Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 954
Filtrar
1.
Cell ; 184(20): 5201-5214.e12, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34536345

RESUMO

Certain obligate parasites induce complex and substantial phenotypic changes in their hosts in ways that favor their transmission to other trophic levels. However, the mechanisms underlying these changes remain largely unknown. Here we demonstrate how SAP05 protein effectors from insect-vectored plant pathogenic phytoplasmas take control of several plant developmental processes. These effectors simultaneously prolong the host lifespan and induce witches' broom-like proliferations of leaf and sterile shoots, organs colonized by phytoplasmas and vectors. SAP05 acts by mediating the concurrent degradation of SPL and GATA developmental regulators via a process that relies on hijacking the plant ubiquitin receptor RPN10 independent of substrate ubiquitination. RPN10 is highly conserved among eukaryotes, but SAP05 does not bind insect vector RPN10. A two-amino-acid substitution within plant RPN10 generates a functional variant that is resistant to SAP05 activities. Therefore, one effector protein enables obligate parasitic phytoplasmas to induce a plethora of developmental phenotypes in their hosts.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Parasitos/fisiologia , Proteólise , Ubiquitinas/metabolismo , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Engenharia Genética , Humanos , Insetos/fisiologia , Modelos Biológicos , Fenótipo , Fotoperíodo , Filogenia , Phytoplasma/fisiologia , Desenvolvimento Vegetal , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Reprodução , Nicotiana , Fatores de Transcrição/metabolismo , Transcrição Gênica
2.
Proc Natl Acad Sci U S A ; 121(24): e2400639121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38838018

RESUMO

Leaf wounding triggers rapid long-range electrical signaling that initiates systemic defense responses to protect the plants from further attack. In Arabidopsis, this process largely depends on clade three GLUTAMATE RECEPTOR-LIKE (GLR) genes GLR3.3 and GLR3.6. In the cellular context, phloem sieve elements and xylem contact cells where GLRs were mostly present are implicated in the signaling events. In spite of that, the spatial requirements of different leaf cell types for leaf-to-leaf signaling remain poorly investigated. In this study, we dissected cell-type-specific long-distance wound signaling mediated by GLR3s and showed that phloem companion cells are critical in shaping the functions of GLR3.3 and GLR3.6 in the signaling pathway. GLR3.3-mediated response is phloem-specific, during which, GLR3.3 has to be renewed from companion cells to allow its function in sieve elements. GLR3.6 functions dually in ectopic phloem companion cells, in addition to xylem contact cells. Furthermore, the action of GLR3.6 in phloem is independent of its paralog GLR3.3 and probably requires synthesis of GLR3.6 from xylem contact cells. Overall, our work highlights that the phloem companion cell is crucial for both GLRs in controlling leaf-to-leaf electrical signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Floema , Folhas de Planta , Transdução de Sinais , Folhas de Planta/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Floema/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Receptores de Glutamato/metabolismo , Xilema/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Proc Natl Acad Sci U S A ; 120(24): e2302854120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276396

RESUMO

Stomata are pores found in the epidermis of stems or leaves that modulate both plant gas exchange and water/nutrient uptake. The development and function of plant stomata are regulated by a diverse range of environmental cues. However, how carbohydrate status in preexisting leaves might determine systemic stomatal formation within newly developing leaves has remained obscure. The glucose (Glc) sensor HEXOKINASE1 (HXK1) has been reported to decrease the stability of an ethylene/Glc signaling transcriptional regulator, EIN3 (ETHYLENE INSENSITIVE3). EIN3 in turn directly represses the expression of SUC2 (sucrose transporter 2), encoding a master transporter of sucrose (Suc). Further, KIN10, a nuclear regulator involved in energy homeostasis, has been reported to repress the transcription factor SPCH (SPEECHLESS), a master regulator of stomatal development. Here, we demonstrate that the Glc status of preexisting leaves determines systemic stomatal development within newly developing leaves by the HXK1-¦EIN3-¦SUC2 module. Further, increasing Glc levels in preexisting leaves results in a HXK1-dependent decrease of EIN3 and increase of SUC2, triggering the perception, amplification and relay of HXK1-dependent Glc signaling and thereby triggering Suc transport from mature to newly developing leaves. The HXK1-¦EIN3-¦SUC2 molecular module thereby drives systemic Suc transport from preexisting leaves to newly developing leaves. Subsequently, increasing Suc levels within newly developing leaves promotes stomatal formation through the established KIN10⟶ SPCH module. Our findings thus show how a carbohydrate signal in preexisting leaves is sensed, amplified and relayed to determine the extent of systemic stomatal development within newly developing leaves.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Açúcares/metabolismo , Folhas de Planta/metabolismo , Etilenos/metabolismo , Sacarose/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
4.
Plant J ; 118(3): 905-919, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38251949

RESUMO

Phosphate (Pi) is essential for plant growth and development. One strategy to improve Pi use efficiency is to enhance Pi remobilization among leaves. Using transcriptome analysis with first (top) and fourth (down) leaf blades from rice (Oryza sativa) in Pi-sufficient and deficient conditions, we identified 1384 genes differentially expressed among these leaf blades. These genes were involved in physiological processes, metabolism, transport, and photosynthesis. Moreover, we identified the Pi efflux transporter gene, OsPHO1;3, responding to Pi-supplied conditions among these leaf blades. OsPHO1;3 is highly expressed in companion cells of phloem, but not xylem, in leaf blades and induced by Pi starvation. Mutation of OsPHO1;3 led to Pi accumulation in second to fourth leaves under Pi-sufficient conditions, but enhanced Pi levels in first leaves under Pi-deficient conditions. These Pi accumulations in leaves of Ospho1;3 mutants resulted from induction of OsPHT1;2 and OsPHT1;8 in root and reduction of Pi remobilization in leaf blades, revealed by the decreased Pi in phloem of leaves. Importantly, lack of OsPHO1;3 caused growth defects under a range of Pi-supplied conditions. These results demonstrate that Pi remobilization is essential for Pi homeostasis and plant growth irrespective of Pi-supplied conditions, and OsPHO1;3 plays an essential role in Pi remobilization for normal plant growth.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Homeostase , Oryza , Floema , Proteínas de Transporte de Fosfato , Fosfatos , Folhas de Planta , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Fosfatos/metabolismo , Floema/metabolismo , Floema/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Mutação , Transcriptoma
5.
Development ; 149(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36196593

RESUMO

Seedling vigor is a key agronomic trait that determines juvenile plant performance. Angiosperm seeds develop inside fruits and are connected to the mother plant through vascular tissues. Their formation requires plant-specific genes, such as BREVIS RADIX (BRX) in Arabidopsis thaliana roots. BRX family proteins are found throughout the euphyllophytes but also occur in non-vascular bryophytes and non-seed lycophytes. They consist of four conserved domains, including the tandem BRX domains. We found that bryophyte or lycophyte BRX homologs can only partially substitute for Arabidopsis BRX (AtBRX) because they miss key features in the linker between the BRX domains. Intriguingly, however, expression of a BRX homolog from the lycophyte Selaginella moellendorffii (SmBRX) in an A. thaliana wild-type background confers robustly enhanced root growth vigor that persists throughout the life cycle. This effect can be traced to a substantial increase in seed and embryo size, is associated with enhanced vascular tissue proliferation, and can be reproduced with a modified, SmBRX-like variant of AtBRX. Our results thus suggest that BRX variants can boost seedling vigor and shed light on the activity of ancient, non-angiosperm BRX family proteins.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Magnoliopsida , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plântula/genética , Magnoliopsida/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Raízes de Plantas/metabolismo , Arabidopsis/metabolismo
6.
Annu Rev Genet ; 51: 335-359, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28892639

RESUMO

Understanding the development of vascular tissues in plants is crucial because the evolution of vasculature enabled plants to thrive on land. Various systems and approaches have been used to advance our knowledge about the genetic regulation of vasculature development, from the scale of single genes to networks. In this review, we provide a perspective on the major approaches used in studying plant vascular development, and we cover the mechanisms and genetic networks underlying vascular tissue specification, patterning, and differentiation.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Floema/genética , Proteínas de Plantas/genética , Plantas/genética , Xilema/genética , Regulação da Expressão Gênica no Desenvolvimento , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Morfogênese/genética , Floema/crescimento & desenvolvimento , Floema/metabolismo , Desenvolvimento Vegetal/genética , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Plantas/metabolismo , Transcrição Gênica , Xilema/crescimento & desenvolvimento , Xilema/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983847

RESUMO

Symplasmicly connected cells called sieve elements form a network of tubes in the phloem of vascular plants. Sieve elements have essential functions as they provide routes for photoassimilate distribution, the exchange of developmental signals, and the coordination of defense responses. Nonetheless, they are the least understood main type of plant cells. They are extremely sensitive, possess a reduced endomembrane system without Golgi apparatus, and lack nuclei and translation machineries, so that transcriptomics and similar techniques cannot be applied. Moreover, the analysis of phloem exudates as a proxy for sieve element composition is marred by methodological problems. We developed a simple protocol for the isolation of sieve elements from leaves and stems of Nicotiana tabacum at sufficient amounts for large-scale proteome analysis. By quantifying the enrichment of individual proteins in purified sieve element relative to bulk phloem preparations, proteins of increased likelyhood to function specifically in sieve elements were identified. To evaluate the validity of this approach, yellow fluorescent protein constructs of genes encoding three of the candidate proteins were expressed in plants. Tagged proteins occurred exclusively in sieve elements. Two of them, a putative cytochrome b561/ferric reductase and a reticulon-like protein, appeared restricted to segments of the endoplasmic reticulum (ER) that were inaccessible to green fluorescent protein dissolved in the ER lumen, suggesting a previously unknown differentiation of the endomembrane system in sieve elements. Evidently, our list of promising candidate proteins ( SI Appendix, Table S1) provides a valuable exploratory tool for sieve element biology.


Assuntos
Retículo Endoplasmático/metabolismo , Nicotiana/metabolismo , Células Vegetais/metabolismo , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteômica , Retículo Endoplasmático/genética , Folhas de Planta/citologia , Folhas de Planta/genética , Caules de Planta/citologia , Caules de Planta/genética , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Nicotiana/citologia , Nicotiana/genética
8.
BMC Biol ; 22(1): 113, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750524

RESUMO

BACKGROUND: Protein posttranslational modifications (PTMs) are fast and early responses to environmental changes, including pathogen infection. Jujube witches' broom (JWB) is a phytoplasma disease causing great economic loss in jujube production. After phytoplasma infection, the transcriptional, translational, and metabolic levels in jujube were activated, enabling it to survive during phytoplasma invasion. However, no study has yet reported on PTMs in jujube. Lysine crotonylation (Kcr) and lysine succinylation (Ksu) have been popular studies in recent years and their function in plant phytoplasma-stress responses remains unclear. RESULTS: Here, 1656 crotonylated and 282 succinylated jujube proteins were first identified under phytoplasma-stress, of which 198 were simultaneously crotonylated and succinylated. Comparative analysis revealed that 656 proteins, 137 crotonylated and 43 succinylated proteins in jujube were regulated by phytoplasma infection, suggesting that Kcr was more universal than Ksu. Kcr differentially expressed proteins (DEPs) were related to ribosomes, photosynthetic and carbon metabolism, while Ksu DEPs were mainly involved in carbon metabolism, the TCA cycle and secondary metabolite biosynthesis. The crosstalk network among proteome, crotonylome and succinylome showed that DEPs related to ribosomal, peroxidases and glutathione redox were enriched. Among them, ZjPOD51 and ZjPHGPX2 significantly increased at the protein and Kcr level under phytoplasma-stress. Notably, 7 Kcr sites were identified in ZjPHGPX2, a unique antioxidant enzyme. After inhibitor nicotinamide (NAM) treatment, GPX enzyme activity in jujube seedlings was reduced. Further, site-directed mutagenesis of key Kcr modification sites K130 and/or K135 in ZjPHGPX2 significantly reduced its activity. CONCLUSIONS: This study firstly provided large-scale datasets of Kcr and Ksu in phytoplasma-infected jujube and revealed that Kcr modification in ZjPHGPX2 positively regulates its activity.


Assuntos
Phytoplasma , Doenças das Plantas , Proteínas de Plantas , Ziziphus , Ziziphus/microbiologia , Ziziphus/metabolismo , Phytoplasma/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Doenças das Plantas/microbiologia , Processamento de Proteína Pós-Traducional , Estresse Fisiológico , Lisina/metabolismo
9.
Annu Rev Entomol ; 69: 503-525, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37816261

RESUMO

The rapid advances in available transcriptomic and genomic data and our understanding of the physiology and biochemistry of whitefly-plant interactions have allowed us to gain new and significant insights into the biology of whiteflies and their successful adaptation to host plants. In this review, we provide a comprehensive overview of the mechanisms that whiteflies have evolved to overcome the challenges of feeding on phloem sap. We also highlight the evolution and functions of gene families involved in host perception, evaluation, and manipulation; primary metabolism; and metabolite detoxification. We discuss the emerging themes in plant immunity to whiteflies, focusing on whitefly effectors and their sites of action in plant defense-signaling pathways. We conclude with a discussion of advances in the genetic manipulation of whiteflies and the potential that they hold for exploring the interactions between whiteflies and their host plants, as well as the development of novel strategies for the genetic control of whiteflies.


Assuntos
Hemípteros , Animais , Hemípteros/genética , Plantas , Transdução de Sinais
10.
Plant J ; 116(1): 201-216, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37381632

RESUMO

High-affinity K+ transporters/K+ uptake permeases/K+ transporters (HAK/KUP/KT) are important pathways mediating K+ transport across cell membranes, which function in maintaining K+ homeostasis during plant growth and stress response. An increasing number of studies have shown that HAK/KUP/KT transporters play crucial roles in root K+ uptake and root-to-shoot translocation. However, whether HAK/KUP/KT transporters also function in phloem K+ translocation remain unclear. In this study, we revealed that a phloem-localized rice HAK/KUP/KT transporter, OsHAK18, mediated cell K+ uptake when expressed in yeast, Escherichia coli and Arabidopsis. It was localized at the plasma membrane. Disruption of OsHAK18 rendered rice seedlings insensitive to low-K+ (LK) stress. After LK stress, some WT leaves showed severe wilting and chlorosis, whereas the corresponding leaves of oshak18 mutant lines (a Tos17 insertion line and two CRISPR lines) remained green and unwilted. Compared with WT, the oshak18 mutants accumulated more K+ in shoots but less K+ in roots after LK stress, leading to a higher shoot/root ratio of K+ per plant. Disruption of OsHAK18 does not affect root K+ uptake and K+ level in xylem sap, but it significantly decreases phloem K+ concentration and inhibits root-to-shoot-to-root K+ (Rb+ ) translocation in split-root assay. These results reveal that OsHAK18 mediates phloem K+ loading and redistribution, whose disruption is in favor of shoot K+ retention under LK stress. Our findings expand the understanding of HAK/KUP/KT transporters' functions and provide a promising strategy for improving rice tolerance to K+ deficiency.


Assuntos
Arabidopsis , Oryza , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Potássio/metabolismo , Floema/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
11.
Plant J ; 116(6): 1696-1716, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37713307

RESUMO

We investigated the basis for better performance of transgenic Nicotiana tabacum plants with G6PDH-isoenzyme replacement in the cytosol (Xanthi::cP2::cytRNAi, Scharte et al., 2009). After six generations of selfing, infiltration of Phytophthora nicotianae zoospores into source leaves confirmed that defence responses (ROS, callose) are accelerated, showing as fast cell death of the infected tissue. Yet, stress-related hormone profiles resembled susceptible Xanthi and not resistant cultivar SNN, hinting at mainly metabolic adjustments in the transgenic lines. Leaves of non-stressed plants contained twofold elevated fructose-2,6-bisphosphate (F2,6P2 ) levels, leading to partial sugar retention (soluble sugars, starch) and elevated hexose-to-sucrose ratios, but also more lipids. Above-ground biomass lay in between susceptible Xanthi and resistant SNN, with photo-assimilates preferentially allocated to inflorescences. Seeds were heavier with higher lipid-to-carbohydrate ratios, resulting in increased harvest yields - also under water limitation. Abiotic stress tolerance (salt, drought) was improved during germination, and in floated leaf disks of non-stressed plants. In leaves of salt-watered plants, proline accumulated to higher levels during illumination, concomitant with efficient NADP(H) use and recycling. Non-stressed plants showed enhanced PSII-induction kinetics (upon dark-light transition) with little differences at the stationary phase. Leaf exudates contained 10% less sucrose, similar amino acids, but more fatty acids - especially in the light. Export of specific fatty acids via the phloem may contribute to both, earlier flowering and higher seed yields of the Xanthi-cP2 lines. Apparently, metabolic priming by F2,6P2 -combined with sustained NADP(H) turnover-bypasses the genetically fixed growth-defence trade-off, rendering tobacco plants more stress-resilient and productive.


Assuntos
Isoenzimas , Nicotiana , Isoenzimas/metabolismo , Nicotiana/genética , NADP/metabolismo , Sementes/genética , Sementes/metabolismo , Sacarose/metabolismo , Ácidos Graxos/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Folhas de Planta/metabolismo
12.
Mol Plant Microbe Interact ; 37(3): 211-219, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38148271

RESUMO

Phloem-feeding insects include many important agricultural pests that cause crop damage globally, either through feeding-related damage or upon transmission of viruses and microbes that cause plant diseases. With genetic crop resistances being limited to most of these pests, control relies on insecticides, which are costly and damaging to the environment and to which insects can develop resistance. Like other plant parasites, phloem-feeding insects deliver effectors inside their host plants to promote susceptibility, most likely by a combination of suppressing immunity and promoting nutrient availability. The recent emergence of the effector paradigm in plant-insect interactions is highlighted by increasing availability of effector repertoires for a range of species and a broadening of our knowledge concerning effector functions. Here, we focus on recent progress made toward identification of effector repertoires from phloem-feeding insects and developments in effector biology that will advance functional characterization studies. Importantly, identification of effector activities from herbivorous insects promises to provide new avenues toward development of crop protection strategies. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Floema , Saliva , Animais , Saliva/metabolismo , Floema/metabolismo , Insetos , Plantas , Herbivoria
13.
Small ; 20(7): e2304588, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37840413

RESUMO

Current practices for delivering agrochemicals are inefficient, with only a fraction reaching the intended targets in plants. The surfaces of nanocarriers are functionalized with sucrose, enabling rapid and efficient foliar delivery into the plant phloem, a vascular tissue that transports sugars, signaling molecules, and agrochemicals through the whole plant. The chemical affinity of sucrose molecules to sugar membrane transporters on the phloem cells enhances the uptake of sucrose-coated quantum dots (sucQD) and biocompatible carbon dots with ß-cyclodextrin molecular baskets (suc-ß-CD) that can carry a wide range of agrochemicals. The QD and CD fluorescence emission properties allowed detection and monitoring of rapid translocation (<40 min) in the vasculature of wheat leaves by confocal and epifluorescence microscopy. The suc-ß-CDs more than doubled the delivery of chemical cargoes into the leaf vascular tissue. Inductively coupled plasma mass spectrometry (ICP-MS) analysis showed that the fraction of sucQDs loaded into the phloem and transported to roots is over 6.8 times higher than unmodified QDs. The sucrose coating of nanoparticles approach enables unprecedented targeted delivery to roots with ≈70% of phloem-loaded nanoparticles delivered to roots. The use of plant biorecognition molecules mediated delivery provides an efficient approach for guiding nanocarriers containing agrochemicals to the plant vasculature and whole plants.


Assuntos
Plantas , Sacarose , Transporte Biológico , Plantas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Agroquímicos , Folhas de Planta
14.
Planta ; 259(6): 141, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695915

RESUMO

MAIN CONCLUSION: This review highlights the roles of phloem in the long-distance transport and accumulation of As in rice plants, facilitating the formulation of new strategies to reduce the grain As content. Rice is a staple diet for a significant proportion of the global population. As toxicity is a major issue affecting the rice productivity and quality worldwide. Phloem tissues of rice plants play vital roles in As speciation, long-distance transport, and unloading, thereby controlling the As accumulation in rice grains. Phloem transport accounts for a significant proportion of As transport to grains, ranging from 54 to 100% depending on the species [inorganic arsenate (As(V)), arsenite (As(III)), or organic dimethylarsinic acid (DMA(V)]. However, the specific mechanism of As transport through phloem leading to its accumulation in grains remains unknown. Therefore, understanding the molecular mechanism of phloem-mediated As transport is necessary to determine the roles of phloem in long-distance As transport and subsequently reduce the grain As content via biotechnological interventions. This review discusses the roles of phloem tissues in the long-distance transport and accumulation of As in rice grains. This review also highlights the biotechnological approaches using critical genetic factors involved in nodal accumulation, vacuolar sequestration, and cellular efflux of As in phloem- or phloem-associated tissues. Furthermore, the limitations of existing transgenic techniques are outlined to facilitate the formulation of novel strategies for the development of rice with reduced grain As content.


Assuntos
Arsênio , Oryza , Floema , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/genética , Floema/metabolismo , Arsênio/metabolismo , Transporte Biológico , Grão Comestível/metabolismo , Grão Comestível/crescimento & desenvolvimento
15.
New Phytol ; 241(1): 343-362, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37858933

RESUMO

Most plant reoviruses are phloem-limited, but the mechanism has remained unknown for more than half a century. Southern rice black-streaked dwarf virus (Fijivirus, Reoviridae) causes phloem-derived tumors, where its virions, genomes, and proteins accumulate, and it was used as a model to explore how its host plant limits the virus within its phloem. High-throughput volume electron microscopy revealed that only sieve plate pores and flexible gateways rather than plasmodesmata had a sufficiently large size exclusion limit (SEL) to accommodate virions and potentially serve as pathways of virion movement. The large SEL gateways were enriched within the proliferated sieve element (SE) layers of tumors. The lack of such connections out of the SE-enriched regions of tumors defined a size-dependent physical barrier to high flux transportation of virions. A working model is proposed to demonstrate the mechanism underlying limitation of virus within phloem.


Assuntos
Neoplasias , Microscopia Eletrônica de Volume , Floema/metabolismo , Neoplasias/metabolismo
16.
New Phytol ; 243(3): 851-865, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38890801

RESUMO

Secondary xylem and phloem originate from a lateral meristem called the vascular cambium that consists of one to several layers of meristematic cells. Recent lineage tracing studies have shown that only one of the cambial cells in each radial cell file functions as the stem cell, capable of producing both secondary xylem and phloem. Here, we first review how phytohormones and signalling peptides regulate vascular cambium formation and activity. We then propose how the stem cell concept, familiar from apical meristems, could be applied to cambium studies. Finally, we discuss how this concept could set the basis for future research.


Assuntos
Câmbio , Células-Tronco , Xilema , Câmbio/citologia , Câmbio/crescimento & desenvolvimento , Câmbio/fisiologia , Células-Tronco/citologia , Xilema/citologia , Floema/citologia , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Feixe Vascular de Plantas/crescimento & desenvolvimento , Feixe Vascular de Plantas/citologia , Meristema/citologia , Meristema/crescimento & desenvolvimento
17.
New Phytol ; 242(1): 262-277, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38332248

RESUMO

Plants are simultaneously attacked by different pests that rely on sugars uptake from plants. An understanding of the role of plant sugar allocation in these multipartite interactions is limited. Here, we characterized the expression patterns of sucrose transporter genes and evaluated the impact of targeted transporter gene mutants and brown planthopper (BPH) phloem-feeding and oviposition on root sugar allocation and BPH-reduced rice susceptibility to Meloidogyne graminicola. We found that the sugar transporter genes OsSUT1 and OsSUT2 are induced at BPH oviposition sites. OsSUT2 mutants showed a higher resistance to gravid BPH than to nymph BPH, and this was correlated with callose deposition, as reflected in a different effect on M. graminicola infection. BPH phloem-feeding caused inhibition of callose deposition that was counteracted by BPH oviposition. Meanwhile, this pivotal role of sugar allocation in BPH-reduced rice susceptibility to M. graminicola was validated on rice cultivar RHT harbouring BPH resistance genes Bph3 and Bph17. In conclusion, we demonstrated that rice susceptibility to M. graminicola is regulated by BPH phloem-feeding and oviposition on rice through differences in plant sugar allocation.


Assuntos
Hemípteros , Oryza , Tylenchoidea , Animais , Feminino , Hemípteros/fisiologia , Açúcares/metabolismo , Oryza/metabolismo
18.
New Phytol ; 242(1): 154-169, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38375601

RESUMO

Phloem sieve elements (PSE), the primary conduits collaborating with neighboring phloem pole pericycle (PPP) cells to facilitate unloading in Arabidopsis roots, undergo a series of developmental stages before achieving maturation and functionality. However, the mechanism that maintains the proper progression of these differentiation stages remains largely unknown. We identified a gain-of-function mutant altered phloem pole pericycle 1 Dominant (app1D), producing a truncated, nuclear-localized active form of NAC with Transmembrane Motif 1-like (NTL9). This mutation leads to ectopic expression of its downstream target CALLOSE SYNTHASE 8 (CalS8), thereby inducing callose accumulation, impeding SE differentiation, impairing phloem transport, and inhibiting root growth. The app1D phenotype could be reproduced by blocking the symplastic channels of cells within APP1 expression domain in wild-type (WT) roots. The WT APP1 is primarily membrane-tethered and dormant in the root meristem cells but entries into the nucleus in several cells in PPP near the unloading region, and this import is inhibited by blocking the symplastic intercellular transport in differentiating SE. Our results suggest a potential maintenance mechanism involving an APP1-CalS8 module, which induces CalS8 expression and modulates symplastic communication, and the proper activation of this module is crucial for the successful differentiation of SE in the Arabidopsis root.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Glucanos , Glucosiltransferases , Arabidopsis/metabolismo , Floema/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
19.
New Phytol ; 242(3): 975-987, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38439696

RESUMO

Stable oxygen isotope ratio of tree-ring α-cellulose (δ18Ocel) yields valuable information on many aspects of tree-climate interactions. However, our current understanding of the mechanistic controls on δ18Ocel is incomplete, with a knowledge gap existent regarding the fractionation effect characterizing carbonyl-water oxygen exchange during sucrose translocation from leaf to phloem. To address this insufficiency, we set up an experimental system integrating a vapor 18O-labeling feature to manipulate leaf-level isotopic signatures in tree saplings enclosed within whole-canopy gas-exchange cuvettes. We applied this experimental system to three different tree species to determine their respective relationships between 18O enrichment of sucrose in leaf lamina (Δ18Ol_suc) and petiole phloem (Δ18Ophl_suc) under environmentally/physiologically stable conditions. Based on the determined Δ18Ophl_suc-Δ18Ol_suc relationships, we estimated that on average, at least 25% of the oxygen atoms in sucrose undergo isotopic exchange with water along the leaf-to-phloem translocation path and that the biochemical fractionation factor accounting for such exchange is c. 34‰, markedly higher than the conventionally assumed value of 27‰. Our study represents a significant step toward quantitative elucidation of the oxygen isotope dynamics during sucrose translocation in trees. This has important implications with respect to improving the δ18Ocel model and its related applications in paleoclimatic and ecophysiological contexts.


Assuntos
Oxigênio , Árvores , Oxigênio/análise , Sacarose , Água/análise , Floema , Isótopos de Oxigênio/análise , Folhas de Planta/química , Isótopos de Carbono/análise
20.
Plant Cell Environ ; 47(4): 1285-1299, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38213092

RESUMO

Using a unique 8-year data set (2010-2017) of phloem data, we studied the effect of temperature and precipitation on the phloem anatomy (conduit area, widths of ring, early and late phloem) and xylem-ring width in two coexisting temperate tree species, Picea abies and Fagus sylvatica, from three contrasting European temperate forest sites. Histometric analyses were performed on microcores taken from tree stems in autumn. We found high interannual variability and sensitivity of phloem anatomy and xylem-ring widths to precipitation and temperature; however, the responses were species- and site-specific. The contrasting response of xylem and phloem-ring widths of the same tree species to weather conditions was found at the two Slovenian sites generally well supplied with precipitation, while at the driest Czech site, the influence of weather factors on xylem and phloem ring widths was synchronised. Since widths of mean annual xylem and phloem increments were narrowest at the Czech site, this site is suggested to be most restrictive for the radial growth of both species. By influencing the seasonal patterns of xylem and phloem development, water availability appears to be the most important determinant of tissue- and species-specific responses to local weather conditions.


Assuntos
Abies , Fagus , Picea , Pinus , Picea/fisiologia , Floema , Clima , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa