Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
1.
Nano Lett ; 24(20): 6051-6060, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38682868

RESUMO

Photoelectrochemical (PEC) cells provide a promising solution for the synthesis of hydrogen peroxide (H2O2). Herein, an integrated photocathode of p-type BiVO4 (p-BVO) array with tetragonal zircon structure coupled with different metal oxide (MOx, M = Sn, Ti, Ni, and Zn) heterostructure and NiNC cocatalyst (p-BVO/MOx/NiNC) was synthesized for the PEC oxygen reduction reaction (ORR) in production of H2O2. The p-BVO/SnO2/NiNC array achieves the production rate 65.46 µmol L-1 h-1 of H2O2 with a Faraday efficiency (FE) of 76.12%. Combined with the H2O2 generation of water oxidation from the n-type Mo-doped BiVO4 (n-Mo:BVO) photoanode, the unbiased photoelectrochemical cell composed of a p-BVO/SnO2/NiNC photocathode and n-Mo:BVO photoanode achieves a total FE of 97.67% for H2O2 generation. The large area BiVO4-based tandem cell of 3 × 3 cm2 can reach a total H2O2 production yield of 338.84 µmol L-1. This work paves the way for the rational design and fabrication of artificial photosynthetic cells for the production of liquid solar fuel.

2.
Small ; 20(3): e2304376, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649206

RESUMO

Green hydrogen is considered to be the key for solving the emerging energy and environmental issues. The photoelectrochemical (PEC) process for the production of green hydrogen has been widely investigated because solar power is clean and renewable. However, mass production in this way is still far away from reality. Here, a Si photoanode is reported with CoOx as co-catalyst for efficient water oxidation. It is found that a high photovoltage of 350 mV can be achieved in 1.0 m K3 BO3 . Importantly, the photovoltage can be further increased to 650 mV and the fill factor of 0.62 is obtained in 1.0 m K3 BO3 by incorporating Mo into CoOx . The Mo-incorporated photoanode is also highly stable. It is shown that the incorporation of Mo can reduce the particle size of co-catalyst on the Si surface, improve the particle-distribution uniformity, and increase the density of particles, which can effectively enhance the light absorption and the electrochemical active surface area. Importantly, the Mo-incorporation results in high energy barrier in the heterojunction. All of these factors are attributed to improved the PEC performance. These findings may provide new strategies to maximize the solar-to-fuel efficiency by tuning the co-catalysts on the Si surface.

3.
Small ; 20(28): e2310752, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38345256

RESUMO

Constructing 3D nanophotonic structures is regarded as an effective method to realize efficient solar-to-hydrogen conversion. These photonic structures can enhance the absorbance of photoelectrodes by the light trapping effect, promote the charge separation by designable charge transport pathway and provide a high specific surface area for catalytic reaction. However, most 3D structures reported so far mainly focused on the influence of light absorption and lacked a systematic investigation of the overall water splitting process. Herein, hematite hollow-sphere-array photoanodes are fabricated through a facile hydrothermal method with polystyrene templates. Validating by simulations and experiments, the hollow sphere array is proved to enhance the efficiency of light harvesting, charge separation and surface reaction at the same time. With an additional annealing treatment in oxygen, a photocurrent density of 2.26 mA cm-2 at 1.23 V versus reversible hydrogen electrode can be obtained, which is 3.70 times larger than that with a planar structure in otherwise the same system. This work gains an insight into the photoelectrochemical water splitting process, which is valuable for the further design of advancing solar driven water splitting devices.

4.
Chemistry ; 30(23): e202303784, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38289975

RESUMO

PSII-inspired quantasomes have emerged as promising artificial photosystems evolving oxygen from water due to their integrated multi-chromophore asset, hierarchical architecture, and efficient light-harvesting capabilities. In this study, we adopt a combined covalent and supramolecular strategy by implementing a poly-styrene backbone that reinforces proximity and pairing between adjacent perylenebisimide (PBI) quantasome units. The covalent fixation of the quantasome network results in a significant enhancement of the photoelectrocatalytic performance on engineered IO-ITO photoanodes, with up to 290 % photocurrent increase (J up to 100 µA cm-2, λ >450 nm, applied bias <1.23 V vs RHE, F.E.O2 >80 %) compared to the non-polymerized analog. Moreover, the direct PBI-quantasome polymerization on the photoanode surface was performed by light irradiation of the radical initiator 2,2'-Azobis(2-methylpropionamidine), improving the photoelectrode robustness under high solar irradiance (>8 suns) and limiting the photocurrent loss (<20 %) at 1.52 V vs RHE compared to the non-polymerized system.

5.
Chemistry ; 30(15): e202303895, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38198245

RESUMO

To promote interfacial charge transfer process and accelerate surface water oxidation reaction kinetics for photoelectrochemical (PEC) water splitting over n-type Silicon (n-Si) based photoanodes, herein, starting with surface stabilized n-Si/CoOx , a NiOx /NiFeOOH composite overlayer was coated by atomic layer deposition and spray coating to fabricate the multilayer structured n-Si/CoOx /NiOx /NiFeOOH photoanode. Encouragingly, the obtained n-Si/CoOx /NiOx /NiFeOOH photoanode exhibits much increased PEC activity for water splitting, with onset potential cathodically shifted to ~0.96 V vs. RHE and photocurrent density increased to 22.6 mA cm-2 at 1.23 V vs. RHE for OER, as compared to n-Si/CoOx , even significantly surpassing the counterpart n-Si/CoOx /NiOx /FeOOH and n-Si/CoOx /NiOx /NiOOH photoanodes. Photophysical and electrochemical characterizations evidence that the deposited CoOx /NiOx /NiFeOOH composite overlayer would create large band bending and strong built-in electric field at the introduced cascading interfaces, thereby producing a large photovoltage of 650 mV to efficiently accelerate charge transfer from the n-Si substrate to the electrolyte for water oxidation. Furthermore, the surface oxygen vacancy enriched NiFeOOH overlayer could effectively catalyze the water oxidation reaction by thermodynamically reducing the energy barrier of rate determining step for OER.

6.
Nano Lett ; 23(11): 5092-5100, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37212638

RESUMO

Highly efficient electrocatalysts for the oxygen evolution reaction (OER) in neutral electrolytes are indispensable for practical electrochemical and photoelectrochemical water splitting technologies. However, there is a lack of good, neutral OER electrocatalysts because of the poor stability when H+ accumulates during the OER and slow OER kinetics at neutral pH. Herein, we report Ir species nanocluster-anchored, Co/Fe-layered double hydroxide (LDH) nanostructures in which the crystalline nature of LDH-restrained corrosion associated with H+ and the Ir species dramatically enhanced the OEC kinetics at neutral pH. The optimized OER electrocatalyst demonstrated a low overpotential of 323 mV (at 10 mA cm-2) and a record low Tafel slope of 42.8 mV dec-1. When it was integrated with an organic semiconductor-based photoanode, we obtained a photocurrent density of 15.2 mA cm-2 at 1.23 V versus reversible hydrogen in neutral electrolyte, which is the highest among all reported photoanodes to our knowledge.

7.
Molecules ; 29(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38930848

RESUMO

The photoelectrochemical (PEC) conversion of organic small molecules offers a dual benefit of synthesizing value-added chemicals and concurrently producing hydrogen (H2). Ethylene glycol, with its dual hydroxyl groups, stands out as a versatile organic substrate capable of yielding various C1 and C2 chemicals. In this study, we demonstrate that pH modulation markedly enhances the photocurrent of BiVO4 photoanodes, thus facilitating the efficient oxidation of ethylene glycol while simultaneously generating H2. Our findings reveal that in a pH = 1 ethylene glycol solution, the photocurrent density at 1.23 V vs. RHE can attain an impressive 7.1 mA cm-2, significantly surpassing the outputs in neutral and highly alkaline environments. The increase in photocurrent is attributed to the augmented adsorption of ethylene glycol on BiVO4 under acidic conditions, which in turn elevates the activity of the oxidation reaction, culminating in the maximal production of formic acid. This investigation sheds light on the pivotal role of electrolyte pH in the PEC oxidation process and underscores the potential of the PEC strategy for biomass valorization into value-added products alongside H2 fuel generation.

8.
Molecules ; 29(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38338426

RESUMO

Bismuth vanadate (BVO) is regarded as an exceptional photoanode material for photoelectrochemical (PEC) water splitting, but it is restricted by the severe photocorrosion and slow water oxidation kinetics. Herein, a synergistic strategy combined with a Co3(HPO4)2(OH)2 (CoPH) cocatalyst and an Al2O3 (ALO) passivation layer was proposed for enhanced PEC performance. The CoPH/ALO/BVO photoanode exhibits an impressive photocurrent density of 4.9 mA cm-2 at 1.23 VRHE and an applied bias photon-to-current efficiency (ABPE) of 1.47% at 0.76 VRHE. This outstanding PEC performance can be ascribed to the suppressed surface charge recombination, facilitated interfacial charge transfer, and accelerated water oxidation kinetics with the introduction of the CoPH cocatalyst and ALO passivation layer. This work provides a novel and synergistic approach to design an efficient and stable photoanode for PEC applications by combining an oxygen evolution cocatalyst and a passivation layer.

9.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474582

RESUMO

Graphene quantum dots (GQDs) possess the photosensitive absorption for photoelectrochemical hydrogen evolution owing to special band structures, whereas they usually confront with photo-corrosion or undesired charge recombination during photoelectrochemical reactions. Hence, we establish the heterojunction between GQDs and MoSe2 sheets via a hydrothermal process for improved stability and performance. Photoanodic water splitting with hydrogen evolution boosted by the heteroatom doped N,S-GQDs/MoSe2 heterojunction has been attained due to the abundant active sites, promoted charge separation and transfer kinetics with reduced energy barriers. Diphasic 1T and 2H MoSe2 sheet-hybridized quantum dots contribute to the Schottky heterojunction, which can play a key role in expedited carrier transport to inhibit accumulative photo-corrosion and increase photocurrent. Heteroatom dopants lead to favored energy band matching, bandgap narrowing, stronger light absorption and high photocurrent density. The external quantum efficiency of the doped heterojunction has been elevated twofold over that of the non-doped pristine heterojunction. Modification of the graphene quantum dots and MoSe2 heterojunction demonstrate a viable and adaptable platform toward photoelectrochemical hydrogen evolution processes.

10.
Angew Chem Int Ed Engl ; 63(23): e202402435, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38566410

RESUMO

Strong metal-support interaction (SMSI) is widely proposed as a key factor in tuning catalytic performances. Herein, the classical SMSI between Au nanoparticles (NPs) and BiVO4 (BVO) supports (Au/BVO-SMSI) is discovered and used innovatively for photoelectrochemical (PEC) water splitting. Owing to the SMSI, the electrons transfer from V4+ to Au NPs, leading to the formation of electron-rich Au species (Auδ-) and strong electronic interaction (i.e., Auδ--Ov-V4+), which readily contributes to extract photogenerated holes and promote charge separation. Benefitted from the SMSI effect, the as-prepared Au/BVO-SMSI photoanode exhibits a superior photocurrent density of 6.25 mA cm-2 at 1.23 V versus the reversible hydrogen electrode after the deposition of FeOOH/NiOOH cocatalysts. This work provides a pioneering view for extending SMSI effect to bimetal oxide supports for PEC water splitting, and guides the interfacial electronic and geometric structure modulation of photoanodes consisting of metal NPs and reducible oxides for improved solar energy conversion efficiency.

11.
Angew Chem Int Ed Engl ; : e202408901, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017961

RESUMO

Photoelectrochemistry (PEC) is burgeoning as an innovative solution to organic synthesis. However, the current PEC system suffers limited reaction types and unsatisfactory performances. Herein, we employ efficient BiVO4 photoanode with tailored deposition layers for customizing two PEC approaches toward C-N and C-P formation. Notably, our process proceeds under mild reaction conditions, easily available substrates, and ultra-low potentials. Beyond photocatalysis and electrocatalysis, customized PEC offers high efficiency, good functional group tolerance, and substantial applicability for decorating drug molecules, highlighting its promising potential to enrich the synthetic toolbox for broader organic chemistry of practical applications.

12.
Photochem Photobiol Sci ; 22(12): 2759-2768, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37831332

RESUMO

CuWO4 has emerged in the last years as a ternary metal oxide material for photoanodes application in photoelectrochemical cells, thanks to its relatively narrow band gap, high stability and selectivity toward the oxygen evolution reaction, though largely limited by its poor charge separation efficiency. Aiming at overcoming this limitation, we investigate here the effects that Cu(II) ion substitution has on the photoelectrocatalytic (PEC) performance of copper tungstate. Optically transparent CuWO4 thin-film photoanodes, prepared via spin coating and containing different amounts of Ni(II) ions, were fully characterized via UV-Vis spectroscopy, XRD and SEM analyses, and their PEC performance was tested via linear sweep voltammetry, incident photon to current efficiency and internal quantum efficiency analyses. From tests performed in the presence of a hole scavenger-containing electrolyte, the charge injection and separation efficiencies of the electrodes were also calculated. Pure-phase crystalline and/or heterojunction materials were obtained with higher PEC performance compared to pure CuWO4, mainly due to a significantly enhanced charge separation efficiency in the bulk of the material.

13.
Environ Res ; 236(Pt 1): 116702, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37490976

RESUMO

Environmental pollution and energy crisis have recently become one of the major global concerns. Insincere discharge of massive amount of organic and inorganic wastes into the aqueous bodies causes serious impact on our environment. However, these organic substances are significant sources of carbon and energy that could be sustainably utilized rather than being discarded. Photocatalytic fuel cell (PFC) is a smart and novel energy conversion device that has the ability to achieve dual benefits: degrading the organic contaminants and simultaneously generating electricity, thereby helping in environmental remediation. This article presents a detailed study of the recent advancements in the development of PFC systems and focuses on the fundamental working principles of PFCs. The degradation of various common organic and inorganic contaminants including dyes and antibiotics with simultaneous power generation and hydrogen evolution has been outlined. The impact of various operational factors on the PFC activity has also been briefly discussed. Moreover, it provides an overview of the design guidelines of the different PFC systems that has been developed recently. It also includes a mention of the materials employed for the construction of the photo electrodes and highlights the major limitations and relevant research scopes that are anticipated to be of interest in the days to come. The review is intended to serve as a handy resource for researchers and budding scientists opting to work in this area of PFC devices.


Assuntos
Poluentes Ambientais , Eletricidade , Águas Residuárias , Carbono , Poluição Ambiental
14.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37762351

RESUMO

Thin-film nanocrystalline hematite electrodes were fabricated by electrochemical deposition and loaded with electrodeposited zinc oxide in various amounts. Under visible light illumination, these electrodes demonstrate high activity in the photoelectrochemical degradation of methanol, ethylene glycol and, in particular, glycerol. Results of intensity-modulated photocurrent spectroscopy show that the photoelectrocatalysis efficiency is explained by the suppression of the electron-hole pair recombination and an increase in the rate of photo-induced charge transfer. Thus, zinc oxide can be considered an effective modifying additive for hematite photoanodes.


Assuntos
Óxido de Zinco , Filmes Cinematográficos , Eletrodos , Elétrons
15.
J Environ Manage ; 344: 118545, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37418928

RESUMO

Emerging photoelectrocatalytic (PEC) systems integrate the advantages of photocatalysis and electrocatalysis and are considered as a promising technology for solving the global organic pollution problem in water environments. Among the photoelectrocatalytic materials applied for organic pollutant degradation, graphitic carbon nitride (CN) has the combined advantages of environmental compatibility, stability, low cost, and visible light response. However, pristine CN has disadvantages such as low specific surface area, low electrical conductivity, and high charge complexation rate, and how to improve the degradation efficiency of PEC reaction and the mineralization rate of organic matter is the main problem faced in this field. Therefore, this paper reviews the progress of various functionalized CN used for PEC reaction in recent years, and the degradation efficiency of these CN-based materials is critically evaluated. First, the basic principles of PEC degradation of organic pollutants are outlined. Then, engineering strategies to enhance the PEC activity of CN (including morphology control, elemental doping, and heterojunction construction) are focused on, and the structure-activity relationships between these engineering strategies and PEC activity are discussed. In addition, the important role of influencing factors on the PEC system is summarized in terms of mechanism, to provide guidance for the subsequent research. Finally, suggestions and perspectives are provided for the preparation of efficient and stable CN-based photoelectrocatalysts for practical wastewater treatment applications.


Assuntos
Poluentes Ambientais , Água
16.
J Environ Sci (China) ; 126: 198-210, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503749

RESUMO

In order to enhance Ni-EDTA decomplexation and Ni recovery via photoelectrocatalytic (PEC) process, TiO2/Ni-Sb-SnO2 bifunctional electrode was fabricated as the photoanode and activated carbon fiber (ACF) was introduced as the cathode. At a cell voltage of 3.5 V and initial solution pH of 6.3, the TiO2/Ni-Sb-SnO2 bifunctional photoanode exhibited a synergetic effect on the decomplexation of Ni-EDTA with the pseudo-first-order rate constant of 0.01068 min-1 with 180 min by using stainless steel (SS) cathode, which was 1.5 and 2.4 times higher than that of TiO2 photoanode and Ni-Sb-SnO2 anode, respectively. Moreover, both the efficiencies of Ni-EDTA decomplexation and Ni recovery were improved to 98% from 86% and 73% from 41% after replacing SS cathode with ACF cathode, respectively. Influencing factors on Ni-EDTA decomplexation and Ni recovery were investigated and the efficiencies were favored at acidic condition, higher cell voltage and lower initial Ni-EDTA concentration. Ni-EDTA was mainly decomposed via ·OH radicals which generated via the interaction of O3, H2O2, and UV irradiation in the contrasted PEC system. Then, the liberated Ni2+ ions which liberated from Ni-EDTA decomplexation were eventually reduced to metallic Ni on the ACF cathode surface. Finally, the stability of the constructed PEC system on Ni-EDTA decomplexation and Ni recovery was exhibited.


Assuntos
Carvão Vegetal , Níquel , Fibra de Carbono , Ácido Edético , Peróxido de Hidrogênio , Aço Inoxidável
17.
Angew Chem Int Ed Engl ; 62(39): e202308729, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37452650

RESUMO

Bismuth Vanadate (BiVO4 ) photoanode has been popularly investigated for promising solar water oxidation, but its intrinsic performance has been greatly retarded by the direct pyrolysis method. Here we insight the key restriction of BiVO4 prepared by metal-organic decomposition (MOD) method. It is found that the evaporation of vanadium during the pyrolysis tends to cause a substantial phase impurity, and the unexpected few tetragonal phase inhibits the charge separation evidently. Consequently, suitably excessive vanadium precursor was adopted to eliminate the phase impurity, based on which the obtained intrinsic BiVO4 photoanode could exhibit photocurrent density of 4.2 mA cm-2 at 1.23 VRHE under AM 1.5 G irradiation, as comparable to the one fabricated by the currently popular two-step electrodeposition method. Furthermore, the excellent performance can be maintained on the enlarged photoanode (25 cm2 ), demonstrating the advantage of MOD method in scalable preparation. Our work provides new insight and highlights the glorious future of MOD method for the design of scale-up efficient BiVO4 photoanode.

18.
Angew Chem Int Ed Engl ; 62(23): e202302753, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37026187

RESUMO

We report a new strategy to fabricate a multifunctional composite photoanode containing TiO2 hollow spheres (TiO2 -HSs), Au nanoparticles (AuNPs) and novel NaYF4 : Yb,Er@NaLuF4 : Eu@SiO2 upconversion nanoparticles (UCNPs). The AuNPs are grown on the photoanode film including TiO2 -HSs and UCNPs by a simple in situ plasmonic treatment. As a result, an impressive power conversion efficiency of 14.13 % is obtained, which is a record for N719 dye-based dye-sensitized solar cells, demonstrating great potential for the solar cells toward commercialization. This obvious enhancement is ascribed to a collaborative mechanism of the TiO2 -HSs exhibiting excellent light-scattering ability, of the UCNPs converting near-infrared photons into visible photons and of the AuNPs presenting outstanding surface plasmon resonance effect. Notably, a steady-state experiment further reveals that the champion cell exhibits 95.33 % retainment in efficiency even after 180 h of measurements, showing good device stability.

19.
Angew Chem Int Ed Engl ; 62(32): e202306420, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37264717

RESUMO

Sluggish oxygen evolution kinetics and serious charge recombination restrict the development of photoelectrochemical (PEC) water splitting. The advancement of novel metal-organic frameworks (MOFs) catalysts bears practical significance for improving PEC water splitting performance. Herein, a MOF glass catalyst through melting glass-forming cobalt-based zeolitic imidazolate framework (Co-ag ZIF-62) was introduced on various metal oxide (MO: Fe2 O3 , WO3 and BiVO4 ) semiconductor substrates coupled with NiO hole transport layer, constructing the integrated Co-ag ZIF-62/NiO/MO photoanodes. Owing to the excellent conductivity, stability and open active sites of MOF glass, Co-ag ZIF-62/NiO/MO photoanodes exhibit a significantly enhanced photoelectrochemical water oxidation activity and stability in comparison to pristine MO photoanodes. From experimental analyses and density functional theory calculations, Co-ag ZIF-62 can effectively promote charge transfer and separation, improve carrier mobility, accelerate the kinetics of oxygen evolution reaction (OER), and thus improve PEC performance. This MOF glass not only serves as an excellent OER cocatalyst on tunable photoelectrodes, but also enables promising opportunities for PEC devices for solar energy conversion.

20.
Chemistry ; 28(57): e202201520, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-35848162

RESUMO

Since the water oxidation half-reaction requires the transfer of multi-electrons and the formation of O-O bond, it's crucial to investigate the catalytic behaviours of semiconductor photoanodes. In this work, a bio-inspired copper-bipyridine catalyst of Cu(dcbpy) is decorated on the nanoporous Si photoanode (black Si, b-Si). Under AM1.5G illumination, the b-Si/Cu(dcbpy) photoanode exhibits a high photocurrent density of 6.31 mA cm-2 at 1.5 VRHE at pH 11.0, which is dramatically improved from the b-Si photoanode (1.03 mA cm-2 ) and f-Si photoanode (0.0087 mA cm-2 ). Mechanism studies demonstrate that b-Si/Cu(dcbpy) has improved light-harvesting, interfacial charge-transfer, and surface area for water splitting. More interestingly, b-Si/Cu(dcbpy) exhibits a pH-dependent water oxidation behaviour with a minimum Tafel slope of 241 mV/dec and the lowest overpotential of 0.19 V at pH 11.0, which is due to the monomer/dimer equilibrium of copper catalyst. At pH ∼11, the formation of dimeric hydroxyl-complex could form O-O bond through a redox isomerization (RI) mechanism, which decreases the required potential for water oxidation. This in-depth understanding of pH-dependent water oxidation catalyst brings insights into the design of dimer water oxidation catalysts and efficient photoanodes for solar energy conversion.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa