Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 956
Filtrar
1.
Small ; 20(16): e2307318, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38044287

RESUMO

Cucurbit[7]uril (CB7), a supramolecular host, is employed to control the pathway of photolysis of an aryl azide in an aqueous medium. Normally, photolysis of aryl azides in bulk water culminates predominantly in the formation of azepine derivatives via intramolecular rearrangement. Remarkably, however, when this process unfolds within the protective confinement of the CB7 cavity, it results in a carboline derivative, as a consequence of a C─H amination reaction. The resulting carboline caged by CB7 reveals long-lived room temperature phosphorescence (RTP) in the solid state, with lifetimes extending up to 2.1 s. These findings underscore the potential of supramolecular hosts to modulate the photolysis of aryl azides and to facilitate novel phosphorescent materials.

2.
Chembiochem ; 25(4): e202300799, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38153201

RESUMO

The precise control of DNA recombination enables the cell- or time-dependent regulation of gene expression in studies of gene function. Caged estrogen receptor ligands combined with a Cre-ERT2/loxP system are useful tools for light-triggered DNA recombination. However, the photolysis of most caged compounds requires ultraviolet or blue light, which is toxic and displays low tissue penetration. Although a cyanine-based photo-responsive protecting group (PPG) can release estrogen receptor ligands with longer-wavelength light, its low photolytic efficiency requires long illumination times. We developed a caged estrogen receptor ligand with improved green light-responsive PPGs. The rational modification of Hydroxylated Thiazole Orange (HTO) photocages using electron-donating groups (EDGs), such as dimethoxy (DiMeO)-substituted HTO, resulted in high photolytic efficiency (up to ÏµΦ ≈320 M-1  cm-1 ). Theoretical calculations demonstrated that the enhanced photolytic efficiencies were derived from the increased intramolecular charge transfer by EDGs upon excitation. The efficient uncaging of estrogen receptor ligands enabled the control of gene recombination in a ligand-dependent Cre-ERT2/loxP system in live cells.


Assuntos
Benzotiazóis , Luz Verde , Quinolinas , Receptores de Estrogênio , Ligantes , DNA , Recombinação Genética , Fotólise
3.
Chemistry ; 30(7): e202302178, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37921117

RESUMO

Excited state molecular dynamics simulations of the photoexcited phenyl azide have been performed. The semi-classical surface hopping approximation has enabled an unconstrained analysis of the electronic and nuclear degrees of freedom which contribute to the molecular dissociation of phenyl azide into phenyl nitrene and molecular nitrogen. The significance of the second singlet excited state in leading the photodissociation has been established through electronic structure calculations, based on multi-configurational schemes, and state population dynamics. The investigations on the structural dynamics have revealed the N-N bond separation to be accompanied by synchronous changes in the azide N-N-N bond angle. The 100 fs simulation results in a nitrene fragment that is electronically excited in the singlet manifold.

4.
Chemphyschem ; : e202400506, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976450

RESUMO

Phenoxazine is a commonly used molecular building block, for example in optoelectronic applications and pharmaceuticals. However, it is highly susceptible to rapid photodegradation, especially in halogenated solvents. In the present study, we identify the degradation products in both halogenated and non-halogenated solvents by UV/Vis absorption, NMR spectroscopy and mass spectrometry. We also propose a substitution strategy aimed at effectively suppressing the high photoreactivity. Kinetic studies show that the quantum yield of photodegradation Ï• differs by a factor of more than 1000 between trisubstituted derivatives and N-substituted phenoxazine.

5.
Chemphyschem ; 25(3): e202300655, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38057134

RESUMO

This investigation delves into the UV photodissociation of pivotal amino acids (Alanine, Glycine, Leucine, Proline, and Serine) at 213 nm, providing insights into triplet-state deactivation pathways. Utilizing a comprehensive approach involving time-dependent density functional calculations (TD-DFT), multi-configurational methods, and ab-initio molecular dynamics (AIMD) simulations, we scrutinize the excited electronic states (T1 , T2 , and S1 ) subsequent to 213 nm excitation. Our findings demonstrate that α-carbonyl C-C bond-breaking in triplet states exhibits markedly lower barriers than in singlet states (below 5.0 kcal mol-1 ). AIMD simulations corroborate the potential involvement of triplet states in amino acid fragmentation, underscoring the significance of accounting for these states in photochemistry. Chemical bonding analyses unveil distinctive patterns for S1 and T1 states, with the asymmetric redistribution of electron density characterizing the C-C breaking in triplet states, in contrast to the symmetric breaking observed in singlet states. This research complements recent experimental discoveries, enhancing our comprehension of amino acid reactions in the interstellar medium.

6.
Chemphyschem ; : e202400273, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819992

RESUMO

Photocatalysis using transition-metal complexes is widely considered the future of effective and affordable clean-air technology. In particular, redox-stable, easily accessible ligands are decisive. Here, we report a straightforward and facile synthesis of a new highly stable 2,6-bis(triazolyl)pyridine ligand, containing a nitrile moiety as a masked anchoring group, using copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction. The reported structure mimics the binding motif of uneasy to synthesize ligands. Pulse radiolysis under oxidizing and reducing conditions provided evidence for the high stability of the formed radical cation and radical anion 2,6-di(1,2,3-triazol-1-yl)-pyridine compound, thus indicating the feasibility of utilizing this as a ligand for redox active metal complexes and the sensitization of metal-oxide semiconductors (e.g., TiO2 nanoparticles or nanotubes).

7.
Nitric Oxide ; 142: 38-46, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979933

RESUMO

S-Nitroso-N-acetylpenicillamine (SNAP) is among the most common nitric oxide (NO)-donor molecules and its solid-state photolytic decomposition has potential for inhaled nitric oxide (iNO) therapy. The photochemical NO release kinetics and mechanism were investigated by exposing solid-state SNAP to a narrow-band LED as a function of nominal wavelength and intensity of incident light. The photolytic efficiency, decomposition products, and the photolytic pathways of the SNAP were examined. The maximum light penetration depth through the solid layer of SNAP was determined by an optical microscope and found to be within 100-200 µm, depending on the wavelength of light. The photolysis of solid-state SNAP to generate NO along with the stable thiyl (RS·) radical was confirmed using Electron Spin Resonance (ESR) spectroscopy. The fate of the RS· radical in the solid phase was studied both in the presence and absence of O2 using NMR, IR, ESR, and UPLC-MS. The changes in the morphology of SNAP due to its photolysis were examined using PXRD and SEM. The stable thiyl radical formed from the photolysis of solid SNAP was found to be reactive with another adjacent thiyl radical to form a disulfide (RSSR) or with oxygen to form various sulfonyl and sulfonyl peroxyl radicals {RS(O)xO·, x = 0 to 7}. However, the thiyl radical did not recombine with NO to reform the SNAP. From the PXRD data, it was found that the SNAP loses its crystallinity by generating the NO after photolysis. The initial release of NO during photolysis was increased with increased intensity of light, whereas the maximum light penetration depth was unaffected by light intensity. The knowledge gained about the photochemical reactions of SNAP may provide important insight in designing portable photoinduced NO-releasing devices for iNO therapy.


Assuntos
Óxido Nítrico , Espectrometria de Massas em Tandem , S-Nitroso-N-Acetilpenicilamina/farmacologia , Óxido Nítrico/metabolismo , Fotólise , Cromatografia Líquida , Doadores de Óxido Nítrico/química , Oxigênio
8.
Photochem Photobiol Sci ; 23(6): 1143-1153, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38748080

RESUMO

Epoxiconazole (EPO) is classified as a persistent organic pollutant due to its ability to persist in the environment for prolonged periods. Its degradation is pivotal in mitigating its environmental impact. This investigation focuses on assessing the degradation of EPO using various methodologies, namely Fenton, photo-Fenton, solar photo-Fenton, and solar photolysis, conducted in both Milli-Q water and groundwater. These experiments encompassed evaluations at both the standard pH typically used in photo-Fenton reactions and the natural pH levels inherent to the respective aqueous environments. Additionally, EPO degradation products were analyzed after a 60-min reaction. Notably, in systems utilizing groundwater, the inclusion of additional iron was unnecessary, as the naturally occurring iron content in the groundwater facilitated the intended processes. Specifically, in Milli-Q water, solar photo-Fenton demonstrated an EPO degradation efficiency of 97%. Furthermore, the substitution of Milli-Q water with groundwater in Fenton-like processes did not significantly affect the efficacy of EPO degradation. These findings underscore the potential of solar photo-Fenton as an economically viable and environmentally sustainable strategy for EPO degradation.

9.
Photochem Photobiol Sci ; 23(1): 153-162, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066379

RESUMO

Photophysics and photochemistry of a potential light-activated cytotoxic dirhodium complex [Rh2(µ-O2CCH3)2(bpy)(dppz)](O2CCH3)2, where bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine (Complex 1 or Rh2) in aqueous solutions was studied by means of stationary photolysis and time-resolved methods in time range from hundreds of femtoseconds to microseconds. According to the literature, Complex 1 demonstrates both oxygen-dependent (due to singlet oxygen formation) and oxygen-independent cytotoxicity. Photoexchange of an acetate ligand to a water molecule was the only observed photochemical reaction, which rate was increased by oxygen removal from solutions. Photoexcitation of Complex 1 results in the formation of the lowest triplet electronic excited state, which lifetime is less than 10 ns. This time is too short for diffusion-controlled quenching of the triplet state by dissolved oxygen resulting in 1O2 formation. We proposed that singlet oxygen is produced by photoexcitation of weakly bound van der Waals complexes [Rh2…O2], which are formed in solutions. If this is true, no oxygen-independent light-induced cytotoxicity of Complex 1 exists. Residual cytotoxicity deaerated solutions are caused by the remaining [Rh2…O2] complexes.


Assuntos
Antineoplásicos , Oxigênio Singlete , Fotoquímica , Antineoplásicos/farmacologia , Antineoplásicos/química , Oxigênio
10.
Photochem Photobiol Sci ; 23(4): 747-755, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430371

RESUMO

Photochemistry of the (n-Bu4N)2[Pt(NO3)6] complex in acetonitrile was studied by means of stationary photolysis and nanosecond laser flash photolysis. The primary photochemical process was found to be an intramolecular electron transfer followed by an escape of an •NO3 radical to the solution bulk. The spectra of two successive Pt(III) intermediates were detected in the microsecond time domain, and their spectral and kinetic characteristics were determined. These intermediates were identified as PtIII(NO3)52- and PtIII(NO3)4- complexes. Disproportionation of Pt(III) species resulted in formation of final Pt(II) products.

11.
Environ Sci Technol ; 58(17): 7516-7528, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38629947

RESUMO

Field observations of daytime HONO source strengths have not been well explained by laboratory measurements and model predictions up until now. More efforts are urgently needed to fill the knowledge gaps concerning how environmental factors, especially relative humidity (RH), affect particulate nitrate photolysis. In this work, two critical attributes for atmospheric particles, i.e., phase state and bulk-phase acidity, both influenced by ambient RH, were focused to illuminate the key regulators for reactive nitrogen production from typical internally mixed systems, i.e., NaNO3 and dicarboxylic acid (DCA) mixtures. The dissolution of only few oxalic acid (OA) crystals resulted in a remarkable 50-fold increase in HONO production compared to pure nitrate photolysis at 85% RH. Furthermore, the HONO production rates (PHONO) increased by about 1 order of magnitude as RH rose from <5% to 95%, initially exhibiting an almost linear dependence on the amount of surface absorbed water and subsequently showing a substantial increase in PHONO once nitrate deliquescence occurred at approximately 75% RH. NaNO3/malonic acid (MA) and NaNO3/succinic acid (SA) mixtures exhibited similar phase state effects on the photochemical HONO production. These results offer a new perspective on how aerosol physicochemical properties influence particulate nitrate photolysis in the atmosphere.


Assuntos
Nitratos , Fotólise , Nitratos/química , Ácidos Dicarboxílicos/química , Ácido Nitroso/química , Umidade , Malonatos/química , Poluentes Atmosféricos/química
12.
Environ Sci Technol ; 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340057

RESUMO

Fluorinated breakdown products from photolysis of pharmaceuticals and pesticides are of environmental concern due to their potential persistence and toxicity. While mass spectrometry workflows have been shown to be useful in identifying products, they fall short for fluorinated products and may miss up to 90% of products. Studies have shown that 19F NMR measurements assist in identifying and quantifying reaction products, but this protocol can be further developed by incorporating computations. Density functional theory was used to compute 19F NMR shifts for parent and product structures in photolysis reactions. Computations predicted NMR spectra of compounds with an R2 of 0.98. Computed shifts for several isolated product structures from LC-HRMS matched the experimental shifts with <0.7 ppm error. Multiple products including products that share the same shift that were not previously reported were identified and quantified using computational shifts, including aliphatic products in the range of -80 to -88 ppm. Thus, photolysis of fluorinated pharmaceuticals and pesticides can result in compounds that are polyfluorinated alkyl substances (PFAS), including aliphatic-CF3 or vinyl-CF2 products derived from heteroaromatic-CF3 groups. C-F bond-breaking enthalpies and electron densities around the fluorine motifs agreed well with the experimentally observed defluorination of CF3 groups. Combining experimental-computational 19F NMR allows quantification of products identified via LC-HRMS without the need for authentic standards. These results have applications for studies of environmental fate and analysis of fluorinated pharmaceuticals and pesticides in development.

13.
Environ Sci Technol ; 58(14): 6425-6434, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38554136

RESUMO

Hydrated electron (eaq-) treatment processes show great potential in remediating recalcitrant water contaminants, including perfluoroalkyl and polyfluoroalkyl substances (PFAS). However, treatment efficacy depends upon many factors relating to source water composition, UV light source characteristics, and contaminant reactivity. Here, we provide critical insights into the complex roles of solution parameters on contaminant abatement through application of a UV-sulfite kinetic model that incorporates first-principles information on eaq- photogeneration and reactivity. The model accurately predicts decay profiles of short-chain perfluoroalkyl acids (PFAAs) during UV-sulfite treatment and facilitates quantitative interpretation of the effects of changing solution composition on PFAS degradation rates. Model results also confirm that the enhanced degradation of PFAAs observed under highly alkaline pH conditions results from changes in speciation of nontarget eaq- scavengers. Reverse application of the model to UV-sulfite data collected for longer chain PFAAs enabled estimation of bimolecular rate constants (k2, M-1 s-1), providing an alternative to laser flash photolysis (LFP) measurements that are not feasible due to the water solubility limitations of these compounds. The proposed model links the disparate means of investigating eaq- processes, namely, UV photolysis and LFP, and provides a framework to estimate UV-sulfite treatment efficacy of PFAS in diverse water sources.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Raios Ultravioleta , Poluentes Químicos da Água/análise , Sulfitos/química , Água/química
14.
J Fluoresc ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460095

RESUMO

The work presents a spectral-luminescent study of the sulfaguanidine transformation in water under a pulsed e-beam and UV irradiation of an UVb-04 bactericidal mercury lamp (from 180 to 275 nm), KrCl (222 nm), XeBr (282 nm) and XeCl (308 nm) excilamps. Fluorescent decay curves have been used in our analysis of the sulfaguanidine decomposition. The conversion of antibiotic under e-beam irradiation for up to 1 min was more than 80%, compared with UV radiation: UVb-04-26%, XeBr - 20%. KrCl and XeCl - about 10%. At the end of 64 min of irradiation with UVb-04 and XeBr lamps, the conversion was 99%. During irradiation with these lamps, sulfaguanidine almost completely decomposed and passed into the final fluorescent photoproducts. After e-beam irradiated at the end of 13 min the decrease in sulfaguanidine was 93%. At the same time, the formation of sulfaguanidine transformation products was minimal compared to UV irradiation. The effect of UV irradiation and a powerful e-beam on the decomposition mechanisms of sulfaguanidine are significantly different, which is manifested in various changes in the absorption and fluorescence spectra.

15.
J Sep Sci ; 47(7): e2300763, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38576331

RESUMO

Folic acid (FA) is easily photodegraded to yield 6-formylpterin and pterin-6-carboxylic acid, which can generate reactive oxygen species and result in the formation of oxidized guanine derivatives such as 8-hydroxy-2'-deoxyguanosine and 8-hydroxy-guanosine. In this study, we developed a simple, rapid, and sensitive liquid chromatography-tandem mass spectrometry strategy for the simultaneous determination of FA photolysis products and oxidized guanine derivatives in plasma samples. Chromatographic separation was performed on a Waters HSS T3 column (2.1 × 100 mm, 5.0 µm) with gradient elution at a flow rate of 0.25 mL/min. Plasma samples were first pretreated with 1% formic acid, followed by protein precipitation with methanol. The developed method showed good linear relationships between 1 and 2000 ng/mL (r2 > 0.99). The intra- and inter-day precisions ranged from 2.6% to 7.5% and from 2.5% to 6.5%, respectively. Recoveries of the analytes were between 75.4% and 112.4% with the relative standard deviation < 9.1%. Finally, the method was applied to quantify FA photolysis products and oxidized guanine derivatives in rats with light and non-light conditions.


Assuntos
Ácido Fólico , Espectrometria de Massas em Tandem , Ratos , Animais , Espectrometria de Massas em Tandem/métodos , Ratos Sprague-Dawley , Fotólise , Cromatografia Líquida/métodos , Cromatografia Líquida de Alta Pressão/métodos
16.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33542099

RESUMO

Caenorhabditis elegans is used as a model system to understand the neural basis of behavior, but application of caged compounds to manipulate and monitor the neural activity is hampered by the innate photophobic response of the nematode to short-wavelength light or by the low temporal resolution of photocontrol. Here, we develop boron dipyrromethene (BODIPY)-derived caged compounds that release bioactive phenol derivatives upon illumination in the yellow wavelength range. We show that activation of the transient receptor potential vanilloid 1 (TRPV1) cation channel by spatially targeted optical uncaging of the TRPV1 agonist N-vanillylnonanamide at 580 nm modulates neural activity. Further, neuronal activation by illumination-induced uncaging enables optical control of the behavior of freely moving C. elegans without inducing a photophobic response and without crosstalk between uncaging and simultaneous fluorescence monitoring of neural activity.


Assuntos
Controle Comportamental , Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/efeitos da radiação , Luz , Neurônios/fisiologia , Neurônios/efeitos da radiação , Animais , Fluorescência , Interneurônios/fisiologia , Regiões Promotoras Genéticas/genética , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/metabolismo
17.
Ecotoxicol Environ Saf ; 270: 115908, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171102

RESUMO

The depletion of fossil fuel reserves has resulted from their application in the industrial and energy sectors. As a result, substantial efforts have been dedicated to fostering the shift from fossil fuels to renewable energy sources via technological advancements in industrial processes. Microalgae can be used to produce biofuels such as biodiesel, hydrogen, and bioethanol. Microalgae are particularly suitable for hydrogen production due to their rapid growth rate, ability to thrive in diverse habitats, ability to resolve conflicts between fuel and food production, and capacity to capture and utilize atmospheric carbon dioxide. Therefore, microalgae-based biohydrogen production has attracted significant attention as a clean and sustainable fuel to achieve carbon neutrality and sustainability in nature. To this end, the review paper emphasizes recent information related to microalgae-based biohydrogen production, mechanisms of sustainable hydrogen production, factors affecting biohydrogen production by microalgae, bioreactor design and hydrogen production, advanced strategies to improve efficiency of biohydrogen production by microalgae, along with bottlenecks and perspectives to overcome the challenges. This review aims to collate advances and new knowledge emerged in recent years for microalgae-based biohydrogen production and promote the adoption of biohydrogen as an alternative to conventional hydrocarbon biofuels, thereby expediting the carbon neutrality target that is most advantageous to the environment.


Assuntos
Microalgas , Biocombustíveis , Reatores Biológicos , Fermentação , Hidrogênio , Combustíveis Fósseis , Biomassa
18.
Molecules ; 29(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38398614

RESUMO

Photochemical reactions of salicylhydroxamic acid were induced using tunable UV laser radiation followed by FTIR spectroscopy. Four pairs of co-products were experimentally found to appear in the photolysis: C6H4(OH)NCO⋯H2O (1), C6H4(OH)C(O)N⋯H2O (2), C6H4(OH)2⋯HNCO (3), and C6H4(OH)NHOH⋯CO (4). The comparison of the theoretical spectra with the experimental ones allowed us to determine the structures of the complexes formed in the matrices. The mechanisms of the reaction channels leading to the formation of the photoproducts were proposed. It was concluded that the first step in the formation of the complexes (1), (2), and (3) was the scission of the N-O bond, whereas the creation of complex (4) was due to cleavage of the C-N bond.

19.
J Environ Sci (China) ; 142: 269-278, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527892

RESUMO

The frequent detection of pharmaceutical compounds in the environment has led to a growing awareness, which may pose a major threat to the aquatic environment. In this study, photodegradation (direct and indirect photolysis) of two different dissociation states of fluoxetine (FLU) was investigated in water, mainly including the determination of photolytic transition states and products, and the mechanisms of indirect photodegradation with ·OH, CO3*- and NO3*. The main direct photolysis pathways are defluorination and C-C bond cleavage. In addition, the indirect photodegradation of FLU in water is mainly through the reactions with ·OH and NO3*, and the photodegradation reaction with CO3*- is relatively difficult to occur in the water environment. Our results provide a theoretical basis for understanding the phototransformation process of FLU in the water environment and assessing its potential risk.


Assuntos
Poluentes Químicos da Água , Água , Água/química , Fotólise , Fluoxetina , Radicais Livres , Preparações Farmacêuticas , Poluentes Químicos da Água/química , Cinética
20.
J Environ Sci (China) ; 139: 123-137, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105041

RESUMO

The fate of 2-nitrobenzaldehyde (2-NBA) is of interest in atmospheric chemistry as it is a semi-volatile organic compound with high photosensitivity. This study presents a quantum chemical study of the gas-phase reactions of 2-NBA photo-excitation and OH-oxidation in the absence and presence of small TiO2 clusters. To further understand the unknown photolysis mechanism, the photo-reaction pathways of ground singlet state and the lying excited triplet state of 2-NBA were investigated including the initial and subsequent reactions of proton transfer, direct CO, NO2, and HCO elimination routes in the presence of O2 and NO. Meanwhile, the OH-mediated degradation of 2-NBA proceeded via five H-extraction and six OH-addition channels by indirect mechanism, which follows a succession of reaction steps initiated by the formation of weakly stable intermediate complexes. The H-extraction from the -CHO group was the dominant pathway with a negative activation energy of -1.22 kcal/mol. The calculated rate coefficients at 200-600 K were close to the experimental data in literature within 308-352 K, and the kinetic negative temperature independence was found in both experimental literature and computational results. Interestingly, 2-NBA was favored to be captured onto small TiO2 clusters via six adsorption configurations formed via various combination of three types of bonds of Ti···O, Ti···C, and O···H between the molecularly adsorbed 2-NBA and TiO2 clusters. Comparison indicted that the chemisorptions of aldehyde oxygen have largest energies. The results suggested adsorption conformations have a respectable impact on the catalysis barrier. This study is significant for understanding the atmospheric chemistry of 2-nitrobenzaldehyde.


Assuntos
Oxigênio , Adsorção , Temperatura , Oxigênio/química , Catálise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa