Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
1.
Immunity ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39151426

RESUMO

Microglia are the resident macrophages of the central nervous system (CNS). Their phagocytic activity is central during brain development and homeostasis-and in a plethora of brain pathologies. However, little is known about the composition, dynamics, and function of human microglial phagosomes under homeostatic and pathological conditions. Here, we developed a method for rapid isolation of pure and intact phagosomes from human pluripotent stem cell-derived microglia under various in vitro conditions, and from human brain biopsies, for unbiased multiomic analysis. Phagosome profiling revealed that microglial phagosomes were equipped to sense minute changes in their environment and were highly dynamic. We detected proteins involved in synapse homeostasis, or implicated in brain pathologies, and identified the phagosome as the site where quinolinic acid was stored and metabolized for de novo nicotinamide adenine dinucleotide (NAD+) generation in the cytoplasm. Our findings highlight the central role of phagosomes in microglial functioning in the healthy and diseased brain.

2.
Immunity ; 56(8): 1727-1742.e6, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37379835

RESUMO

STING (stimulator of interferon genes) exerts protective cellular responses to viral infection via induction of interferon production and autophagy. Here, we report the role of STING in modulating the immune responses toward fungal infection. Upon Candida albicans stimulation, STING transited alongside the endoplasmic reticulum (ER) to the phagosomes. In phagosomes, STING directly bound with Src via the N-terminal 18 amino acids of STING, and this binding prevented Src from recruiting and phosphorylating Syk. Consistently, Syk-associated signaling and production of pro-inflammatory cytokines and chemokines were increased in mouse BMDCs (bone-marrow-derived dendritic cells) lacking STING with fungal treatment. STING deficiency improved anti-fungal immunity in systemic C. albicans infection. Importantly, administration of the N-terminal 18-aa (amino acid) peptide of STING improved host outcomes in disseminated fungal infection. Overall, our study identifies a previously unrecognized function of STING in negatively regulating anti-fungal immune responses and offers a potential therapeutic strategy for controlling C. albicans infection.


Assuntos
Nucleotídeos , Transdução de Sinais , Animais , Camundongos , Citocinas/metabolismo , Imunidade Inata , Interferons/metabolismo , Nucleotídeos/metabolismo , Fagossomos/metabolismo , Fagossomos/microbiologia
3.
Trends Immunol ; 45(6): 419-427, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762333

RESUMO

The humoral arm of mammalian innate immunity regulates several molecular mechanisms involved in resistance to pathogens, inflammation, and tissue repair. Recent studies highlight the crucial role played by humoral mediators in granulomatous inflammation. However the molecular mechanisms linking the function of these soluble molecules to the initiation and maintenance of granulomas remain elusive. We propose that humoral innate immunity coordinates fundamental physiological processes in macrophages which, in turn, initiate activation and transformation events that enable granuloma formation. We discuss the involvement of humoral mediators in processes such as immune activation, phagocytosis, metabolism, and tissue remodeling, and how these can dictate macrophage functionality during granuloma formation. These advances present opportunities for discovering novel disease factors and developing targeted, more effective treatments for granulomatous diseases.


Assuntos
Granuloma , Imunidade Humoral , Imunidade Inata , Macrófagos , Humanos , Animais , Granuloma/imunologia , Macrófagos/imunologia , Fagocitose/imunologia , Inflamação/imunologia , Transdução de Sinais/imunologia
4.
Semin Immunol ; 66: 101729, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36804685

RESUMO

Phagocytes, particularly dendritic cells (DCs), generate peptide-major histocompatibility complex (MHC) I complexes from antigens they have collected from cells in tissues and report this information to CD8 T cells in a process called cross-presentation. This process allows CD8 T cells to detect, respond and eliminate abnormal cells, such as cancers or cells infected with viruses or intracellular microbes. In some settings, cross-presentation can help tolerize CD8 T cells to self-antigens. One of the principal ways that DCs acquire tissue antigens is by ingesting this material through phagocytosis. The resulting phagosomes are key hubs in the cross-presentation (XPT) process and in fact experimentally conferring the ability to phagocytize antigens can be sufficient to allow non-professional antigen presenting cells (APCs) to cross-present. Once in phagosomes, exogenous antigens can be cross-presented (XPTed) through three distinct pathways. There is a vacuolar pathway in which peptides are generated and then bind to MHC I molecules within the confines of the vacuole. Ingested exogenous antigens can also be exported from phagosomes to the cytosol upon vesicular rupture and/or possibly transport. Once in the cytosol, the antigen is degraded by the proteasome and the resulting oligopeptides can be transported to MHC I molecule in the endoplasmic reticulum (ER) (a phagosome-to-cytosol (P2C) pathway) or in phagosomes (a phagosome-to-cytosol-to-phagosome (P2C2P) pathway). Here we review how phagosomes acquire the necessary molecular components that support these three mechanisms and the contribution of these pathways. We describe what is known as well as the gaps in our understanding of these processes.


Assuntos
Apresentação de Antígeno , Apresentação Cruzada , Humanos , Antígenos de Histocompatibilidade Classe I , Células Dendríticas , Antígenos , Antígenos de Histocompatibilidade , Complexo Principal de Histocompatibilidade
5.
Immunol Rev ; 314(1): 158-180, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36440666

RESUMO

Neutrophils are the most abundant circulating leukocyte and are crucial to the initial innate immune response to infection. One of their key pathogen-eliminating mechanisms is phagocytosis, the process of particle engulfment into a vacuole-like structure called the phagosome. The antimicrobial activity of the phagocytic process results from a collaboration of multiple systems and mechanisms within this organelle, where a complex interplay of ion fluxes, pH, reactive oxygen species, and antimicrobial proteins creates a dynamic antimicrobial environment. This complexity, combined with the difficulties of studying neutrophils ex vivo, has led to gaps in our knowledge of how the neutrophil phagosome optimizes pathogen killing. In particular, controversy has arisen regarding the relative contribution and integration of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived antimicrobial agents and granule-delivered antimicrobial proteins. Clinical syndromes arising from dysfunction in these systems in humans allow useful insight into these mechanisms, but their redundancy and synergy add to the complexity. In this article, we review the current knowledge regarding the formation and function of the neutrophil phagosome, examine new insights into the phagosomal environment that have been permitted by technological advances in recent years, and discuss aspects of the phagocytic process that are still under debate.


Assuntos
Neutrófilos , Fagossomos , Humanos , Fagossomos/química , Fagossomos/metabolismo , Fagocitose , Fagócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Immunol Rev ; 314(1): 197-209, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36625601

RESUMO

The neutrophil phagosome is one of the most hostile environments that bacteria must face and overcome if they are to succeed as pathogens. Targeting bacterial defense mechanisms should lead to new therapies that assist neutrophils to kill pathogens, but this has not yet come to fruition. One of the limiting factors in this effort has been our incomplete knowledge of the complex biochemistry that occurs within the rapidly changing environment of the phagosome. The same compartmentalization that protects host tissue also limits our ability to measure events within the phagosome. In this review, we highlight the limitations in our knowledge, and how the contribution of bacteria to the phagosomal environment is often ignored. There appears to be significant heterogeneity among phagosomes, and it is important to determine whether survivors have more efficient defenses or whether they are ingested into less threatening environments than other bacteria. As part of these efforts, we discuss how monitoring or recovering bacteria from phagosomes can provide insight into the conditions they have faced. We also encourage the use of unbiased screening approaches to identify bacterial genes that are essential for survival inside neutrophil phagosomes.


Assuntos
Neutrófilos , Fagossomos , Humanos , Fagossomos/microbiologia , Neutrófilos/microbiologia , Bactérias , Fagocitose
7.
EMBO J ; 41(23): e108970, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36281581

RESUMO

Phagocytosis is a key process in innate immunity and homeostasis. After particle uptake, newly formed phagosomes mature by acquisition of endolysosomal enzymes. Macrophage activation by interferon gamma (IFN-γ) increases microbicidal activity, but delays phagosomal maturation by an unknown mechanism. Using quantitative proteomics, we show that phagosomal proteins harbour high levels of typical and atypical ubiquitin chain types. Moreover, phagosomal ubiquitylation of vesicle trafficking proteins is substantially enhanced upon IFN-γ activation of macrophages, suggesting a role in regulating phagosomal functions. We identified the E3 ubiquitin ligase RNF115, which is enriched on phagosomes of IFN-γ activated macrophages, as an important regulator of phagosomal maturation. Loss of RNF115 protein or ligase activity enhanced phagosomal maturation and increased cytokine responses to bacterial infection, suggesting that both innate immune signalling from the phagosome and phagolysosomal trafficking are controlled through ubiquitylation. RNF115 knock-out mice show less tissue damage in response to S. aureus infection, indicating a role of RNF115 in inflammatory responses in vivo. In conclusion, RNF115 and phagosomal ubiquitylation are important regulators of innate immune functions during bacterial infections.


Assuntos
Infecções Bacterianas , Fagossomos , Ubiquitina-Proteína Ligases , Animais , Camundongos , Infecções Bacterianas/metabolismo , Interferon gama/metabolismo , Fagocitose , Fagossomos/metabolismo , Staphylococcus aureus , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
8.
EMBO Rep ; 25(3): 1156-1175, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332148

RESUMO

Human rhinovirus is the most frequently isolated virus during severe exacerbations of chronic respiratory diseases, like chronic obstructive pulmonary disease. In this disease, alveolar macrophages display significantly diminished phagocytic functions that could be associated with bacterial superinfections. However, how human rhinovirus affects the functions of macrophages is largely unknown. Macrophages treated with HRV16 demonstrate deficient bacteria-killing activity, impaired phagolysosome biogenesis, and altered intracellular compartments. Using RNA sequencing, we identify the small GTPase ARL5b to be upregulated by the virus in primary human macrophages. Importantly, depletion of ARL5b rescues bacterial clearance and localization of endosomal markers in macrophages upon HRV16 exposure. In permissive cells, depletion of ARL5b increases the secretion of HRV16 virions. Thus, we identify ARL5b as a novel regulator of intracellular trafficking dynamics and phagolysosomal biogenesis in macrophages and as a restriction factor of HRV16 in permissive cells.


Assuntos
Macrófagos , Rhinovirus , Humanos , Macrófagos/microbiologia , Macrófagos Alveolares , Fagocitose , Bactérias
9.
Proc Natl Acad Sci U S A ; 120(11): e2220825120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36897976

RESUMO

Macroendocytosis comprising phagocytosis and macropinocytosis is an actin-driven process regulated by small GTPases that depend on the dynamic reorganization of the membrane that protrudes and internalizes extracellular material by cup-shaped structures. To effectively capture, enwrap, and internalize their targets, these cups are arranged into a peripheral ring or ruffle of protruding actin sheets emerging from an actin-rich, nonprotrusive zone at its base. Despite extensive knowledge of the mechanism driving actin assembly of the branched network at the protrusive cup edge, which is initiated by the actin-related protein (Arp) 2/3 complex downstream of Rac signaling, our understanding of actin assembly in the base is still incomplete. In the Dictyostelium model system, the Ras-regulated formin ForG was previously shown to specifically contribute to actin assembly at the cup base. Loss of ForG is associated with a strongly impaired macroendocytosis and a 50% reduction in F-actin content at the base of phagocytic cups, in turn indicating the presence of additional factors that specifically contribute to actin formation at the base. Here, we show that ForG synergizes with the Rac-regulated formin ForB to form the bulk of linear filaments at the cup base. Consistently, combined loss of both formins virtually abolishes cup formation and leads to severe defects of macroendocytosis, emphasizing the relevance of converging Ras- and Rac-regulated formin pathways in assembly of linear filaments in the cup base, which apparently provide mechanical support to the entire structure. Remarkably, we finally show that active ForB, unlike ForG, additionally drives phagosome rocketing to aid particle internalization.


Assuntos
Fagossomos , Dictyostelium , Forminas/metabolismo , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Transdução de Sinais , Fagossomos/metabolismo , Actinas/metabolismo
10.
Proc Natl Acad Sci U S A ; 120(49): e2306788120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38032935

RESUMO

Phagocytosis is a critical immune function for infection control and tissue homeostasis. During phagocytosis, pathogens are internalized and degraded in phagolysosomes. For pathogens that evade immune degradation, the prevailing view is that virulence factors are required to disrupt the biogenesis of phagolysosomes. In contrast, we present here that physical forces from motile pathogens during cell entry divert them away from the canonical degradative pathway. This altered fate begins with the force-induced remodeling of the phagocytic synapse formation. We used the parasite Toxoplasma gondii as a model because live Toxoplasma actively invades host cells using gliding motility. To differentiate the effects of physical forces from virulence factors in phagocytosis, we employed magnetic forces to induce propulsive entry of inactivated Toxoplasma into macrophages. Experiments and computer simulations show that large propulsive forces hinder productive activation of receptors by preventing their spatial segregation from phosphatases at the phagocytic synapse. Consequently, the inactivated parasites are engulfed into vacuoles that fail to mature into degradative units, similar to the live motile parasite's intracellular pathway. Using yeast cells and opsonized beads, we confirmed that this mechanism is general, not specific to the parasite used. These results reveal new aspects of immune evasion by demonstrating how physical forces during active cell entry, independent of virulence factors, enable pathogens to circumvent phagolysosomal degradation.


Assuntos
Parasitos , Toxoplasma , Animais , Internalização do Vírus , Fagocitose , Macrófagos , Fatores de Virulência
11.
Mol Microbiol ; 121(3): 578-592, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308564

RESUMO

Pathogenic Rhodococcus equi release the virulence-associated protein A (VapA) within macrophage phagosomes. VapA permeabilizes phagosome and lysosome membranes and reduces acidification of both compartments. Using biophysical techniques, we found that VapA interacts with model membranes in four steps: (i) binding, change of mechanical properties, (ii) formation of specific membrane domains, (iii) permeabilization within the domains, and (iv) pH-specific transformation of domains. Biosensor data revealed that VapA binds to membranes in one step at pH 6.5 and in two steps at pH 4.5 and decreases membrane fluidity. The integration of VapA into lipid monolayers was only significant at lateral pressures <20 mN m-1 indicating preferential incorporation into membrane regions with reduced integrity. Atomic force microscopy of lipid mono- and bilayers showed that VapA increased the surface heterogeneity of liquid disordered domains. Furthermore, VapA led to the formation of a new microstructured domain type and, at pH 4.5, to the formation of 5 nm high domains. VapA binding, its integration and lipid domain formation depended on lipid composition, pH, protein concentration and lateral membrane pressure. VapA-mediated permeabilization is clearly distinct from that caused by classical microbial pore formers and is a key contribution to the multiplication of Rhodococcus equi in phagosomes.


Assuntos
Rhodococcus equi , Proteína Estafilocócica A , Virulência , Proteína Estafilocócica A/metabolismo , Fatores de Virulência/metabolismo , Rhodococcus equi/metabolismo , Proteínas de Bactérias/metabolismo , Lipídeos
12.
EMBO J ; 40(10): e106188, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33881780

RESUMO

Tumour progression locus 2 (TPL-2) kinase mediates Toll-like receptor (TLR) activation of ERK1/2 and p38α MAP kinases in myeloid cells to modulate expression of key cytokines in innate immunity. This study identified a novel MAP kinase-independent regulatory function for TPL-2 in phagosome maturation, an essential process for killing of phagocytosed microbes. TPL-2 catalytic activity was demonstrated to induce phagosome acidification and proteolysis in primary mouse and human macrophages following uptake of latex beads. Quantitative proteomics revealed that blocking TPL-2 catalytic activity significantly altered the protein composition of phagosomes, particularly reducing the abundance of V-ATPase proton pump subunits. Furthermore, TPL-2 stimulated the phosphorylation of DMXL1, a regulator of V-ATPases, to induce V-ATPase assembly and phagosome acidification. Consistent with these results, TPL-2 catalytic activity was required for phagosome acidification and the efficient killing of Staphylococcus aureus and Citrobacter rodentium following phagocytic uptake by macrophages. TPL-2 therefore controls innate immune responses of macrophages to bacteria via V-ATPase induction of phagosome maturation.


Assuntos
Macrófagos/metabolismo , Fagossomos/metabolismo , Animais , Humanos , MAP Quinase Quinase Quinases/metabolismo , Fosforilação/fisiologia , Proteínas/metabolismo , Transdução de Sinais/fisiologia , Staphylococcus aureus/metabolismo
13.
J Cell Sci ; 136(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37073598

RESUMO

Several ATP- and cytosol-dependent fusion processes between membranes of the endocytic and exocytic pathways have been biochemically reconstituted. Here, we present a phagosome-lysosome fusion reaction that is driven by micromolar concentrations of Ca2+ in the absence of ATP and cytosol. Investigating classical fusion and Ca2+-driven fusion (CaFu) side-by-side in vitro, using the same membrane preparations, we show that CaFu is faster than standard fusion (StaFu), leads to larger fusion products and is not blocked by established inhibitors of StaFu. A Ca2+ concentration of ∼120 µM supports maximal membrane attachment, and 15 µM Ca2+ supports maximal membrane fusion, indicating that Ca2+ has both a membrane-binding activity and a fusion-promoting activity. StaFu and CaFu are inhibited by a mutant form of α-SNAP (NAPA) that does not support soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) activation, and both are inhibited by a mixture of the cytosolic domains of three cognate Q-SNARE proteins, demonstrating a role of SNAREs in Ca2+-driven membrane merger. CaFu is independent of the Ca2+-regulated proteins synaptotagmin-7, calmodulin, and annexins A2 and A7. We propose that CaFu corresponds to the last step of phagosome-lysosome fusion, when a raised Ca2+ concentration from the compartment lumen activates SNAREs for fusion.


Assuntos
Fusão de Membrana , Proteínas de Transporte Vesicular , Fusão de Membrana/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Cálcio/metabolismo , Proteínas SNARE/metabolismo , Fagossomos/metabolismo , Lisossomos/metabolismo , Trifosfato de Adenosina/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(26): e2123247119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35733245

RESUMO

Mitochondria, a highly metabolically active organelle, have been shown to play an essential role in regulating innate immune function. Mitochondrial Ca2+ uptake via the mitochondrial Ca2+ uniporter (MCU) is an essential process regulating mitochondrial metabolism by targeting key enzymes involved in the tricarboxylic acid cycle (TCA). Accumulative evidence suggests MCU-dependent mitochondrial Ca2+ signaling may bridge the metabolic reprogramming and regulation of immune cell function. However, the mechanism by which MCU regulates inflammation and its related disease remains elusive. Here we report a critical role of MCU in promoting phagocytosis-dependent activation of NLRP3 (nucleotide-binding domain, leucine-rich repeat containing family, pyrin domain-containing 3) inflammasome by inhibiting phagolysosomal membrane repair. Myeloid deletion of MCU (McuΔmye) resulted in an attenuated phagolysosomal rupture, leading to decreased caspase-1 cleavage and interleukin (IL)-1ß release, in response to silica or alum challenge. In contrast, other inflammasome agonists such as adenosine triphosphate (ATP), nigericin, poly(dA:dT), and flagellin induced normal IL-1ß release in McuΔmye macrophages. Mechanistically, we demonstrated that decreased NLRP3 inflammasome activation in McuΔmye macrophages was caused by improved phagolysosomal membrane repair mediated by ESCRT (endosomal sorting complex required for transport)-III complex. Furthermore, McuΔmye mice showed a pronounced decrease in immune cell recruitment and IL-1ß production in alum-induced peritonitis, a typical IL-1-dependent inflammation model. In sum, our results identify a function of MCU in promoting phagocytosis-dependent NLRP3 inflammatory response via an ESCRT-mediated phagolysosomal membrane repair mechanism.


Assuntos
Canais de Cálcio , Inflamassomos , Proteínas Mitocondriais , Proteína 3 que Contém Domínio de Pirina da Família NLR , Peritonite , Fagocitose , Compostos de Alúmen , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Caspase 1/metabolismo , Modelos Animais de Doenças , Complexos Endossomais de Distribuição Requeridos para Transporte , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Camundongos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Peritonite/induzido quimicamente , Peritonite/metabolismo
15.
Mol Microbiol ; 119(3): 285-301, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36627747

RESUMO

Gram-positive Rhodococcus equi (Prescotella equi) is a lung pathogen of foals and immunocompromised humans. Intra-macrophage multiplication requires production of the bacterial Virulence-associated protein A (VapA) which is released into the phagosome lumen. VapA pH-neutralizes intracellular compartments allowing R. equi to multiply in an atypical macrophage phagolysosome. Here, we show that VapA does not support intra-macrophage growth of several other bacterial species demonstrating that only few bacteria have the specific preadaptations needed to profit from VapA. We show that the closest relative of R. equi, environmental Rhodococcus defluvii (Prescotella defluvii), does not multiply in macrophages at 37°C even when VapA is present because of its thermosensitivity but it does so once the infection temperature is lowered providing rare experimental evidence for 'thermal restriction'. Using growth experiments with isolated macrophage lysosomes and modified infection schemes we provide evidence that R. equi resists the attack by phagolysosome contents at low pH for several hours. During this time, R. equi produces and secretes VapA which enables it to grow at the expense of lysosome constituents. We present arguments that, under natural infection conditions, R. equi is VapA-less during the initial encounter with the host. This has important implications for vaccine development.


Assuntos
Rhodococcus equi , Proteína Estafilocócica A , Humanos , Animais , Cavalos , Virulência , Proteína Estafilocócica A/metabolismo , Fatores de Virulência/metabolismo , Proteínas de Bactérias , Rhodococcus equi/genética , Rhodococcus equi/metabolismo , Macrófagos/microbiologia
16.
Immunity ; 43(6): 1087-100, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26682983

RESUMO

The initiation of cytotoxic immune responses by dendritic cells (DCs) requires the presentation of antigenic peptides derived from phagocytosed microbes and infected or dead cells to CD8(+) T cells, a process called cross-presentation. Antigen cross-presentation by non-activated DCs, however, is not sufficient for the effective induction of immune responses. Additionally, DCs need to be activated through innate receptors, like Toll-like receptors (TLRs). During DC maturation, cross-presentation efficiency is first upregulated and then turned off. Here we show that during this transient phase of enhanced cross-presentation, phago-lysosome fusion was blocked by the topological re-organization of lysosomes into perinuclear clusters. LPS-induced lysosomal clustering, inhibition of phago-lysosome fusion and enhanced cross-presentation, all required expression of the GTPase Rab34. We conclude that TLR4 engagement induces a Rab34-dependent re-organization of lysosomal distribution that delays antigen degradation to transiently enhance cross-presentation, thereby optimizing the priming of CD8(+) T cell responses against pathogens.


Assuntos
Apresentação de Antígeno/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica/imunologia , Feminino , Citometria de Fluxo , Lisossomos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fagossomos/imunologia , RNA Interferente Pequeno , Transfecção , Proteínas rab de Ligação ao GTP/imunologia
17.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673839

RESUMO

Phagocytosis (and endocytosis) is an unusual cellular process that results in the formation of a novel subcellular organelle, the phagosome. This phagosome contains not only the internalised target of phagocytosis but also the external medium, creating a new border between extracellular and intracellular environments. The boundary at the plasma membrane is, of course, tightly controlled and exploited in ionic cell signalling events. Although there has been much work on the control of phagocytosis by ions, notably, Ca2+ ions influxing across the plasma membrane, increasing our understanding of the mechanism enormously, very little work has been done exploring the phagosome/cytosol boundary. In this paper, we explored the changes in the intra-phagosomal Ca2+ ion content that occur during phagocytosis and phagosome formation in human neutrophils. Measuring Ca2+ ion concentration in the phagosome is potentially prone to artefacts as the intra-phagosomal environment experiences changes in pH and oxidation. However, by excluding such artefacts, we conclude that there are open Ca2+ channels on the phagosome that allow Ca2+ ions to "drain" into the surrounding cytosol. This conclusion was confirmed by monitoring the translocation of the intracellularly expressed YFP-tagged C2 domain of PKC-γ. This approach marked regions of membrane at which Ca2+ influx occurred, the earliest being the phagocytic cup, and then the whole cell. This paper therefore presents data that have novel implications for understanding phagocytic Ca2+ signalling events, such as peri-phagosomal Ca2+ hotspots, and other phenomena.


Assuntos
Sinalização do Cálcio , Cálcio , Neutrófilos , Fagocitose , Fagossomos , Humanos , Cálcio/metabolismo , Fagossomos/metabolismo , Neutrófilos/metabolismo , Citosol/metabolismo , Membrana Celular/metabolismo
18.
J Biol Chem ; 298(8): 102150, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35716776

RESUMO

Acidification of phagosomes is essential for the bactericidal activity of macrophages. Targeting machinery that regulates pH within the phagosomes is a prominent strategy employed by various pathogens that have emerged as major threats to public health. Nascent phagosomes acquire the machinery for pH regulation through a graded maturation process involving fusion with endolysosomes. Meticulous coordination between proton pumping and leakage mechanisms is crucial for maintaining optimal pH within the phagosome. However, relative to mechanisms involved in acidifying the phagosome lumen, little is known about proton leakage pathways in this organelle. Sodium proton transporter NHE9 is a known proton leakage pathway located on the endosomes. As phagosomes acquire proteins through fusions with endosomes during maturation, NHE9 seemed a promising candidate for regulating proton fluxes on the phagosome. Here, using genetic and biophysical approaches, we show NHE9 is an important proton leakage pathway associated with the maturing phagosome. NHE9 is highly expressed in immune cells, specifically macrophages; however, NHE9 expression is strongly downregulated upon bacterial infection. We show that compensatory ectopic NHE9 expression hinders the directed motion of phagosomes along microtubules and promotes early detachment from the microtubule tracks. As a result, these phagosomes have shorter run lengths and are not successful in reaching the lysosome. In accordance with this observation, we demonstrate that NHE9 expression levels negatively correlate with bacterial survival. Together, our findings show that NHE9 regulates lumenal pH to affect phagosome maturation, and consequently, microbicidal activity in macrophages.


Assuntos
Macrófagos , Fagossomos , Trocadores de Sódio-Hidrogênio , Endossomos/metabolismo , Concentração de Íons de Hidrogênio , Lisossomos/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Microtúbulos/metabolismo , Fagossomos/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo
19.
EMBO J ; 38(11)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31028084

RESUMO

Alternatively activated M2 macrophages play an important role in maintenance of tissue homeostasis by scavenging dead cells, cell debris and lipoprotein aggregates via phagocytosis. Using proteomics, we investigated how alternative activation, driven by IL-4, modulated the phagosomal proteome to control macrophage function. Our data indicate that alternative activation enhances homeostatic functions such as proteolysis, lipolysis and nutrient transport. Intriguingly, we identified the enhanced recruitment of the TAK1/MKK7/JNK signalling complex to phagosomes of IL-4-activated macrophages. The recruitment of this signalling complex was mediated through K63 polyubiquitylation of the macrophage scavenger receptor 1 (MSR1). Triggering of MSR1 in IL-4-activated macrophages leads to enhanced JNK activation, thereby promoting a phenotypic switch from an anti-inflammatory to a pro-inflammatory state, which was abolished upon MSR1 deletion or JNK inhibition. Moreover, MSR1 K63 polyubiquitylation correlated with the activation of JNK signalling in ovarian cancer tissue from human patients, suggesting that it may be relevant for macrophage phenotypic shift in vivo Altogether, we identified that MSR1 signals through JNK via K63 polyubiquitylation and provides evidence for the receptor's involvement in macrophage polarization.


Assuntos
Inflamação , Interleucina-4/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Ativação de Macrófagos , Receptores Depuradores Classe A/agonistas , Receptores Depuradores Classe A/genética , Animais , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/genética , Células Cultivadas , Feminino , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Mediadores da Inflamação/fisiologia , Lipólise/efeitos dos fármacos , Lipólise/genética , Lipoproteínas LDL/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose/efeitos dos fármacos , Fagocitose/genética , Polissacarídeos/farmacologia , Processamento de Proteína Pós-Traducional/genética , Células RAW 264.7 , Receptores Depuradores Classe A/química , Receptores Depuradores Classe A/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Ubiquitinação/genética
20.
J Cell Sci ; 134(5)2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33380490

RESUMO

Borrelia burgdorferi is the causative agent of Lyme disease, a multisystemic disorder affecting primarily skin, joints and nervous system. Successful internalization and intracellular processing of borreliae by immune cells, like macrophages, is decisive for the outcome of a respective infection. Here, we use, for the first time, focused ion beam scanning electron microscopy tomography (FIB-SEM tomography) to visualize the interaction of borreliae with primary human macrophages with high resolution. We report that interaction between macrophages and the elongated and highly motile borreliae can lead to formation of membrane tunnels that extend deeper into the host cytoplasm than the actual phagosome, most probably as a result of partial extrication of captured borreliae. We also show that membrane tubulation at borreliae-containing phagosomes, a process suggested earlier as a mechanism leading to phagosome compaction but hard to visualize in live-cell imaging, is apparently a frequent phenomenon. Finally, we demonstrate that the endoplasmic reticulum (ER) forms multiple STIM1-positive contact sites with both membrane tunnels and phagosome tubulations, confirming the important role of the ER during uptake and intracellular processing of borreliae.


Assuntos
Borrelia burgdorferi , Borrelia , Doença de Lyme , Humanos , Macrófagos , Fagossomos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa