Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
J Virol ; 97(4): e0005023, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36975794

RESUMO

Antigen epitope identification is a critical step in the vaccine development process and is a momentous cornerstone for the development of safe and efficient epitope vaccines. In particular, vaccine design is difficult when the function of the protein encoded by the pathogen is unknown. The genome of Tilapia lake virus (TiLV), an emerging virus from fish, encodes protein functions that have not been elucidated, resulting in a lag and uncertainty in vaccine development. Here, we propose a feasible strategy for emerging viral disease epitope vaccine development using TiLV. We determined the targets of specific antibodies in serum from a TiLV survivor by panning a Ph.D.-12 phage library, and we identified a mimotope, TYTTRMHITLPI, referred to as Pep3, which provided protection against TiLV after prime-boost vaccination; its immune protection rate was 57.6%. Based on amino acid sequence alignment and structure analysis of the target protein from TiLV, we further identified a protective antigenic site (399TYTTRNEDFLPT410) which is located on TiLV segment 1 (S1). The epitope vaccine with keyhole limpet hemocyanin (KLH-S1399-410) corresponding to the mimotope induced the tilapia to produce a durable and effective antibody response after immunization, and the antibody depletion test confirmed that the specific antibody against S1399-410 was necessary to neutralize TiLV. Surprisingly, the challenge studies in tilapia demonstrated that the epitope vaccine elicited a robust protective response against TiLV challenge, and the survival rate reached 81.8%. In conclusion, this study revealed a concept for screening antigen epitopes of emerging viral diseases, providing promising approaches for development and evaluation of protective epitope vaccines against viral diseases. IMPORTANCE Antigen epitope determination is an important cornerstone for developing efficient vaccines. In this study, we attempted to explore a novel approach for epitope discovery of TiLV, which is a new virus in fish. We investigated the immunogenicity and protective efficacy of all antigenic sites (mimotopes) identified in serum of primary TiLV survivors by using a Ph.D.-12 phage library. We also recognized and identified the natural epitope of TiLV by bioinformatics, evaluated the immunogenicity and protective effect of this antigenic site by immunization, and revealed 2 amino acid residues that play important roles in this epitope. Both Pep3 and S1399-410 (a natural epitope identified by Pep3) elicited antibody titers in tilapia, but S1399-410 was more prominent. Antibody depletion studies showed that anti-S1399-410-specific antibodies were essential for neutralizing TiLV. Our study demonstrated a model for combining experimental and computational screens to identify antigen epitopes, which is attractive for epitope-based vaccine development.


Assuntos
Formação de Anticorpos , Doenças dos Peixes , Infecções por Vírus de RNA , Tilápia , Vacinas Virais , Técnicas de Visualização da Superfície Celular , Simulação por Computador , Epitopos/imunologia , Vacinas Virais/imunologia , Formação de Anticorpos/imunologia , Tilápia/virologia , Linhagem Celular , Vírus de RNA/imunologia , Animais , Anticorpos Antivirais/sangue , Imunidade Humoral/imunologia , Infecções por Vírus de RNA/prevenção & controle , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/virologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/virologia
2.
Exp Cell Res ; 424(1): 113490, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36706943

RESUMO

Thymocyte antigen-1 (THY-1)is a potential target for rheumatoid arthritis (RA) treatment, and THY-1 positive fibroblast-like synoviocytes (FLS) are enriched in the synovium of RA patients and participate in angiogenesis to accelerate RA progression. In this study, we screened an antibody targeting THY-1 (THY-1 Ab) and explored its mechanism in alleviating RA progression. THY-1 Ab was screened from ScFv phage antibody library by phage display technology (PDT). THY-1 Ab-treated collagen induced arthritis (CIA) mice had lower degree of arthritis scores. We explore the mechanism of THY-1 Ab in alleviating RA progression. THY-1 Ab can remarkably inhibit the secretion of pro-inflammatory factors and promote the secretion of anti-inflammatory factors. Further experiments showed that THY1 Ab downregulated the expression of JUNB by the hsa_circ_0094342/miRNA-155-5P/SPI1 axis, inhibited RA angiogenesis and osteoclast differentiation, and relieved RA progression. These findings support that THY-1 Ab is a promising therapeutic antibody for RA treatment.


Assuntos
Artrite Experimental , Artrite Reumatoide , MicroRNAs , Animais , Humanos , Camundongos , Artrite Experimental/terapia , Artrite Experimental/metabolismo , Artrite Reumatoide/terapia , Artrite Reumatoide/metabolismo , Proliferação de Células , Células Cultivadas , Fibroblastos/metabolismo , Imunoterapia , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoclastos/metabolismo , Membrana Sinovial/metabolismo , Timócitos/metabolismo , Antígenos/imunologia
3.
Virol J ; 20(1): 66, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046316

RESUMO

BACKGROUND: Cyprinid herpesvirus 2 (CyHV-2) is a pathogenic fish virus belonging to family Alloherpesviridae. The CyHV-2 gene encoding thymidine kinase (TK) is an important virulence-associated factor. Therefore, we aimed to investigate the biological function of open reading frame 55 (ORF55) in viral replication. METHODS: Purified CyHV-2 ORF55 protein was obtained by prokaryotic expression, and the interacting peptide was screened out using phage display. Host interacting proteins were then predicted and validated. RESULTS: ORF55 was efficiently expressed in the prokaryotic expression system. Protein and peptide interaction prediction and dot-blot overlay assay confirmed that peptides identified by phage display could interact with the ORF55 protein. Comparing the peptides to the National Center for Biotechnology Information database revealed four potential interacting proteins. Reverse transcription quantitative PCR results demonstrated high expression of an actin-binding Rho-activating protein in the latter stages of virus-infected cells, and molecular docking, cell transfection and coimmunoprecipitation experiments confirmed that it interacted with the ORF55 protein. CONCLUSION: During viral infection, the ORF55 protein exerts its biological function through interactions with host proteins. The specific mechanisms remain to be further explored.


Assuntos
Bacteriófagos , Carpas , Doenças dos Peixes , Infecções por Herpesviridae , Herpesviridae , Animais , Fases de Leitura Aberta , Simulação de Acoplamento Molecular , Herpesviridae/genética , Bacteriófagos/genética
4.
Fish Shellfish Immunol ; 140: 108986, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37541634

RESUMO

Antibody with high affinity and specificity to antigen has widely used as a tool to combat various diseases. The variable domain of immunoglobulin new antigen receptor (VNAR) naturally found in shark contains autonomous function as single-domain antibody. Due to its excellent characteristics, the small, non-complex, and highly stable have made shark VNAR can acquires the antigen-binding capability that might not be reached by conventional antibody. Phage display technology enables shark VNAR to be presented on the surface of phage, allowing the exploration of shark VNAR as an alternative antibody format to target antigens from various infectious diseases. The application of phage-displayed shark VNAR in antibody library and biopanning eventually leads to the discovery and isolation of antigen-specific VNARs with diagnostic and therapeutic potential towards infectious diseases. This review provides an overview of the shark VNAR antibody, the types of phage display technology with comparison to the other types of display system, as well as the application and case studies of phage-displayed shark VNAR antibodies against infectious diseases.


Assuntos
Bacteriófagos , Doenças Transmissíveis , Tubarões , Animais , Anticorpos , Antígenos , Biblioteca de Peptídeos
5.
J Dairy Sci ; 106(11): 7382-7395, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37641259

RESUMO

Cow milk is an important source of food protein for children; however, it could lead to allergy, especially for infants. α-Lactalbumin (α-LA) and ß-lactoglobulin (ß-LG) from whey protein make up a relatively high proportion of milk proteins and have received widespread attention as major allergens in milk. However, few studies have identified the epitopes of both proteins simultaneously. In this study, ImmunoCAP and indirect ELISA were first used for detection of sIgE to screen sera from allergic patients with high binding capacity for α-LA and ß-LG. Subsequently, the mimotopes was biopanned by phage display technology and bioinformatics and 17 mimic peptide sequences were obtained. Aligned with the sequences of α-LA or ß-LG, we identified one linear epitope on α-LA at AA 11-26 and 5 linear epitopes on ß-LG at AA 9-29, AA 45-57, AA 77-80, AA 98-101, and AA 121-135, respectively. Meanwhile, the 8 conformational epitopes and their distributions of α-LA and ß-LG were located using the Pepitope Server. Finally, glutamine and lysine were determined as common AA residues for the conformational epitopes both on α-LA and ß-LG. Moreover, we found the addition of mouse anti-human IgE during the biopanning process did not significantly affect the identification of the epitopes.

6.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675046

RESUMO

Phages are highly ubiquitous biological agents, which means they are ideal tools for molecular biology and recombinant DNA technology. The development of a phage display technology was a turning point in the design of phage-based vaccines. Phages are now recognized as universal adjuvant-free nanovaccine platforms. Phages are well-suited for vaccine design owing to their high stability in harsh conditions and simple and inexpensive large-scale production. The aim of this review is to summarize the overall breadth of the antiviral therapeutic perspective of phages contributing to the development of phage-based vaccines for COVID-19. We show that phage vaccines induce a strong and specific humoral response by targeted phage particles carrying the epitopes of SARS-CoV-2. Further, the engineering of the T4 bacteriophage by CRISPR (clustered regularly interspaced short palindromic repeats) presents phage vaccines as a valuable platform with potential capabilities of genetic plasticity, intrinsic immunogenicity, and stability.


Assuntos
Bacteriófagos , COVID-19 , Vacinas , Humanos , Bacteriófagos/genética , Vacinas contra COVID-19/genética , COVID-19/terapia , COVID-19/genética , SARS-CoV-2/genética , Bacteriófago T4/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
7.
Molecules ; 28(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838874

RESUMO

BACKGROUND: Cashew (Anacardium occidentale L.) is a commercially important plant. Cashew nuts are a popular food source that belong to the tree nut family. Tree nuts are one of the eight major food allergens identified by the Food and Drug Administration in the USA. Allergies to cashew nuts cause severe and systemic immune reactions. Tree nut allergies are frequently fatal and are becoming more common. AIM: We aimed to identify the key allergenic epitopes of cashew nut proteins by correlating the phage display epitope prediction results with bioinformatics analysis. DESIGN: We predicted and experimentally confirmed cashew nut allergen antigenic peptides, which we named Ana o 2 (cupin superfamily) and Ana o 3 (prolamin superfamily). The Ana o 2 and Ana o 3 epitopes were predicted using DNAstar and PyMoL (incorporated in the Swiss-model package). The predicted weak and strong epitopes were synthesized as peptides. The related phage library was built. The peptides were also tested using phage display technology. The expressed antigens were tested and confirmed using microtiter plates coated with pooled human sera from patients with cashew nut allergies or healthy controls. RESULTS: The Ana o 2 epitopes were represented by four linear peptides, with the epitopes corresponding to amino acids 108-111, 113-119, 181-186, and 218-224. Furthermore, the identified Ana o 3 epitopes corresponding to amino acids 10-24, 13-27, 39-49, 66-70, 101-106, 107-114, and 115-122 were also screened out and chosen as the key allergenic epitopes. DISCUSSION: The Ana o 3 epitopes accounted for more than 40% of the total amino acid sequence of the protein; thus, Ana o 3 is potentially more allergenic than Ana o 2. CONCLUSIONS: The bioinformatic epitope prediction produced subpar results in this study. Furthermore, the phage display method was extremely effective in identifying the allergenic epitopes of cashew nut proteins. The key allergenic epitopes were chosen, providing important information for the study of cashew nut allergens.


Assuntos
Anacardium , Hipersensibilidade a Noz , Proteínas de Nozes , Humanos , Alérgenos/química , Epitopos , Anacardium/química , Proteínas de Plantas/metabolismo , Proteínas de Nozes/análise , Imunoglobulina E , Nozes/química
8.
Anal Bioanal Chem ; 414(2): 1095-1104, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34854959

RESUMO

Abrin is a highly toxic ribosome-inactivating protein, which could be used as a biological warfare agent and terrorist weapon, and thus needs to be detected efficiently and accurately. Affibodies are a new class of engineered affinity proteins with small size, high affinity, high stability, favorable folding and good robustness, but they have rarely played a role in biological detection. In this work, we establish a novel electrochemiluminescence (ECL) method for abrin detection with a phage display affibody as the specific probe for the first time, to our knowledge, and a portable biosensor based on a screen-printed electrode (SPE) as the testing platform. On the basis of the double antibody sandwich structure in our previous work, we used a phage display affibody instead of monoclonal antibody as a new specific labeled probe. Due to numerous signal molecules labeled on M13 phages, significant signal amplification was achieved in this experiment. Under optimized conditions, a linear dependence was observed from 0.005 to 100 ng/mL with a limit of detection (LOD) of 5 pg/mL. This assay also showed good reproducibility and specificity, and performed well in the detection of simulated samples. Considering its high sensitivity, interference resistance and convenience, this new biosensing system based on phage display affibodies and a portable ECL biosensor holds promise for in situ detection of toxins and pollutants in different environments.


Assuntos
Abrina/análise , Técnicas Biossensoriais/métodos , Técnicas de Visualização da Superfície Celular , Técnicas Eletroquímicas/métodos , Eletrodos , Limite de Detecção , Luminescência
9.
Anal Bioanal Chem ; 414(29-30): 8289-8297, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36350341

RESUMO

Antibody pairing is a difficult step in developing all immune-sandwich assay for antigen detection. Urinary bladder cancer (UBC) antigen is a typical bladder cancer biomarker for the early diagnosis of bladder cancer. Based on peptide-antibody pairing, a surface-enhanced Raman scattering platform for the ultrasensitive detection of UBC is presented. The phage display tech was used to screen and obtain a 12-peptide ligand against UBC (KD = 4.84 × 10-7 M). Twelve-peptide-conjugate magnetic beads (MNs@12-peptide) and antibody-conjugate silver nanoparticles (AgNPs@Ab) were prepared for SERS measurements. AgNPs@Ab can be linked onto the surface of MNs@12-peptide through ligand/antibody recognition to assess a sandwich-shape complex, which turns on the SERS signal of 4-ABP. Furthermore, the second SERS signal amplification is from the magnetic field-induced spontaneous collection effect. The above design enhances the SERS signal to achieve the limit of detection as 6.25 ng/mL, the clinical threshold of 10 ng/mL. Six clinical urine samples from bladder cancer patients and healthy volunteers were also successfully detected using the dual enhancement SERS measurement. The proposed method provides the future direction of fully automated and ultrasensitive assays.


Assuntos
Nanopartículas Metálicas , Neoplasias da Bexiga Urinária , Humanos , Prata , Neoplasias da Bexiga Urinária/diagnóstico , Ligantes , Análise Espectral Raman/métodos , Campos Magnéticos , Peptídeos , Anticorpos , Ouro
10.
J Nanobiotechnology ; 20(1): 167, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361208

RESUMO

BACKGROUND: Salmonella Enteritidis (S. Enteritidis) being one of the most prevalent foodborne pathogens worldwide poses a serious threat to public safety. Prevention of zoonotic infectious disease and controlling the risk of transmission of S. Enteriditidis critically requires the evolution of rapid and sensitive detection methods. The detection methods based on nucleic acid and conventional antibodies are fraught with limitations. Many of these limitations of the conventional antibodies can be circumvented using natural nanobodies which are endowed with characteristics, such as high affinity, thermal stability, easy production, especially higher diversity. This study aimed to select the special nanobodies against S. Enteriditidis for developing an improved nanobody-horseradish peroxidase-based sandwich ELISA to detect S. Enteritidis in the practical sample. The nanobody-horseradish peroxidase fusions can help in eliminating the use of secondary antibodies labeled with horseradish peroxidase, which can reduce the time of the experiment. Moreover, the novel sandwich ELISA developed in this study can be used to detect S. Enteriditidis specifically and rapidly with improved sensitivity. RESULTS: This study screened four nanobodies from an immunized nanobody library, after four rounds of screening, using the phage display technology. Subsequently, the screened nanobodies were successfully expressed with the prokaryotic and eukaryotic expression systems, respectively. A sandwich ELISA employing the SE-Nb9 and horseradish peroxidase-Nb1 pair to capture and to detect S. Enteritidis, respectively, was developed and found to possess a detection limit of 5 × 104 colony forming units (CFU)/mL. In the established immunoassay, the 8 h-enrichment enabled the detection of up to approximately 10 CFU/mL of S. Enteriditidis in milk samples. Furthermore, we investigated the colonization distribution of S. Enteriditidis in infected chicken using the established assay, showing that the S. Enteriditidis could subsist in almost all parts of the intestinal tract. These results were in agreement with the results obtained from the real-time PCR and plate culture. The liver was specifically identified to be colonized with quite a several S. Enteriditidis, indicating the risk of S. Enteriditidis infection outside of intestinal tract. CONCLUSIONS: This newly developed a sandwich ELISA that used the SE-Nb9 as capture antibody and horseradish peroxidase-Nb1 to detect S. Enteriditidis in the spike milk sample and to analyze the colonization distribution of S. Enteriditidis in the infected chicken. These results demonstrated that the developed assay is to be applicable for detecting S. Enteriditidis in the spiked milk in the rapid, specific, and sensitive way. Meanwhile, the developed assay can analyze the colonization distribution of S. Enteriditidis in the challenged chicken to indicate it as a promising tool for monitoring S. Enteriditidis in poultry products. Importantly, the SE-Nb1-vHRP as detection antibody can directly bind S. Enteritidis captured by SE-Nb9, reducing the use of commercial secondary antibodies and shortening the detection time. In short, the developed sandwich ELISA ushers great prospects for monitoring S. Enteritidis in food safety control and further commercial production.


Assuntos
Contaminação de Alimentos , Microbiologia de Alimentos , Carne , Leite , Salmonella enteritidis , Animais , Galinhas , Ensaio de Imunoadsorção Enzimática , Microbiologia de Alimentos/métodos , Peroxidase do Rábano Silvestre/metabolismo , Carne/microbiologia , Leite/microbiologia , Salmonella enteritidis/isolamento & purificação
11.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35886935

RESUMO

Avian coronavirus-infectious bronchitis virus (AvCoV-IBV) is the causative agent of infectious bronchitis (IB) that has brought great threat and economic losses to the global poultry industry. Rapid and accurate diagnostic methods are very necessary for effective disease monitoring. At the present study, we screened a novel nanobody against IBV-N protein for development of a rapid, simple, sensitive, and specific competitive ELISA for IBV antibody detection in order to enable the assessment of inoculation effect and early warning of disease infection. Using the phage display technology and bio-panning, we obtained 7 specific nanobodies fused with horseradish peroxidase (HRP) which were expressed in culture supernatant of HEK293T cells. Out of which, the nanobody of IBV-N-Nb66-vHRP has highly binding with IBV-N protein and was easily blocked by the IBV positive serums, which was finally employed as an immunoprobe for development of the competitive ELISA (cELISA). In the newly developed cELISA, we reduce the use of enzyme-conjugated secondary antibody, and the time of whole operation process is approximately 1 h. Moreover, the IBV positive serums diluted at 1:1000 can still be detected by the developed cELISA, and it has no cross reactivity with others chicken disease serums including Newcastle disease virus, Fowl adenovirus, Avian Influenza Virus, Infectious bursal disease virus and Hepatitis E virus. The cut-off value of the established cELISA was 36%, and the coefficient of variation of intra- and inter-assay were 0.55-1.65% and 2.58-6.03%, respectively. Compared with the commercial ELISA (IDEXX kit), the agreement rate of two methods was defined as 98% and the kappa value was 0.96, indicating the developed cELISA has high consistency with the commercial ELISA. Taken together, the novel cELISA for IBV antibody detection is a simple, rapid, sensitive, and specific immunoassay, which has the potential to rapidly test IBV antibody contributing to the surveillance and control of the disease.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Anticorpos Antivirais , Galinhas , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/veterinária , Ensaio de Imunoadsorção Enzimática/métodos , Células HEK293 , Peroxidase do Rábano Silvestre , Humanos
12.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361757

RESUMO

Enterovirus 71 (EV71) is the major etiological agent contributing to the development of hand-foot-mouth disease (HFMD). There are not any global available vaccines or antibody drugs against EV71 released yet. In this study, we perform the virus immunization in a cost-effective and convenient approach by preparing virus particles from size exclusion and immunization of chicken. Polyclonal yolk-immunoglobulin (IgY) was simply purified from egg yolk and monoclonal single-chain variable fragments (scFv) were selected via phage display technology with two scFv libraries containing 6.0 × 106 and 1.3 × 107 transformants. Specific clones were enriched after 5 rounds of bio-panning and four identical genes were classified after the sequence analysis. Moreover, the higher mutation rates were revealed in the CDR regions, especially in the CDR3. IgY showed specific binding activities to both EV71-infected and Coxsackievirus 16-infected cell lysates and high infectivity inhibitory activity of EV71. However, while IgY detected a 37 kDa protein, the selected scFv seemingly detected higher size proteins which could be cell protein instead of EV71 proteins. Despite the highly effective chicken antibody generation, the purity of virus particles prepared by size exclusion is the limitation of this study, and further characterization should be carried out rigorously.


Assuntos
Enterovirus Humano A , Enterovirus , Doença de Mão, Pé e Boca , Anticorpos de Cadeia Única , Animais , Vírion/genética , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Gema de Ovo , Galinhas
13.
Appl Microbiol Biotechnol ; 105(11): 4649-4662, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34059940

RESUMO

Alzheimer's disease (AD) is a type of progressive neurodegenerative disease, and amyloid ß-protein 42 (Aß42) serves an important role in the pathological process of development of AD. Paired immunoglobulin-like receptor B (PirB) is a functional receptor for myelin inhibitors of neuron regeneration in the CNS, and it has also been identified to function as a high-affinity receptor for Aß. Here, we used a phage display to identify a specific PirB antagonist peptide 11(PAP11, PFRLQLS), which could reverse Aß42-induced neurotoxicity and promote neurite outgrowth in vitro. Immunofluorescence analysis showed that PAP11 colocalized with PirB on the membrane of cortical neurons. Horseradish peroxidase-streptavidin-biotin assay further proved that PAP11 directly binds to PirB and the dissociation constant (Kd) was 0.128µM. PAP11 functionally antagonized the neurite outgrowth inhibitory effect induced by Aß42 in cortical neurons, and the underlying mechanism was associated with a PirB-ROCK2/CRMP2 signaling pathway. The novel PirB antagonist peptide PAP11 may be a promising candidate therapeutic agent for the treatment of AD and other neurodegenerative diseases. KEY POINTS: • PAP11 was the first PirB antagonist peptide screened by phage display technology. • PAP11 could protect neurons by blocking the binding of Aß42 and PirB. • PAP11 reverse inhibitory effect of neurite outgrowth through ROCK2/CRMP2 pathway.


Assuntos
Peptídeos beta-Amiloides , Glicoproteínas de Membrana/antagonistas & inibidores , Doenças Neurodegenerativas , Crescimento Neuronal , Receptores Imunológicos/antagonistas & inibidores , Células Cultivadas , Humanos , Fragmentos de Peptídeos
14.
Acta Biochim Biophys Sin (Shanghai) ; 53(4): 389-399, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33537750

RESUMO

Display technology, especially phage display technology, has been widely applied in many fields. The theoretical core of display technology is the physical linkage between the protein/peptide on the surface of a phage and the coding DNA sequence inside the same phage. Starting from phage-displayed peptide/protein/antibody libraries and taking advantage of the ever-growing power of next-generation sequencing (NGS) for DNA sequencing/decoding, rich protein-related information can easily be obtained in a high-throughput way. Based on this information, many scientific and clinical questions can be readily addressed. In the past few years, aided by the development of NGS, droplet technology, and massive oligonucleotide synthesis, we have witnessed and continue to witness large advances of phage display technology, in both technology development and application. The aim of this review is to summarize and discuss these recent advances.


Assuntos
Ácidos Nucleicos/química , Biblioteca de Peptídeos
15.
Anal Biochem ; 608: 113854, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32745543

RESUMO

With the rapid development of human's exploitation of nature and animal husbandry, zoonoses have become a major public health problem worldwide. It is necessary to establish a rapid, specific and sensitive detection method to screen several zoonotic pathogenic bacteria simultaneously. In this study, phage display technology was used to screen specific peptide of three common zoonotic pathogens, E. coli O157:H7, L. monocytogenes and B. melitensis 16 M. Then, three peptide were obtained, named E2, L4 and B4, which can identify the three pathogens respectively. Three peptide modified with biotin were synthesized and were coupled to streptavidin magnetic beads (MBs) to form peptide-MBs, which enriched the above three pathogens from the samples. Three quantum dot (QD) probes were constructed by coupling three polyclonal antibodies to different fluorescent QD surfaces (QD540, QD580 and QD630). The simultaneous detection method based on peptide-MBs and QDs multicolor fluorescent labeling was established and could detect E. coli O157:H7, L. monocytogenes and B. melitensis 16 M simultaneously. The detection method took about 100 min with the detection limits of 103, 102 and 102 CFU/mL, respectively. The detection method could be also well utilized in real samples.


Assuntos
Bactérias/patogenicidade , Técnicas de Química Analítica/métodos , Colorimetria/métodos , Separação Imunomagnética/métodos , Biblioteca de Peptídeos , Peptídeos/química , Pontos Quânticos , Animais , Biotina/química , Brassica/microbiologia , Brucella melitensis/química , Contagem de Colônia Microbiana , Escherichia coli O157/química , Fluorimunoensaio/métodos , Contaminação de Alimentos/análise , Limite de Detecção , Listeria monocytogenes/química , Espectrometria de Fluorescência/métodos , Estreptavidina/química
16.
Int J Mol Sci ; 21(8)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326294

RESUMO

Candida albicans (C. albicans) is an opportunistic human pathogen responsible for approximately a half of clinical candidemia. The emerging Candida spp. with resistance to azoles is a major challenge in clinic, suggesting an urgent demand for new drugs and therapeutic strategies. Alpha-enolase (Eno1) is a multifunctional protein and represents an important marker for invasive candidiasis. Thus, C. albicans Eno1 (CaEno1) is believed to be an important target for the development of therapeutic agents and antibody drugs. Recombinant CaEno1 (rCaEno1) was first used to immunize chickens. Subsequently, we used phage display technology to construct two single chain variable fragment (scFv) antibody libraries. A novel biopanning procedure was carried out to screen anti-rCaEno1 scFv antibodies, whose specificities were further characterized. The polyclonal IgY antibodies showed binding to rCaEno1 and native CaEno1. A dominant scFv (CaS1) and its properties were further characterized. CaS1 attenuated the growth of C. albicans and inhibited the binding of CaEno1 to plasminogen. Animal studies showed that CaS1 prolonged the survival rate of mice and zebrafish with candidiasis. The fungal burden in kidney and spleen, as well as level of inflammatory cytokines were significantly reduced in CaS1-treated mice. These results suggest CaS1 has potential of being immunotherapeutic drug against C. albicans infections.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/enzimologia , Inibidores Enzimáticos/farmacologia , Fosfopiruvato Hidratase/antagonistas & inibidores , Anticorpos de Cadeia Única/farmacologia , Animais , Avaliação Pré-Clínica de Medicamentos , Camundongos , Ligação Proteica , Peixe-Zebra
17.
Int J Mol Sci ; 21(2)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31940993

RESUMO

Zika virus (ZIKV) is a new and emerging virus that has caused outbreaks worldwide. The virus has been linked to congenital neurological malformations in neonates and Guillain-Barré syndrome in adults. Currently there are no effective vaccines available. As a result, there is a great need for ZIKV treatment. In this study, we developed single chain variable fragment (scFv) antibodies that target the ZIKV envelope protein using phage display technology. We first induced an immune response in white leghorn laying hens against the ZIKV envelope (E) protein. Chickens were immunized and polyclonal immunoglobulin yolk (IgY) antibodies were extracted from egg yolks. A high-level titer of anti-ZIKV_E IgY antibodies was detected using enzyme-linked immunosorbent assay (ELISA) after the third immunization. The titer persisted for at least 9 weeks. We constructed two antibody libraries that contained 5.3 × 106 and 4.5 × 106 transformants. After biopanning, an ELISA phage assay confirmed the enrichment of specific clones. We randomly selected 26 clones that expressed ZIKV scFv antibodies and classified them into two groups, short-linker and long-linker. Of these, four showed specific binding activities toward ZIKV_E proteins. These data suggest that the polyclonal and monoclonal scFv antibodies have the diagnostic or therapeutic potential for ZIKV.


Assuntos
Anticorpos Antivirais , Proteínas Aviárias , Galinhas , Anticorpos de Cadeia Única , Proteínas do Envelope Viral/imunologia , Zika virus/imunologia , Animais , Anticorpos Antivirais/química , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Proteínas Aviárias/química , Proteínas Aviárias/genética , Proteínas Aviárias/imunologia , Proteínas Aviárias/isolamento & purificação , Galinhas/genética , Galinhas/imunologia , Expressão Gênica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/isolamento & purificação
18.
Appl Microbiol Biotechnol ; 103(13): 5285-5299, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31028439

RESUMO

Bacterial meningitis is a severe disease that is fatal to one-third of patients. The major cause of meningitis in neonates is Escherichia coli (E. coli) K1. This bacterium synthesizes an outer membrane protein A (OmpA) that is responsible for the adhesion to (and invasion of) endothelial cells. Thus, the OmpA protein represents a potential target for developing diagnostic and therapeutic agents for meningitis. In this study, we expressed recombinant OmpA proteins with various molecular weights in E. coli. The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was performed to check the molecular size of OmpA's full length (FL) and truncated proteins. OmpA-FL protein was purified for immunizing chickens to produce immunoglobulin yolk (IgY) antibodies. We applied phage display technology to construct antibody libraries (OmpA-FL scFv-S 1.1 × 107 and OmpA-FL scFv-L 5.01 × 106) to select specific anti-OmpA-FL scFv antibodies; these were characterized by their binding ability to recombinant or endogenous OmpA using ELISA, immunofluorescent staining, and confirmed with immunoblotting. We found 12 monoclonal antibodies that react to OmpA fragments; seven scFvs recognize fragments spanning amino acid (aa) residues 1-346, aa 1-287, aa 1-167, and aa 60-192, while five scFvs recognize fragments spanning aa 1-346 and aa 1-287 only. Two fragments (aa 246-346 and aa 287-346) were not recognized with any of the 12 scFvs. Together, the data suggest three antigenic epitopes (60 aa-160 aa, 161 aa-167 aa, 193 aa-245 aa) recognized by monoclonal antibodies. These scFv antibodies show strong reactivity against OmpA proteins. We believe that antibodies show promising diagnostic agents for E. coli K1 meningitis.


Assuntos
Anticorpos Monoclonais/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Infecções por Escherichia coli/diagnóstico , Meningite/diagnóstico , Anticorpos de Cadeia Única/imunologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Proteínas da Membrana Bacteriana Externa/genética , Técnicas de Visualização da Superfície Celular , Galinhas/imunologia , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Escherichia coli/genética , Infecções por Escherichia coli/imunologia , Feminino , Imunização , Imunoglobulinas/imunologia , Meningite/imunologia , Meningite/microbiologia , Proteínas Recombinantes/imunologia , Anticorpos de Cadeia Única/genética
19.
Anim Biotechnol ; 30(4): 293-301, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30261812

RESUMO

The human cluster of differentiation 19 (CD19) is highly expressed in most leukemia, rendering is a promising therapeutic target. In this study, we generated anti-CD19 single-chain variable fragments (scFv) from immunized chickens by phage display technology. After constructing a scFv antibody library with 2.5 × 108 compositional diversity for panning, one representative scFv clone S2 which can specifically recognize to the CD19 protein was isolated and characterized. The binding reactivity of the scFv S2 to the endogenous CD19 protein of the ARH-77 leukemia cancer cell was verified through flow cytometry and the binding affinity of scFv S2 is 6.9 × 10-8 M determined by the surface plasmon resonance system. Compared with the chicken germline, hyper mutation in the complementarity-determining regions (CDRs) suggested that scFv S2 could be generated through an antigen-driven humoral response. By molecular modeling, the possible CDR configurations of scFv S2 were constructed rationally. Furthermore, the characteristics of chicken antibodies of a protein database were investigated. The findings in this study contribute to antibody development and engineering because they reveal the geometric structures and properties of the CDRs in chicken antibodies.


Assuntos
Antígenos CD19/imunologia , Anticorpos de Cadeia Única/química , Animais , Linhagem Celular Tumoral , Técnicas de Visualização da Superfície Celular , Galinhas/imunologia , Regiões Determinantes de Complementaridade/imunologia , Humanos , Modelos Moleculares , Anticorpos de Cadeia Única/sangue , Anticorpos de Cadeia Única/genética , Ressonância de Plasmônio de Superfície
20.
Cell Mol Biol (Noisy-le-grand) ; 64(11): 36-40, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30213287

RESUMO

A 7-mer phage display library was employed to isolate novel peptides that specifically bind to ectopic endometrium in vitro. Phage display technology with biopanning and rapid analysis of selective interactive ligands between ectopic and eutopic endometrium cells was utilized. After 5 rounds of biopanning, 50 phage clones were randomly selected and analyzed by enzyme-linked immunosorbent assay and DNA sequencing. A peptide-competitive inhibition assay was performed to identify the affinity of positive phages toward ectopic endometrium cells. The most enriched polypeptide RTRLHTR showed higher affinity toward ectopic endometrium cells.The polypeptide RTRLHTR screened by phage display technology may offer a new direction for early diagnosis and treatment of endometriosis.


Assuntos
Endométrio/metabolismo , Biblioteca de Peptídeos , Peptídeos/química , Peptídeos/isolamento & purificação , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa