Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(22): e2221127120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216515

RESUMO

CRISPR/Cas9 genome-editing tools have tremendously boosted our capability of manipulating the eukaryotic genomes in biomedical research and innovative biotechnologies. However, the current approaches that allow precise integration of gene-sized large DNA fragments generally suffer from low efficiency and high cost. Herein, we developed a versatile and efficient approach, termed LOCK (Long dsDNA with 3'-Overhangs mediated CRISPR Knock-in), by utilizing specially designed 3'-overhang double-stranded DNA (odsDNA) donors harboring 50-nt homology arm. The length of the 3'-overhangs of odsDNA is specified by the five consecutive phosphorothioate modifications. Compared with existing methods, LOCK allows highly efficient targeted insertion of kilobase-sized DNA fragments into the mammalian genomes with low cost and low off-target effects, yielding >fivefold higher knock-in frequencies than conventional homologous recombination-based approaches. This newly designed LOCK approach based on homology-directed repair is a powerful tool suitable for gene-sized fragment integration that is urgently needed for genetic engineering, gene therapies, and synthetic biology.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Sistemas CRISPR-Cas/genética , Sequência de Bases , Edição de Genes/métodos , DNA/genética , Recombinação Homóloga , Mamíferos/genética
2.
Nano Lett ; 22(24): 10057-10065, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36524831

RESUMO

The difficulty of the molecular design and chemical synthesis of artificial sensing receptors restricts their diagnostic and proteomic applications. Herein, we report a concept of "ensemble modified aptamers" (EMAmers) that exploits the collective recognition abilities of a small set of protein-like side-chain-modified nucleic acid ligands for discriminative identification of molecular or cellular targets. Different types and numbers of hydrophobic functional groups were incorporated at designated positions on nucleic acid scaffolds to mimic amino acid side chains. We successfully assayed 18 EMAmer probes with differential binding affinities to seven proteins. We constructed an EMAmer-based chemical nose sensor and demonstrated its application in blinded unknown protein identification, giving a 92.9% accuracy. Additionally, the sensor is generalizable to the detection of blinded unknown bacterial and cellular samples, which enabled identification accuracies of 96.3% and 94.8%, respectively. This sensing platform offers a discriminative means for adaptive target identification and holds great potential for diverse applications.


Assuntos
Aptâmeros de Nucleotídeos , Ácidos Nucleicos , Aptâmeros de Nucleotídeos/química , Proteômica , Proteínas , Bactérias/metabolismo
3.
Mol Microbiol ; 113(2): 452-463, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31749226

RESUMO

Phosphorothioation (PT) involves the replacement of a nonbridging phosphate oxygen on the DNA backbone with sulfur. In bacteria, the procedure is both sequence- and stereo-specific. We reconstituted the PT reaction using purified DndCDE from Salmonella enterica and IscS from Escherichia coli. We determined that the in vitro process of PT was oxygen sensitive. Only one strand on a double-stranded (ds) DNA substrate was modified in the reaction. The modification was dominant between G and A in the GAAC/GTTC conserved sequence. The modification between G and T required the presence of PT between G and A on the opposite strand. Cysteine, S-adenosyl methionine (SAM) and the formation of an iron-sulfur cluster in DndCDE (DndCDE-FeS) were essential for the process. Results from SAM cleavage reactions support the supposition that PT is a radical SAM reaction. Adenosine triphosphate (ATP) promoted the reaction but was not essential. The data and conclusions presented suggest that the PT reaction in bacteria involves three steps. The first step is the binding of DndCDE-FeS to DNA and searching for the modification sequence, possibly with the help of ATP. Cysteine locks DndCDE-FeS to the modification site with an appropriate protein conformation. SAM triggers the radical SAM reaction to complete the oxygen-sulfur swapping.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , Oligonucleotídeos Fosforotioatos/metabolismo , Enxofre/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Salmonella enterica/metabolismo
4.
Heliyon ; 10(10): e31213, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38799737

RESUMO

A hydrophilic interaction liquid chromatography tandem mass spectrometry (HILIC/MS/MS) method was developed and validated for the quantitative analysis of the fully phosphorothioate modified oligonucleotide nusinersen. HILIC/MS/MS method is more robust and compatible with mass spectrometry than ion pair reversed-phase liquid chromatography-tandem mass spectrometry (IP-RP-LC/MS/MS). Various types and concentrations of additives and different pH of mobile phase affected the mass spectrometry response, chromatographic peak shape and retention of nusinersen. The optimized extraction method of nusinersen employs hydrophilic-lipophilic balance solid phase extraction, with a recovery of up to 80 %. Chromatographic quantification was performed using a gradient system on an amide column and the mobile phase consisted of ammonium acetate, acetonitrile and water in a certain proportion. The fully phosphorothioate modified nusinersen can obtain a high mass spectrometry response by providing greater peak symmetry and high ionization efficiency in a high-pH mobile phase. Moreover, the significant carry over interference was observed at the pH 6.3 of the mobile phase. Adjusting the pH value up to 10, and the carry over interference disappeared. The lower limit of quantitation of this developed HILIC/MS/MS assay was 30.0 ng/mL and the method was systematic methodology validated. This HILIC/MS/MS method provides an attractive and robust alternative for the quantitative analysis of nusinersen and was applied in the pharmacokinetic study of nusinersen in rabbits.

5.
Bioanalysis ; 16(5): 305-317, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38334103

RESUMO

Background: The fully phosphorothioate-modified oligonucleotide (OGN) nusinersen has low ionization efficiency in the negative ion mode, resulting in a low mass spectrometry response. There have been no relevant reports on developing a LC-MS method for the determination of nusinersen by optimizing mobile phase composition. Materials & methods: Mobile phase additives comprised of 15 mM triethylamine/25 mM 1,1,1,3,3,3-hexafluoro-2-propanol with a pH of 9.6. Nusinersen was extracted from plasma using Oasis® HLB solid-phase extraction (Waters, MA, USA). Results & conclusion: By adjusting the pH of the mobile phase to 9.6 by optimizing the type and concentration of ion-pair reagents, a high mass spectrometry response was obtained. The developed method was applied to nusinersen and met the requirements for the pharmacokinetic study of nusinersen in rabbits.


Assuntos
Cromatografia de Fase Reversa , Oligonucleotídeos , Espectrometria de Massas em Tandem , Animais , Coelhos , Espectrometria de Massas em Tandem/métodos , Cromatografia de Fase Reversa/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Oligonucleotídeos Fosforotioatos , Indicadores e Reagentes , Extração em Fase Sólida , Cromatografia Líquida de Alta Pressão/métodos
6.
J Chromatogr A ; 1721: 464847, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38552370

RESUMO

In recent years, several small interfering RNA (siRNA) therapeutics have been approved, and most of them are phosphorothioate (PS)-modified for improving nuclease resistance. This chemical modification induces chirality in the phosphorus atom, leading to the formation of diastereomers. Recent studies have revealed that Sp and Rp configurations of PS modifications of siRNAs have different biological properties, such as nuclease resistance and RNA-induced silencing complex (RISC) loading. These results highlight the importance of determining diastereomeric distribution in quality control. Although various analytical approaches have been used to separate diastereomers (mainly single-stranded oligonucleotides), it becomes more difficult to separate all of them as the number of PS modifications increases. Despite siRNA exhibits efficacy in the double-stranded form, few reports have examined the separation of diastereomers in the double-stranded form. In this study, we investigated the applicability of non-denaturing anion-exchange chromatography (AEX) for the separation of PS-modified siRNA diastereomers. Separation of the four isomers of the two PS bonds tended to improve in the double-stranded form compared to the single-stranded form. In addition, the effects of the analytical conditions and PS-modified position on the separation were evaluated. Moreover, the elution order of the Sp and Rp configurations was confirmed, and the steric difference between them, i.e., the direction of the anionic sulfur atom, appeared to be important for the separation mechanism in non-denaturing AEX. Consequently, all 16 peak tops of the four PS modifications were detected in one sequence, and approximately 30 peak tops were detected out of 64 isomers of six PS bonds, indicating that non-denaturing AEX is a useful technique for the quality control of PS-modified siRNA therapeutics.


Assuntos
Cromatografia , Oligonucleotídeos , Fosfatos , RNA Interferente Pequeno/química , Oligonucleotídeos/química , Isomerismo , Ânions
7.
mBio ; 13(3): e0071622, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35420474

RESUMO

Phosphorothioate (PT) modification, a sequence-specific modification that replaces the nonbridging oxygen atom with sulfur in a DNA phosphodiester through the gene products of dndABCDE or sspABCD, is widely distributed in prokaryotes. DNA PT modification functions together with gene products encoded by dndFGH, pbeABCD, or sspE to form defense systems that can protect against invasion by exogenous DNA particles. While the functions of the multiple enzymes in the PT system have been elucidated, the exact role of DndE in the PT process is still obscure. Here, we solved the crystal structure of DndE from the haloalkaliphilic archaeal strain Natronorubrum bangense JCM10635 at a resolution of 2.31 Å. Unlike the tetrameric conformation of DndE in Escherichia coli B7A, DndE from N. bangense JCM10635 exists in a monomeric conformation and can catalyze the conversion of supercoiled DNA to nicked or linearized products. Moreover, DndE exhibits preferential binding affinity to nicked DNA by virtue of the R19- and K23-containing positively charged surface. This work provides insight into how DndE functions in PT modification and the potential sulfur incorporation mechanism of DNA PT modification. IMPORTANCE DndABCDE proteins have been demonstrated to catalyze DNA PT modification with the nonbridging oxygen in the DNA sugar-phosphate backbone replaced by sulfur. In the PT modification pathway, DndA exerts cysteine desulfurase activity capable of catalyzing the mobilization of sulfur from l-cysteine, which involves the ion-sulfur cluster assembly of DndC. This is regarded as the initial step of the DNA PT modification. Moreover, DndD has ATPase activity in vitro, which is believed to provide energy for the oxygen-sulfur swap, while the function of DndE is unknown. However, the exact function of the key enzyme DndE remains to be elucidated. By determining the structure of DndE from the haloalkaliphilic strain Natronorubrum bangense JCM10635, we showed that the archaeal DndE adopts a monomer conformation. Notably, DndE can introduce nicks to supercoiled DNA and exhibits a binding preference for nicked DNA; the nicking is believed to be the initial step for DNA to facilitate the sulfur incorporation.


Assuntos
DNA Super-Helicoidal , Halobacteriaceae , DNA/metabolismo , DNA Bacteriano/metabolismo , DNA Super-Helicoidal/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Halobacteriaceae/genética , Halobacteriaceae/metabolismo , Oxigênio/metabolismo , Enxofre/metabolismo
8.
mBio ; 13(3): e0069922, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35420479

RESUMO

Although the phosphorothioate (PT) modification, in which the nonbridging oxygen in the DNA sugar-phosphate backbone is replaced by sulfur, has been reported to play versatile roles in multiple cellular processes, very little data have been obtained to define the role of PT in epigenetic regulation. In this study, we report that the PT system in Salmonella enterica serovar Cerro 87 is involved in the transcriptional regulation of the torCAD operon encoding the trimethylamine N-oxide (TMAO) respiration machinery that enables the use of TMAO as a terminal electron acceptor for respiration when oxygen is not available. In vitro, PT enhanced the binding of the transcriptional activator of the torCAD operon, namely, TorR, to its DNA substrate (tor boxes). However, in vivo, the PT modification protein complex DndCDE downregulated torCAD transcription through competing with the binding of TorR to the tor boxes. The altered expression of torCAD caused by PT modification proteins affected cell growth that relied on TMAO respiration. To our knowledge, this is the first report supporting that PT proteins participate in transcriptional regulation, showing a new function of PT systems. IMPORTANCE Since the initial discovery of DNA phosphorothioate (PT) modification systems in Streptomyces lividans in the 1980s, explorations of the biological functions of DNA PT systems have advanced and yielded a number of important findings. However, the functions of PT systems, especially in genetic regulation, remain largely unknown. In this study, we report a case in which the PT system participates in the transcriptional regulation of the torCAD operon in Salmonella enterica serovar Cerro 87. While the PT modification enhanced the binding of TorR, the torCAD operon transcriptional activator, to its DNA substrate in vitro, we found that the PT modification protein complex DndCDE directly competed with TorR binding in vivo and subsequently repressed the expression of torCAD and attenuated cell growth that relied on TMAO respiration. These findings provide a deeper understanding of the characteristics of the PT chemical structure and broaden our understanding of the mechanisms by which PT regulates gene expression.


Assuntos
Metilaminas , Salmonella enterica , Anaerobiose , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Epigênese Genética , Metilaminas/metabolismo , Oxigênio/metabolismo , Respiração , Salmonella enterica/genética , Salmonella enterica/metabolismo , Fatores de Transcrição/metabolismo
9.
J Chromatogr A ; 1678: 463349, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35908512

RESUMO

Oligonucleotides have emerged as powerful therapeutics for treating diverse diseases. To fully unlock the therapeutic potential of oligonucleotides, there is still a great need to further improve their drug-like properties. Numerous chemical modifications have been explored to achieve this goal, with phosphorothioation being one of the most widely used strategies. However, phosphorothioate modification produces diastereomers that are reported to have different properties and performances, demanding detailed characterization of these diastereomers. Here we provide an overview of phosphorothioated oligonucleotide diastereomers, covering their origin and configurations, physicochemical and pharmacological properties, and stereo-selective chemical synthesis, followed by a summary of currently available analytical techniques for characterizing these diastereomers, with a focus on liquid chromatography-based approaches, including ion-pair reversed-phase liquid chromatography, anion exchange chromatography, mixed-mode chromatography, and hybrid approaches. Non-chromatographic techniques, such as capillary electrophoresis, spectroscopy and other methods, are also being reviewed.


Assuntos
Cromatografia de Fase Reversa , Oligonucleotídeos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Cromatografia de Fase Reversa/métodos , Eletroforese Capilar , Oligonucleotídeos/análise , Oligonucleotídeos Fosforotioatos/química
10.
mBio ; 12(2)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33906925

RESUMO

Unlike nucleobase modifications in canonical restriction-modification systems, DNA phosphorothioate (PT) epigenetic modification occurs in the DNA sugar-phosphate backbone when the nonbridging oxygen is replaced by sulfur in a double-stranded (ds) or single-stranded (ss) manner governed by DndABCDE or SspABCD, respectively. SspABCD coupled with SspE constitutes a defense barrier in which SspE depends on sequence-specific PT modifications to exert its antiphage activity. Here, we identified a new type of ssDNA PT-based SspABCD-SspFGH defense system capable of providing protection against phages through a mode of action different from that of SspABCD-SspE. We provide further evidence that SspFGH damages non-PT-modified DNA and exerts antiphage activity by suppressing phage DNA replication. Despite their different defense mechanisms, SspFGH and SspE are compatible and pair simultaneously with one SspABCD module, greatly enhancing the protection against phages. Together with the observation that the sspBCD-sspFGH cassette is widely distributed in bacterial genomes, this study highlights the diversity of PT-based defense barriers and expands our knowledge of the arsenal of phage defense mechanisms.IMPORTANCE We recently found that SspABCD, catalyzing single-stranded (ss) DNA phosphorothioate (PT) modification, coupled with SspE provides protection against phage infection. SspE performs both PT-simulated NTPase and DNA-nicking nuclease activities to damage phage DNA, rendering SspA-E a PT-sensing defense system. To our surprise, ssDNA PT modification can also pair with a newly identified 3-gene sspFGH cassette to fend off phage infection with a different mode of action from that of SspE. Interestingly, both SspFGH and SspE can pair with the same SspABCD module for antiphage defense, and their combination provides Escherichia coli JM109 with additive phage resistance up to 105-fold compared to that for either barrier alone. This agrees with our observation that SspFGH and SspE coexist in 36 bacterial genomes, highlighting the diversity of the gene contents and molecular mechanisms of PT-based defense systems.


Assuntos
Subfamília D de Transportador de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Fosfatos , Vibrio/genética , Subfamília D de Transportador de Cassetes de Ligação de ATP/classificação , Subfamília D de Transportador de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Bacteriófagos/genética , Bacteriófagos/patogenicidade , Escherichia coli/genética , Genoma Bacteriano , Vibrio/metabolismo
11.
Microbiol Res ; 252: 126852, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34454309

RESUMO

The SOS response-associated peptidase (SRAP) is an ancient protein superfamily in all domains of life. The mammalian SRAP was recently reported to covalently bind to the abasic sites (AP) in single stranded (ss) DNA to shield the chromosome integrity. YedK, the Escherichia coli SRAP, is not functionally characterized. Here we report the fortuitous pull-down of YedK from bacterial cell lysates by short (<20 bp) double stranded (ds) DNAs, further enrichment of YedK was observed when single stranded (ss) DNA was added. YedK can bind multiple DNA substrates, particularly with a high affinity to DNA duplex with single strand segment. As a SRAP protein, the involvement of YedK in SOS response was extensively examined, however yedK mutant of Escherichia coli showed no difference from the wild type strain upon the treatments with UV and various DNA damaging reagents, indicating its non-essentiality or redundancy in E. coli. Surprisingly, yedK mutants derived from Escherichia coli and Samonella enterica both showed an increased plasmid DNA transformation efficiency compared to the wild types. In accordance with this, induction of YedK effectively decreased the copy number of plasmid DNA. Site-directed mutagenesis of YedK demonstrated that residues involved in single strand DNA binding and cysteine residue at position 2 from N-terminus can discharge the repression of the plasmid transformation efficiency.


Assuntos
Replicação do DNA , DNA de Cadeia Simples , Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Escherichia coli , Plasmídeos , Transformação Bacteriana , Replicação do DNA/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Plasmídeos/genética
12.
Curr Protoc Nucleic Acid Chem ; 82(1): e113, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32822120

RESUMO

This article describes a protocol for detecting and quantifying RNA phosphorothioate modifications in cellular RNA samples. Starting from solid-phase synthesis of phosphorothioate RNA dinucleotides, followed by purification with reversed-phase HPLC, phosphorothioate RNA dinucleotide standards are prepared for UPLC-MS and LC-MS/MS methods. RNA samples are extracted from cells using TRIzol reagent, then digested with a nuclease mixture and analyzed by mass spectrometry. UPLC-MS is employed first to identify RNA phosphorothioate modifications. An optimized LC-MS/MS method is then employed to quantify the frequency of RNA phosphorothioate modifications in a series of model cells. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Synthesis, purification, and characterization of RNA phosphorothioate dinucleotides Basic Protocol 2: Digestion of RNA samples extracted from cells Basic Protocol 3: Detection and quantification of RNA phosphorothioate modifications by mass spectrometry.


Assuntos
Espectrometria de Massas/métodos , Oligonucleotídeos Fosforotioatos/química , RNA/química , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Escherichia coli/genética , Humanos , Lactobacillus/genética , Oligonucleotídeos Fosforotioatos/isolamento & purificação , Controle de Qualidade , RNA/isolamento & purificação , Padrões de Referência , Técnicas de Síntese em Fase Sólida/métodos
13.
AMB Express ; 10(1): 166, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32930899

RESUMO

An increasing number of biological and epidemiological evidence suggests that c.919-2A > G and c.2168A > G variants of solute carrier family 26, member 4 (SLC26A4) gene play a critical role in the development of large vestibular aqueduct syndrome (LVAS). In this study, we developed a rapid genotyping method for discriminating LVAS-associated high-frequency variants in SLC26A4 gene. The genotyping technique consists of 3' terminal exonuclease-resistant phosphorothioate-modified allele specific primer extension mediated by exo+ polymerase. In PCR amplification by Pfu polymerase, allelic specific primers perfectly matching wild type allele were extended while no specific products were yielded from primers targeting variant allele. Similarly, allelic specific primers perfectly matching variant allele were extended and no specific products were observed from primers targeting wild type allele. The clinical application of 3' terminal phosphorothioate-modified allele specific primer extension mediated by Pfu polymerase identified both homozygous for SLC26A4 gene c.919-2A > G variant in two patients clinically diagnosed as LVAS by temporal bone CT scan. The genetic results from this method are consistent with that of DNA sequencing. The data suggest that exo+ polymerase-mediated 3' terminal phosphorothioate-modified primer extension is reliable in the identification of SLC26A4 gene high-frequency variant prior to high-resolution CT scan. The method is extremely suitable for quickly molecular etiologic screening and early diagnosis and aggressive prevention therapy of LVAS.

14.
Front Microbiol ; 11: 1960, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013736

RESUMO

Modification dependent restriction endonucleases (MDREs) restrict modified DNA, typically with limited sequence specificity (∼2-4 bp). Here, we focus on MDREs that have an SRA and/or SBD (sulfur binding domain) fused to an HNH endonuclease domain, cleaving cytosine modified or phosphorothioated (PT) DNA. We independently characterized the SBD-SRA-HNH endonuclease ScoMcrA, which preferentially cleaves 5hmC modified DNA. We report five SBD-HNH endonucleases, all recognizing GpsAAC/GpsTTC sequence and cleaving outside with a single nucleotide 3' stagger: EcoWI (N7/N6), Ksp11411I (N5/N4), Bsp305I (N6/N4-5), Mae9806I [N(8-10)/N(8-9)], and Sau43800I [N(8-9)/N(7-8)]. EcoWI and Bsp305I are more specific for PT modified DNA in Mg2+ buffer, and promiscuous with Mn2+. Ksp11411I is more PT specific with Ni2+. EcoWI and Ksp11411I cleave fully- and hemi-PT modified oligos, while Bsp305I cleaves only fully modified ones. EcoWI forms a dimer in solution and cleaves more efficiently in the presence of two modified sites. In addition, we demonstrate that EcoWI PT-dependent activity has biological function: EcoWI expressing cells restrict dnd+ GpsAAC modified plasmid strongly, and GpsGCC DNA weakly. This work establishes a framework for biotechnology applications of PT-dependent restriction endonucleases (PTDRs).

15.
Anal Chim Acta ; 1102: 119-129, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32043991

RESUMO

Gold nanoparticle-core spherical nucleic acids (AuNP core-SNAs), by virtue of the programmable nature of oligonucleotides, have yielded access to the innovative strategies for targeted biodiagnostics. Here, DNA-directed self-assembly of AuNP core-SNAs has been used to design a colorimetric method to sense HIV-1 viral nucleic acid. This strategy utilizes an oligonucleotide with sequence of 5'-untranslated region (5' UTR) of the HIV-1 RNA genome anchored on the surface of AuNPs and a complementary linker strand with a palindromic sequence tail. In the absence of HIV-1 target nucleic acid the complementary linker induces self-assembly of SNAs based on sequence symmetry in the free palindromic tail which can bridge two DNA double helices. While in the presence of the target DNA, due to linker-target duplex formation, the colloidal stability and the red color of the SNAs solution are preserved. Picomole amounts of target DNA can easily be detected with the naked eyes. A 95-mer synthetic DNA strand with the same sequence of HIV-1 viral RNA was utilized for positive control of HIV-1 RNA. The selectivity of the selected linker was satisfactory up to 90% match.


Assuntos
Colorimetria/métodos , DNA Viral/análise , HIV-1/química , Nanopartículas Metálicas/química , Sequência de Bases , Sondas de DNA/química , Sondas de DNA/genética , DNA Viral/genética , Ouro/química , Hibridização de Ácido Nucleico , Reprodutibilidade dos Testes
16.
FEMS Microbiol Rev ; 43(2): 109-122, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30289455

RESUMO

Synthetic phosphorothioate (PT) internucleotide linkages, in which a nonbridging oxygen is replaced by a sulphur atom, share similar physical and chemical properties with phosphodiesters but confer enhanced nuclease tolerance on DNA/RNA, making PTs a valuable biochemical and pharmacological tool. Interestingly, PT modification was recently found to occur naturally in bacteria in a sequence-selective and RP configuration-specific manner. This oxygen-sulphur swap is catalysed by the gene products of dndABCDE, which constitute a defence barrier with DndFGH in some bacterial strains that can distinguish and attack non-PT-modified foreign DNA, resembling DNA methylation-based restriction-modification (R-M) systems. Despite their similar defensive mechanisms, PT- and methylation-based R-M systems have evolved to target different consensus contexts in the host cell because when they share the same recognition sequences, the protective function of each can be impeded. The redox and nucleophilic properties of PT sulphur render PT modification a versatile player in the maintenance of cellular redox homeostasis, epigenetic regulation and environmental fitness. The widespread presence of dnd systems is considered a consequence of extensive horizontal gene transfer, whereas the lability of PT during oxidative stress and the susceptibility of PT to PT-dependent endonucleases provide possible explanations for the ubiquitous but sporadic distribution of PT modification in the bacterial world.


Assuntos
Bactérias/genética , DNA Bacteriano/metabolismo , Epigênese Genética/genética , Fosfatos/metabolismo , Bactérias/enzimologia , Proteínas de Bactérias/genética , Evolução Molecular , Transferência Genética Horizontal , Genoma Bacteriano/genética
17.
ACS Appl Bio Mater ; 1(5): 1538-1556, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34996205

RESUMO

Apigenin has gained interest recently among researchers as a potential chemotherapeutic agent in cancer, including colorectal cancer, due to its established antiproliferative activity in vitro. Despite its impressive anticancer activity in vitro, poor water solubility and nonspecific distribution in vivo make it difficult for its emergence as a drug candidate. To overcome these problems, we formulated an aptamer-conjugated apigenin-loaded nanoparticle (apt-ANP) to target against the overexpressed colorectal cancer cell surface biomarker epithelial cell adhesion molecule (EpCAM). Aptamer conjugation was conducted on the prepared nanoparticle, characterized (by SEM, TEM, and AFM) and evaluated for its antiproliferative activity toward in vitro colon carcinoma cells and in vivo colorectal cancer model. The aptamer-conjugated nanoformulation had an average size about 226 nm, smooth surface, satisfactory drug loading 17.5 ± 1.3%, and sustained drug-release pattern. The pharmacokinetic profile as well as the biodistribution study demonstrated a maximum retention of apt-ANP in the colon as compared to free drug and aptamer-free apigenin-loaded nanoparticle (ANP). Apt-ANP enhanced therapeutic efficacy to colorectal cancer cells, whereas it minimized off-target cytotoxicity to normal cells.

18.
Front Microbiol ; 7: 1380, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27630631

RESUMO

DNA phosphorothioation, conferred by dnd genes, was originally discovered in the soil-dwelling bacterium Streptomyces lividans, and thereafter found to exist in various bacterial genera. However, the physiological significance of this sulfur modification of the DNA backbone remains unknown in S. lividans. Our studies indicate that DNA phosphorothioation has a major role in resistance to oxidative stress in the strain. Although Streptomyces species express multiple catalase/peroxidase and organic hydroperoxide resistance genes to protect them against peroxide damage, a wild type strain of S. lividans exhibited two-fold to 10-fold higher survival, compared to a dnd (-) mutant, following treatment with peroxides. RNA-seq experiments revealed that, catalase and organic hydroperoxide resistance gene expression were not up-regulated in the wild type strain, suggesting that the resistance to oxidative stress was not due to the up-regulation of these genes by DNA phosphorothioation. Quantitative RT-PCR analysis was conducted to trace the expression of the catalase and the organic hydroperoxide resistance genes after peroxides treatments. A bunch of these genes were activated in the dnd (-) mutant rather than the wild type strain in response to peroxides. Moreover, the organic hydroperoxide peracetic acid was scavenged more rapidly in the presence than in the absence of phosphorothioate modification, both in vivo and in vitro. The dnd gene cluster can be up-regulated by the disulfide stressor diamide. Overall, our observations suggest that DNA phosphorothioate modification functions as a peroxide resistance system in S. lividans.

19.
Biosens Bioelectron ; 86: 1011-1016, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27498329

RESUMO

MicroRNAs (miRNAs) play important roles in a wide range of biological processes, and their aberrant expressions are linked to a large number of human diseases and disorders. In this work, we developed a colorimetric method for rapid, ultrasensitive miRNA detection via isothermal exponential amplification reaction (EXPAR)-assisted gold nanoparticle (AuNP) amplification. The sensing probe designed with a tandem phosphorothioate modification in the backbone of the polyadenines at the 5' terminus was employed to directly assemble onto the surface of AuNP with high adsorption affinity. The recognition domain at the 3' terminus of the sensing probe hybridizes with target miRNAs to trigger EXPAR with exponential signal amplification. With the amplification reaction with the action of DNA polymerase, the sensing probe gradually detaches from the AuNP, resulting in the aggregation of bare AuNPs in the high-salt reaction environment due to lack of DNA protection. The presence of AuNP aggregation is conveniently measured by UV-vis spectroscopy. Our proposed method could provide a linear detection range from 50fM to 10nM with a detection limit of ∼46fM within 60min, and also discriminate a single-nucleotide difference between homologous miRNAs.


Assuntos
Colorimetria/instrumentação , Sondas de DNA/química , Nanopartículas Metálicas/química , MicroRNAs/análise , Técnicas de Sonda Molecular/instrumentação , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Sondas de DNA/genética , Desenho de Equipamento , Análise de Falha de Equipamento , Ouro/química , MicroRNAs/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Front Microbiol ; 6: 943, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441878

RESUMO

Hyperthermophile Pyrococcus furiosus grows optimally near 100°C and is an important resource of many industrial and molecular biological enzymes. To study the structure and function of P. furiosus proteins at whole genome level, we constructed expression plasmids of each P. furiosus gene using a ligase-independent cloning method, which was based on amplifying target gene and vector by PCR using phosphorothioate-modified primers and digesting PCR products by λ exonuclease. Our cloning method had a positive clone percentage of ≥ 80% in 96-well plate cloning format. Small-scale expression experiment showed that 55 out of 80 genes were efficiently expressed in Escherichia coli Strain Rosetta 2(DE3)pLysS. In summary, this recombinant expression library of P. furiosus provides a platform for functional and structural studies, as well as developing novel industrial enzymes. Our cloning scheme is adaptable to constructing recombinant expression library of other sequenced organisms.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa