Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 37(4): e22818, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36856606

RESUMO

Diabetes inflicts health and economic burdens on communities and the present antidiabetic therapies have several drawbacks. Tradescantia pallida leaves have been used as a food colorant and food preservative; however, to our knowledge antidiabetic potential of the leaves of T. pallida has not been explored yet. The current study aimed to investigate the antidiabetic potential of T. pallida leaves extract and its comparison with the novel nisosome formulation of the extract. The leaves extract and phytoniosomes of T. pallida in doses of 15, 25 and 50 mg/kg were used to assess the oral glucose loaded, and alloxan-induced diabetic mice models. The biological parameters evaluated were; change in body weight, blood biochemistry, relative organ to body weight ratio and histopathology of the liver, pancreas and kidney. Results revealed that the extract 50 mg/kg and phytoniosomes 25 and 50 mg/kg remarkably reduced the blood glucose level in all hyperglycemic mice by possibly inhibiting α-amylase and α-glucosidase production. Body weight and blood biochemical parameters were considerably improved in phytoniosomes 50 mg/kg treated group. The relative body weight was similar to those of healthy mice in extract 50 mg/kg, phytoniosomes 25 mg/kg, and phytoniosomes 50 mg/kg treated groups. Histopathology showed the regeneration of cells in the CHN50 treated group. Hyphenated chromatographic analysis revealed potent metabolites, which confirmed the antidiabetic potential of the extract by inhibiting α-amylase and α-glucosidase using in silico analysis. The present data suggested that phytoniosomes have shown better antidiabetic potential than crude extract of these leaves.


Assuntos
Diabetes Mellitus Experimental , Tradescantia , Animais , Camundongos , Hipoglicemiantes , Aloxano , alfa-Glucosidases , Modelos Animais de Doenças , Camundongos Obesos , Peso Corporal
2.
Avicenna J Med Biotechnol ; 15(3): 196-202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538243

RESUMO

Background: From time immemorial herbal preparations are been employed for the treatment of several ailments. In recent years due to poor bioavailability the conventional herbal preparations are replaced by phytoniosomes, an advanced novel drug delivery system in which the herbal extracts are incorporated into a non-ionic surfactant to yield higher absorption and remarkable desired pharmacological activity. The present study is aimed to prepare and characterize the ethanolic leaf extract of Tinospora cordifolia (nELETC) loaded phytoniosome and to compare its antioxidant properties with ethanolic leaf extract of Tinospora cordifolia (ELETC). Methods: The ethanolic leaf extract and ethanolic leaf extract of Tinospora cordifolia loaded phytoniosome (ELETC and nELETC) were prepared. The characterization of the prepared phytoniosomes were performed by UV-Visible spectroscopy, FTIR, XRD, SEM, TEM, DLS and zeta potential. The nontoxic nature of the prepared phytoniosomes was analyzed using MTT assay in vero cell line. The antioxidant potential of ELETC and nELETC were compared by the scavenging activity of DPPH, Hydrogen peroxide and Superoxide radicals. Results: The formation of ethanolic leaf extract of Tinospora cordifolia loaded phytoniosome (nELETC) was confirmed with UV-Vis spectroscopy. The SEM and TEM images confirmed the spherical shape of the nELETC with average size ranging from 600 to 1800 nm. The zeta potential showed magnitude of -65.55 to -77.83 mV and its crystalline structure was confirmed by XRD analysis. Through the FTIR spectrum presence of alcohols, alkanes, phenols, esters, aliphatic and aromatic compounds as well as alkenes and carbolic acids were identified. MTT assay establishes the non-toxic nature of the synthesized nELETC and excellent antioxidant potential was observed for nELETC than ELETC. Conclusion: In conclusion, the ethanolic leaf extract of Tinospora cordifolia loaded phytoniosome (nELETC) will serve as a promising drug carrier in scavenging the free radicals and can be used in various biological applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa