerosene use, kitchen location, education, occupation, or stove use hours also provided additional explanatory power from the base model adjusted only for the study site. Our full, trial-wide, model explained 48% of the variation in BC exposures. We found evidence that the BC exposure contrast between arms differed by study site, adherence to the assigned study stove, and whether the participant cooked. Our findings highlight factors that may be addressed before and during studies to implement more impactful cookstove intervention trials.


Assuntos
Culinária , Humanos , Feminino , Gravidez , Adulto , Poluição do Ar em Ambientes Fechados , Fuligem , Carbono , Poluentes Atmosféricos , Exposição Ambiental
8.
J Am Acad Dermatol ; 90(4): 807-813, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37315800

RESUMO

Petrolatum, also known as petroleum jelly, is a widely used topical agent, with a variety of uses in dermatology. Despite its popularity, many myths surround this ubiquitous dermatologic staple. This review details the history of petrolatum and how it is manufactured as well as how its biologic properties make it a great moisturizer. Additionally, data on its potential for flammability, allergenicity, and comedogenicity are detailed, dispelling misconceptions about petrolatum use around oxygen and as a cause of acne. The uses and benefits of petrolatum in dermatology are wide-ranging-a patch test instrument, a vehicle for medicated ointments, and a wound care essential. Given its ubiquitous presence, it is important for dermatologists to understand the history, safety profile, and myths surrounding this humble skincare staple.


Assuntos
Alérgenos , Vaselina , Humanos , Vaselina/uso terapêutico , Pomadas , Alérgenos/efeitos adversos , Testes do Emplastro
9.
Environ Res ; 250: 118347, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309567

RESUMO

The accidental spill of petroleum asphalt cement (PAC) in São Raimundo (SR Harbor, located on the Rio Negro (Manaus, Amazonas, Brazil) was monitored through the analysis of polyciclic aromatic hydrocarbons (PAHs) in water and a set of biomarkers in fishes (exposure biomarkes: PAHs-type metabolites concentrations in bile; the activities of ethoxyresorufin-O-deethylase (EROD), glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in liver. Effect biomarkers: lipid peroxidation concentration (LPO) in liver, acetylcholinesterase activity in brain, and genotoxic DNA damage in erythrocytes). Two fish species, Acarichthys heckelii and Satanoperca jurupari, were collected 10, 45, and 90 days after the PAC spill in São Raimundo. At the same time, fish were collected from the Tupé Sustainable Development Reserve (Tupé) which served as a reference area. The sampling periods were related to the rising waters of the natural flood pulse of the Rio Negro. Higher concentrations of PAHs in water were observed at 10 and 45 days and returned to the values of TP 90 days after the PAC spill, a period in which harbor waters rose about 0.2 m. Unlike the PAHs in water, biomarker responses in both fish species significantly increased following the PAC spill in SR. Hepatic ethoxyresorufin-O-deethylase (EROD), PAH-like metabolites in bile, and erythrocyte DNA damage increases, together with inhibition of acetylcholinesterase (AChE) activity in the brain were the most evident responses for both fish species. The calculated pyrolytic index showed mixed sources of PAHs (petrogenic and pyrolytic). The applied PCA-FA indicated important relationships between dissolved organic carbon (DOC) and PAHs concentrations in water, where DOC and PAHs concentrations contributed to biomarkers responses for both fish species in all collection periods.


Assuntos
Biomarcadores , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Brasil , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Biomarcadores/metabolismo , Poluição por Petróleo/efeitos adversos , Citocromo P-450 CYP1A1/metabolismo , Dano ao DNA/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Glutationa Transferase/metabolismo , Monitoramento Ambiental , Peixes/metabolismo , Acetilcolinesterase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Bile/química , Bile/metabolismo
10.
Environ Res ; 252(Pt 1): 118724, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38518917

RESUMO

The interactive effects between the emerging contaminant antibiotic resistance genes (ARGs) and the traditional pollutant total petroleum hydrocarbons (TPHs) in contaminated soils remain unclear. The synergistic removal of TPHs and ARGs from composted contaminated soil, along with the microbial mechanisms driven by the addition of biogas slurry, have not yet been investigated. This study explored the impact of biogas slurry on the synergistic degradation mechanisms and bacterial community dynamics of ARGs and TPHs in compost derived from contaminated soil. The addition of biogas slurry resulted in a reduction of targeted ARGs and mobile genetic elements (MGEs) by 9.96%-95.70% and 13.32%-97.66%, respectively. Biogas slurry changed the succession of bacterial communities during composting, thereby reducing the transmission risk of ARGs. Pseudomonas, Cellvibrio, and Devosia were identified as core microorganisms in the synergistic degradation of ARGs and TPHs. According to the partial least squares path model, temperature and NO3- indirectly influenced the removal of ARGs and TPHs by directly regulating the abundance and composition of host microbes and MGEs. In summary, the results of this study contribute to the high-value utilization of biogas slurry and provide methodological support for the low-cost remediation of contaminated soils.


Assuntos
Biocombustíveis , Compostagem , Hidrocarbonetos , Petróleo , Microbiologia do Solo , Poluentes do Solo , Áreas Alagadas , Petróleo/análise , Poluentes do Solo/análise , Hidrocarbonetos/análise , Resistência Microbiana a Medicamentos/genética , China , Rios/microbiologia , Rios/química , Solo/química , Genes Bacterianos
11.
Environ Res ; 252(Pt 3): 118909, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615790

RESUMO

The analysis of hydrocarbon biomarkers in surface sediments along the Markanda River in the foothills of the Indian Himalayas was conducted to gain insights into the distribution and composition of organic matter (OM) within the sediments. This investigation is essential for comprehending how anthropogenic changes are influencing the OM dynamics in river systems. The study involved identification and quantification of various compound groups such as n-alkanes, hopanes, steranes, polycyclic aromatic hydrocarbons (PAHs), linear alkyl benzenes (LABs) and phthalate esters along with their respective parametric ratios. The variation in distribution of n-alkanes and associated indices (odd-even carbon number predominance (OEP), average chain length (ACL), terrigenous to aquatic ratio (TAR), carbon preference index (CPI), and natural n-alkanes ratio (NAR)) were used to distinguish the natural source of organic content from those influenced by anthropogenic contamination. The detection of petroleum contamination was indicated by the presence of prominent unresolved complex mixtures (UCM) as well as specific petroleum biomarkers such as hopanes, diasteranes, and steranes. The study revealed varying concentrations of the analyzed organic pollutants, with the average of PAHs at 24.6 ng/g dw, LABs at 18.1 ng/g dw, and phthalates at 8.3 µg/g dw. The variability in concentration of the investigated compound groups across different locations indicated spatial heterogeneity, and the land use patterns appears to modulate the sources of OM in surface sediments. The source contribution of PAHs and phthalates determined by positive matrix factorization (PMF) shows the predominant sources of the anthropogenic hydrocarbons were linked primarily to petroleum/petroleum-derived products emissions, industrial discharges, cultural practices and common household waste/sewage disposal. This analysis provides insights for developing mitigation strategies and informing relevant policy changes globally, thereby contributing to the broader understanding of anthropogenic impacts on water ecosystems.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Rios , Poluentes Químicos da Água , Rios/química , Poluentes Químicos da Água/análise , Índia , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Monitoramento Ambiental/métodos , Biomarcadores/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
12.
Environ Res ; 251(Pt 1): 118563, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417663

RESUMO

Persulfate oxidants are widely used in soil remediation and wastewater treatment but perform poorly in degrading polycyclic aromatic hydrocarbons (PAHs), especially heavy fractions in solids. Herein, we propose the utilization of a green peroxymonosulfate-ferrate-FeS (PFI) oxidant as a promising process aid for remediating soils contaminated with heavy petroleum components, including asphaltenes and resins. The PFI oxidant could degrade heavy petroleum fractions because of dual activation of the peroxymonosulfate and ferrate by FeS at ambient conditions. Nevertheless, when dealing with soil with high oil content (>10%), the degradation efficiency remains limited (<30%) regardless of the quantity of oxidants employed. Surface elemental analysis shows that a coating of secondary products (Fe(OH)3, Fe2O3) on the surface and in pores of the soil-pollutant matrix explains the failure of oxidation and inefficient use of oxidant. To address this issue, a strategy of pre-solvent extraction-oxidation hybrid process with sequent acidic washing is proposed, where dichloromethane serves as the solvent, and PFI acts as the oxidant. In this system over 90% of the oil could be recovered with an oxidation efficiency of 80% by alleviating the problem of iron oxide coating the matrix surface. The oxidant consumption is also reduced to 70 wt% of the sludge. The PFI oxidant is found to exhibit excellent universality in treating oily sludge with low petroleum content (<2%), reducing the petroleum content in the residue to less than 0.3 wt% (meeting the national standards). The degradation of low oil content sludge by the PFI oxidant followed pseudo first-order kinetics. These findings not only elucidate the failure of PFI oxidation for high oil content oily sludge and identify its potential engineering application range, but also offer a practical strategy for processing petroleum-contaminated soil with varying oil contents through wet oxidation.


Assuntos
Recuperação e Remediação Ambiental , Oxidantes , Petróleo , Poluentes do Solo , Petróleo/análise , Oxidantes/química , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/química , Poluentes do Solo/análise , Ferro/química , Peróxidos/química , Oxirredução
13.
Environ Res ; 247: 118289, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266905

RESUMO

As one of the ultimate products of hydrocarbon biodegradation, inorganic carbon always be used to evaluate hydrocarbon biodegradation rates in petroleum-hydrocarbon-contaminated (PHC) aquifers. The evaluation method was challenged because of the existence of carbon fixation microorganisms, which may uptake inorganic carbons and consequently cause the biodegradation rates to be underestimated. We wonder if there are carbon fixation microorganisms in PHC aquifers. Although an extremely limited number of carbon fixation microorganisms in PHC sites have been studied in previous studies, the vast majority of microorganisms that participate in carbon fixation have not been systematically identified. To systematically reveal carbon fixation microorganisms and their survival environmental conditions, high-throughput metagenomic sequencing technologies, which are characterized by culture-independent, unbiased, and comprehensive methods for the detection and taxonomic characterization of microorganisms, were introduced to analyze the groundwater samples collected from a PHC aquifer. Results showed that 1041 genera were annotated as carbon fixation microorganisms, which accounted for 49% of the total number of genera in the PHC aquifer. Carbon fixation genes involved in Calvin-Benson-Bassham (CBB), 3-hydroxy propionate (3HP), reductive tricarboxylic acid (rTCA), and Wood-Ljungdahl (WL) cycles accounted for 2%, 41%, 34%, and 23% of the total carbon fixation genes, respectively, and 3HP, rTCA, and WL can be deemed as the dominant carbon fixation pathways. Most of the identified carbon fixation microorganisms are potential hydrocarbon biodegraders, and the most abundant carbon fixation microorganisms, such as Microbacterium, Novosphingobium, and Reyranella, were just the most abundant microorganisms in the aquifer system. It's deduced that most of the microorganisms in the aquifer were facultative autotrophic, and undertaking the dual responsibilities of degrading hydrocarbons to inorganic carbon and uptaking inorganic carbon to biomass.


Assuntos
Água Subterrânea , Petróleo , Hidrocarbonetos , Carbono , Ciclo do Carbono , Biodegradação Ambiental
14.
Arch Toxicol ; 98(2): 551-565, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38085275

RESUMO

The present study evaluates the in vitro developmental toxicity and the possible underlying mode of action of DMSO extracts of a series of highly complex petroleum substances in the mouse embryonic stem cell test (mEST), the zebrafish embryotoxicity test (ZET) and the aryl hydrocarbon receptor reporter gene assay (AhR CALUX assay). Results show that two out of sixteen samples tested, both being poorly refined products that may contain a substantial amount of 3- to 7-ring polycyclic aromatic compounds (PACs), induced sustained AhR activation in the AhR CALUX assay, and concentration-dependent developmental toxicity in both mEST and ZET. The other samples tested, representing highly refined petroleum substances and petroleum-derived waxes (containing typically a very low amount or no PACs at all), were negative in all assays applied, pointing to their inability to induce developmental toxicity in vitro. The refining processes applied during the production of highly refined petroleum products, such as solvent extraction and hydrotreatment which focus on the removal of undesired constituents, including 3- to 7-ring PACs, abolish the in vitro developmental toxicity. In conclusion, the obtained results support the hypothesis that 3- to 7-ring PACs are the primary inducers of the developmental toxicity induced by some (i.e., poorly refined) petroleum substances and that the observed effect is partially AhR-mediated.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Camundongos , Animais , Petróleo/toxicidade , Petróleo/análise , Peixe-Zebra , Células-Tronco Embrionárias Murinas
15.
BMC Public Health ; 24(1): 724, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448855

RESUMO

BACKGROUND: Africa is blessed with vast arable land and enriched with valuable natural resources encompassing both renewable (like water, forests, and fisheries) and non-renewable (such as minerals, coal, gas, and oil). Under the right conditions, a natural resource boom should serve as an important driver for growth, development, and the transition from cottage industry to factory output. However, despite its wealth, Africa is often associated with the notion of a resource curse. Negative outcomes are often linked with mineral wealth. This paper investigates the causes of adverse health outcomes in resource-rich regions. The study provides empirical support for the natural resource curse with particular emphasis on the environmental health risks in Africa. We explore the multifaceted connections among mineral deposits, environmental risks, conflict events and population dynamics, shedding light on the complexities of resource-rich areas. RESULTS: We amalgamate georeferenced data pertaining to 22 specific mineral deposits with information on the prevalence of reliance on compromised infrastructures at a spatial resolution of 0.5 ∘ × 0 . 5 ∘ for all of Africa between 2000 and 2017. Through comprehensive econometric analysis of environmental health risk factors, including reliance on contaminated water sources, open defecation, unimproved sanitation, particulate matter concentration, and carbon concentration, we uncover the intricate pathways through which mineral deposits impact public health. Our findings revealed the significant role of in-migration in mediating environmental health risks. Moreover, we found that the activities of extractive companies amplify certain environmental risks including reliance on unimproved sanitation and practices and particulate matter concentration. Conflict events emerge as a key mediator across all environmental health risks, underlining the far-reaching consequences of instability and violence on both local communities and the environment. CONCLUSION: The study contributes to the discourse on sustainable development by unraveling the nuanced associations between mineral wealth and health challenges. By drawing attention to the intricate web of factors at play, we provide a foundation for targeted interventions that address the unique environmental and health challenges faced by mineral-rich communities.


Assuntos
População Negra , Minerais , Humanos , África , Material Particulado , Água
16.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34911765

RESUMO

Abiotic CO2 reduction on transition metal minerals has been proposed to account for the synthesis of organic compounds in alkaline hydrothermal systems, but this reaction lacks experimental support, as only short-chain hydrocarbons (

17.
Biodegradation ; 35(1): 1-46, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37436665

RESUMO

Petroleum hydrocarbon (PH) pollution has mostly been caused by oil exploration, extraction, and transportation activities in colder regions, particularly in the Arctic and Antarctic regions, where it serves as a primary source of energy. Due to the resilience feature of nature, such polluted environments become the realized ecological niches for a wide community of psychrophilic hydrocarbonoclastic bacteria (PHcB). In contrast, to other psychrophilic species, PHcB is extremely cold-adapted and has unique characteristics that allow them to thrive in greater parts of the cold environment burdened with PHs. The stated group of bacteria in its ecological niche aids in the breakdown of litter, turnover of nutrients, cycling of carbon and nutrients, and bioremediation. Although such bacteria are the pioneers of harsh colder environments, their growth and distribution remain under the influence of various biotic and abiotic factors of the environment. The review discusses the prevalence of PHcB community in colder habitats, the metabolic processes involved in the biodegradation of PH, and the influence of biotic and abiotic stress factors. The existing understanding of the PH metabolism by PHcB offers confirmation of excellent enzymatic proficiency with high cold stability. The discovery of more flexible PH degrading strategies used by PHcB in colder environments could have a significant beneficial outcome on existing bioremediation technologies. Still, PHcB is least explored for other industrial and biotechnological applications as compared to non-PHcB psychrophiles. The present review highlights the pros and cons of the existing bioremediation technologies as well as the potential of different bioaugmentation processes for the effective removal of PH from the contaminated cold environment. Such research will not only serve to investigate the effects of pollution on the basic functional relationships that form the cold ecosystem but also to assess the efficacy of various remediation solutions for diverse settings and climatic conditions.


Assuntos
Ecossistema , Petróleo , Hidrocarbonetos/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo
18.
Biodegradation ; 35(5): 755-767, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38687419

RESUMO

The study was conducted in order to explore the potential of fungi isolated from surface and bottom seawater collected from the fishing harbour of Bizerte on the bioremediation of industrial effluent (IE) contaminated by petroleum hydrocarbon. Among the 128 fungal isolates, 11 were isolated from surface seawater and 7 from bottom seawater, representing 18 taxa in total. The gas chromatography mass spectrometry (GC-MS) was used for the determination of hydrocarbon compounds in IE. An initial screening of fungal growth using six concentrations ranged between 20 and 70% (v/v) IE has allowed the identification of the optimal concentration for fungal growth as well as selection of species able to tolerate high amounts of hydrocarbon. Colorimetric test employing 2,6-dichlorophenol indophenol and gravimetric method was applied for the assessment of fungal growth using 20% EI. By checking the phylogenetic affiliation of the high-performing stains as identified using ITSr DNA sequence, a dominance of Ascomycetes was detected. Indeed, Aspergillus terreus and Penicillium expansum may degrade 82.07 and 81.76% of residual total petroleum hydrocarbon (TPH), respectively. Both species were collected from surface seawater. While, Aspergillus niger, Colletotrichum sp and Fusarium annulatum displayed comparable degradation rates 40.43%, 41.3%, and 42.03%, respectively. The lowest rate of degradation 33.62% was detected in Emericellopsis phycophila. All those species were isolated from bottom seawater, excepting A. niger isolated from surface water. This work highlighted the importance of exploring the potential of fungi isolated from the natural environment on the bioremediation of industrial effluent. Our results promoted the investigation of the potential of the high-performing isolates A. terreus and P. expansum on the bioremediation of IE at pilot-scale and then in situ.


Assuntos
Biodegradação Ambiental , Fungos , Petróleo , Águas Residuárias , Poluentes Químicos da Água , Petróleo/metabolismo , Águas Residuárias/microbiologia , Fungos/metabolismo , Fungos/isolamento & purificação , Fungos/classificação , Poluentes Químicos da Água/metabolismo , Mar Mediterrâneo , Água do Mar/microbiologia , Hidrocarbonetos/metabolismo , Filogenia
19.
Ecotoxicol Environ Saf ; 280: 116543, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833981

RESUMO

Nowadays, petroleum hydrocarbon pollution is one of the most widespread types of contamination that poses a serious threat to both public health and the environment. Among various physicochemical methods, bioremediation is an eco-friendly and cost-effective way to eliminate petroleum hydrocarbon pollutants. The successful degradation of all hydrocarbon components and the achievement of optimal efficiency are necessary for the success of this process. Using potential microbial consortia with rich metabolic networks is a promising strategy for addressing these challenges. Mixed microbial communities, comprising both fungi and bacteria, exhibit diverse synergistic mechanisms to degrade complex hydrocarbon contaminants, including the dissemination of bacteria by fungal hyphae, enhancement of enzyme and secondary metabolites production, and co-metabolism of pollutants. Compared to pure cultures or consortia of either fungi or bacteria, different studies have shown increased bioremediation of particular contaminants when combined fungal-bacterial treatments are applied. However, antagonistic interactions, like microbial competition, and the production of inhibitors or toxins can observed between members. Furthermore, optimizing environmental factors (pH, temperature, moisture, and initial contaminant concentration) is essential for consortium performance. With the advancements in synthetic biology and gene editing tools, it is now feasible to design stable and robust artificial microbial consortia systems. This review presents an overview of using microbial communities for the removal of petroleum pollutants by focusing on microbial degradation pathways, and their interactions. It also highlights the new strategies for constructing optimal microbial consortia, as well as the challenges currently faced and future perspectives of applying fungal-bacterial communities for bioremediation.


Assuntos
Bactérias , Biodegradação Ambiental , Fungos , Hidrocarbonetos , Consórcios Microbianos , Petróleo , Poluentes do Solo , Bactérias/metabolismo , Fungos/metabolismo , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Poluição por Petróleo , Poluentes do Solo/metabolismo
20.
Ecotoxicol Environ Saf ; 271: 115942, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218104

RESUMO

The global production and consumption of plastics, as well as their deposition in the environment, are experiencing exponential growth. In addition, mismanaged plastic waste (PW) losses into drainage channels are a growing source of microplastic (MP) pollution concern. However, the complete understanding of their environmental implications throughout their life cycle is yet to be fully understood. Determining the potential extent to which MPs contribute to overall ecotoxicity is possible through the monitoring of PW release and MP removal during remediation. Life cycle assessments (LCAs) have been extensively utilized in many comparative analyses, such as comparing petroleum-based plastics with biomass and single-use plastics with multi-use alternatives. These assessments typically yield unexpected or paradoxical results. Nevertheless, there is still a paucity of reliable data and tools for conducting LCAs on plastics. On the other hand, the release and impact of MP have so far not been considered in LCA studies. This is due to the absence of inventory-related data regarding MP releases and the characterization factors necessary to quantify the effects of MP. Therefore, this review paper conducts a comprehensive literature review in order to assess the current state of knowledge and data regarding the environmental impacts that occur throughout the life cycle of plastics, along with strategies for plastic management through LCA.


Assuntos
Gerenciamento de Resíduos , Poluentes Químicos da Água , Animais , Plásticos/toxicidade , Lacunas de Evidências , Poluição Ambiental , Microplásticos , Estágios do Ciclo de Vida , Monitoramento Ambiental , Ecossistema , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa