Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 166(6): 1436-1444.e10, 2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27610568

RESUMO

Conjugative pili are widespread bacterial appendages that play important roles in horizontal gene transfer, in spread of antibiotic resistance genes, and as sites of phage attachment. Among conjugative pili, the F "sex" pilus encoded by the F plasmid is the best functionally characterized, and it is also historically the most important, as the discovery of F-plasmid-mediated conjugation ushered in the era of molecular biology and genetics. Yet, its structure is unknown. Here, we present atomic models of two F family pili, the F and pED208 pili, generated from cryoelectron microscopy reconstructions at 5.0 and 3.6 Å resolution, respectively. These structures reveal that conjugative pili are assemblies of stoichiometric protein-phospholipid units. We further demonstrate that each pilus type binds preferentially to particular phospholipids. These structures provide the molecular basis for F pilus assembly and also shed light on the remarkable properties of conjugative pili in bacterial secretion and phage infection.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/fisiologia , Fator F/química , Fímbrias Bacterianas/química , Modelos Moleculares , Fosfolipídeos/química , Sítios de Ligação Microbiológicos/genética , Microscopia Crioeletrônica , Proteínas de Escherichia coli/metabolismo , Fator F/genética , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Lipídeos/química , Mutação , Fosfolipídeos/metabolismo , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Sistemas de Secreção Tipo V/química , Sistemas de Secreção Tipo V/metabolismo
2.
Annu Rev Biochem ; 84: 603-29, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26034891

RESUMO

Type IV secretion systems (T4SSs) are large multisubunit translocons, found in both gram-negative and gram-positive bacteria and in some archaea. These systems transport a diverse array of substrates from DNA and protein-DNA complexes to proteins, and play fundamental roles in both bacterial pathogenesis and bacterial adaptation to the cellular milieu in which bacteria live. This review describes the various biochemical and structural advances made toward understanding the biogenesis, architecture, and function of T4SSs.


Assuntos
Bactérias/metabolismo , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/ultraestrutura , Bactérias/química , Bactérias/classificação , Fator F/genética , Microscopia Eletrônica
3.
Mol Cell ; 81(3): 571-583.e6, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33412111

RESUMO

The arms race between bacteria and phages has led to the evolution of diverse anti-phage defenses, several of which are controlled by quorum-sensing pathways. In this work, we characterize a quorum-sensing anti-activator protein, Aqs1, found in Pseudomonas phage DMS3. We show that Aqs1 inhibits LasR, the master regulator of quorum sensing, and present the crystal structure of the Aqs1-LasR complex. The 69-residue Aqs1 protein also inhibits PilB, the type IV pilus assembly ATPase protein, which blocks superinfection by phages that require the pilus for infection. This study highlights the remarkable ability of small phage proteins to bind multiple host proteins and disrupt key biological pathways. As quorum sensing influences various anti-phage defenses, Aqs1 provides a mechanism by which infecting phages might simultaneously dampen multiple defenses. Because quorum-sensing systems are broadly distributed across bacteria, this mechanism of phage counter-defense may play an important role in phage-host evolutionary dynamics.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófagos/metabolismo , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum , Transativadores/metabolismo , Proteínas Virais/metabolismo , Proteínas de Bactérias/genética , Bacteriófagos/genética , Bacteriófagos/patogenicidade , Fímbrias Bacterianas/metabolismo , Interações Hospedeiro-Patógeno , Oxirredutases/genética , Oxirredutases/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Piocianina/metabolismo , Transativadores/genética , Proteínas Virais/genética
4.
Proc Natl Acad Sci U S A ; 121(40): e2410594121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39316053

RESUMO

Gram-negative bacteria produce chaperone-usher pathway pili, which are extracellular protein fibers tipped with an adhesive protein that binds to a receptor with stereochemical specificity to determine host and tissue tropism. The outer-membrane usher protein, together with a periplasmic chaperone, assembles thousands of pilin subunits into a highly ordered pilus fiber. The tip adhesin in complex with its cognate chaperone activates the usher to allow extrusion across the outer membrane. The structural requirements to translocate the adhesin through the usher pore from the periplasm to the extracellular space remains incompletely understood. Here, we present a cryoelectron microscopy structure of a quaternary tip complex in the type 1 pilus system from Escherichia coli, which consists of the usher FimD, chaperone FimC, adhesin FimH, and the tip adapter FimF. In this structure, the usher FimD is caught in the act of secreting its cognate adhesin FimH. Comparison with previous structures depicting the adhesin either first entering or having completely exited the usher pore reveals remarkable structural plasticity of the two-domain adhesin during translocation. Moreover, a piliation assay demonstrated that the structural plasticity, enabled by a flexible linker between the two domains, is a prerequisite for adhesin translocation through the usher pore and thus pilus biogenesis. Overall, this study provides molecular details of adhesin translocation across the outer membrane and elucidates a unique conformational state adopted by the adhesin during stepwise secretion through the usher pore. This study elucidates fundamental aspects of FimH and usher dynamics critical in urinary tract infections and is leading to antibiotic-sparing therapeutics.


Assuntos
Adesinas de Escherichia coli , Microscopia Crioeletrônica , Proteínas de Escherichia coli , Escherichia coli , Proteínas de Fímbrias , Fímbrias Bacterianas , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/química , Fímbrias Bacterianas/metabolismo , Adesinas de Escherichia coli/metabolismo , Adesinas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Modelos Moleculares , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/química
5.
Proc Natl Acad Sci U S A ; 120(47): e2310842120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37963249

RESUMO

Horizontal transfer of F-like plasmids by bacterial conjugation is responsible for disseminating antibiotic resistance and virulence determinants among pathogenic Enterobacteriaceae species, a growing health concern worldwide. Central to this process is the conjugative F pilus, a long extracellular filamentous polymer that extends from the surface of plasmid donor cells, allowing it to probe the environment and make contact with the recipient cell. It is well established that the F pilus can retract to bring mating pair cells in tight contact before DNA transfer. However, whether DNA transfer can occur through the extended pilus has been a subject of active debate. In this study, we use live-cell microscopy to show that while most transfer events occur between cells in direct contact, the F pilus can indeed serve as a conduit for the DNA during transfer between physically distant cells. Our findings enable us to propose a unique model for conjugation that revises our understanding of the DNA transfer mechanism and the dissemination of drug resistance and virulence genes within complex bacterial communities.


Assuntos
Escherichia coli , Genes Bacterianos , Escherichia coli/genética , Plasmídeos/genética , Fímbrias Bacterianas/genética , DNA Bacteriano/genética , Conjugação Genética , DNA , Transferência Genética Horizontal
6.
J Biol Chem ; 300(6): 107329, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679328

RESUMO

The biphasic assembly of Gram-positive pili begins with the covalent polymerization of distinct pilins catalyzed by a pilus-specific sortase, followed by the cell wall anchoring of the resulting polymers mediated by the housekeeping sortase. In Actinomyces oris, the pilus-specific sortase SrtC2 not only polymerizes FimA pilins to assemble type 2 fimbriae with CafA at the tip, but it can also act as the anchoring sortase, linking both FimA polymers and SrtC1-catalyzed FimP polymers (type 1 fimbriae) to peptidoglycan when the housekeeping sortase SrtA is inactive. To date, the structure-function determinants governing the unique substrate specificity and dual enzymatic activity of SrtC2 have not been illuminated. Here, we present the crystal structure of SrtC2 solved to 2.10-Å resolution. SrtC2 harbors a canonical sortase fold and a lid typical for class C sortases and additional features specific to SrtC2. Structural, biochemical, and mutational analyses of SrtC2 reveal that the extended lid of SrtC2 modulates its dual activity. Specifically, we demonstrate that the polymerizing activity of SrtC2 is still maintained by alanine-substitution, partial deletion, and replacement of the SrtC2 lid with the SrtC1 lid. Strikingly, pilus incorporation of CafA is significantly reduced by these mutations, leading to compromised polymicrobial interactions mediated by CafA. In a srtA mutant, the partial deletion of the SrtC2 lid reduces surface anchoring of FimP polymers, and the lid-swapping mutation enhances this process, while both mutations diminish surface anchoring of FimA pili. Evidently, the extended lid of SrtC2 enables the enzyme the cell wall-anchoring activity in a substrate-selective fashion.


Assuntos
Aminoaciltransferases , Proteínas de Bactérias , Cisteína Endopeptidases , Proteínas de Fímbrias , Fímbrias Bacterianas , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Aminoaciltransferases/metabolismo , Aminoaciltransferases/genética , Aminoaciltransferases/química , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/genética , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Cristalografia por Raios X , Actinomyces/metabolismo , Actinomyces/enzimologia , Especificidade por Substrato , Modelos Moleculares
7.
EMBO J ; 40(17): e106887, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34031903

RESUMO

Bacillus cereus sensu lato is a group of Gram-positive endospore-forming bacteria with high ecological diversity. Their endospores are decorated with micrometer-long appendages of unknown identity and function. Here, we isolate endospore appendages (Enas) from the food poisoning outbreak strain B. cereus NVH 0075-95 and find proteinaceous fibers of two main morphologies: S- and L-Ena. By using cryoEM and 3D helical reconstruction of S-Enas, we show these to represent a novel class of Gram-positive pili. S-Enas consist of single domain subunits with jellyroll topology that are laterally stacked by ß-sheet augmentation. S-Enas are longitudinally stabilized by disulfide bonding through N-terminal connector peptides that bridge the helical turns. Together, this results in flexible pili that are highly resistant to heat, drought, and chemical damage. Phylogenomic analysis reveals a ubiquitous presence of the ena-gene cluster in the B. cereus group, which include species of clinical, environmental, and food importance. We propose Enas to represent a new class of pili specifically adapted to the harsh conditions encountered by bacterial spores.


Assuntos
Bacillus cereus/ultraestrutura , Proteínas de Bactérias/química , Fímbrias Bacterianas/ultraestrutura , Bacillus cereus/genética , Proteínas de Bactérias/genética , Microscopia Crioeletrônica , Fímbrias Bacterianas/química , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Estabilidade Proteica
8.
Subcell Biochem ; 104: 549-563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963500

RESUMO

Within the highly diverse type four filament (TFF or T4F) superfamily, the machineries of type IVa pili (T4aP) and the type 2 secretion system (T2SS) in diderm bacteria exhibit a substantial sequence similarity despite divergent functions and distinct appearances: T4aP can extend micrometers beyond the outer membrane, whereas the endopili in the T2SS are restricted to the periplasm. The determination of the structure of individual components and entire filaments is crucial to understand how their structure enables them to serve different functions. However, the dynamics of these filaments poses a challenge for their high-resolution structure determination. This review presents different approaches that have been used to study the structure and dynamics of T4aP and T2SS endopili by means of integrative structural biology, cryo-electron microscopy (cryo-EM), and molecular dynamics simulations. Their conserved features and differences are presented. The non-helical stretch in the long-conserved N-terminal helix which is characteristic of all members of the TFF and the impact of calcium on structure, function, and dynamics of these filaments are discussed in detail.


Assuntos
Microscopia Crioeletrônica , Fímbrias Bacterianas , Sistemas de Secreção Tipo II , Fímbrias Bacterianas/química , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Fímbrias Bacterianas/fisiologia , Microscopia Crioeletrônica/métodos , Sistemas de Secreção Tipo II/química , Sistemas de Secreção Tipo II/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/genética
9.
Proc Natl Acad Sci U S A ; 119(28): e2203114119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35787040

RESUMO

Most Actinobacteria encode a small transmembrane protein, whose gene lies immediately downstream of the housekeeping sortase coding for a transpeptidase that anchors many extracellular proteins to the Gram-positive bacterial cell wall. Here, we uncover the hitherto unknown function of this class of conserved proteins, which we name SafA, as a topological modulator of sortase in the oral Actinobacterium Actinomyces oris. Genetic deletion of safA induces cleavage and excretion of the otherwise predominantly membrane-bound SrtA in wild-type cells. Strikingly, the safA mutant, although viable, exhibits severe abnormalities in cell morphology, pilus assembly, surface protein localization, and polymicrobial interactions-the phenotypes that are mirrored by srtA depletion. The pleiotropic defect of the safA mutant is rescued by ectopic expression of safA from not only A. oris, but also Corynebacterium diphtheriae or Corynebacterium matruchotii. Importantly, the SrtA N terminus harbors a tripartite-domain feature typical of a bacterial signal peptide, including a cleavage motif AXA, mutations in which prevent SrtA cleavage mediated by the signal peptidase LepB2. Bacterial two-hybrid analysis demonstrates that SafA and SrtA directly interact. This interaction involves a conserved motif FPW within the exoplasmic face of SafA, since mutations of this motif abrogate SafA-SrtA interaction and induce SrtA cleavage and excretion as observed in the safA mutant. Evidently, SafA is a membrane-imbedded antagonist of signal peptidase that safeguards and maintains membrane homeostasis of the housekeeping sortase SrtA, a central player of cell surface assembly.


Assuntos
Actinobacteria/metabolismo , Aminoaciltransferases , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Homeostase , Proteínas de Membrana , Morfogênese , Serina Endopeptidases
10.
Crit Rev Microbiol ; : 1-22, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441045

RESUMO

Vibrio cholerae is a cholera-causing pathogen known to instigate severe contagious diarrhea that affects millions globally. Survival of vibrios depend on a combination of multicellular responses and adapt to changes that prevail in the environment. This process is achieved through a strong communication at the cellular level, the process has been recognized as quorum sensing (QS). The severity of infection is highly dependent on the QS of vibrios in the gut milieu. The quorum may exist in a low/high cell density (LCD/HCD) state to exert a positive or negative response to control the regulatory pathogenic networks. The impact of this regulation reflects on the transition of pathogenic V. cholerae from the environment to infect humans and cause outbreaks or epidemics of cholera. In this context, the review portrays various regulatory processes and associated virulent pathways, which maneuver and control LCD and HCD states for their survival in the host. Although several treatment options are existing, promotion of therapeutics by exploiting the virulence network may potentiate ineffective antibiotics to manage cholera. In addition, this approach is also useful in resource-limited settings, where the accessibility to antibiotics or conventional therapeutic options is limited.

11.
Arch Biochem Biophys ; 760: 110127, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39154818

RESUMO

Antivirulence strategy has been explored as an alternative to traditional antibiotic development. The bacterial type IV pilus is a virulence factor involved in host invasion and colonization in many antibiotic resistant pathogens. The PilB ATPase hydrolyzes ATP to drive the assembly of the pilus filament from pilin subunits. We evaluated Chloracidobacterium thermophilum PilB (CtPilB) as a model for structure-based virtual screening by molecular docking and molecular dynamics (MD) simulations. A hexameric structure of CtPilB was generated through homology modeling based on an existing crystal structure of a PilB from Geobacter metallireducens. Four representative structures were obtained from molecular dynamics simulations to examine the conformational plasticity of PilB and improve docking analyses by ensemble docking. Structural analyses after 1 µs of simulation revealed conformational changes in individual PilB subunits are dependent on ligand presence. Further, ensemble virtual screening of a library of 4234 compounds retrieved from the ZINC15 database identified five promising PilB inhibitors. Molecular docking and binding analyses using the four representative structures from MD simulations revealed that top-ranked compounds interact with multiple Walker A residues, one Asp-box residue, and one arginine finger, indicating these are key residues in inhibitor binding within the ATP binding pocket. The use of multiple conformations in molecular screening can provide greater insight into compound flexibility within receptor sites and better inform future drug development for therapeutics targeting the type IV pilus assembly ATPase.


Assuntos
Proteínas de Bactérias , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/química , Acidobacteria/metabolismo , Acidobacteria/química , Antibacterianos/farmacologia , Antibacterianos/química , Avaliação Pré-Clínica de Medicamentos , Sequência de Aminoácidos , Oxirredutases
12.
Biopolymers ; 115(1): e23539, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37227047

RESUMO

Many species of pathogenic gram-positive bacteria display covalently crosslinked protein polymers (called pili or fimbriae) that mediate microbial adhesion to host tissues. These structures are assembled by pilus-specific sortase enzymes that join the pilin components together via lysine-isopeptide bonds. The archetypal SpaA pilus from Corynebacterium diphtheriae is built by the Cd SrtA pilus-specific sortase, which crosslinks lysine residues within the SpaA and SpaB pilins to build the shaft and base of the pilus, respectively. Here, we show that Cd SrtA crosslinks SpaB to SpaA via a K139(SpaB)-T494(SpaA) lysine-isopeptide bond. Despite sharing only limited sequence homology, an NMR structure of SpaB reveals striking similarities with the N-terminal domain of SpaA (N SpaA) that is also crosslinked by Cd SrtA. In particular, both pilins contain similarly positioned reactive lysine residues and adjacent disordered AB loops that are predicted to be involved in the recently proposed "latch" mechanism of isopeptide bond formation. Competition experiments using an inactive SpaB variant and additional NMR studies suggest that SpaB terminates SpaA polymerization by outcompeting N SpaA for access to a shared thioester enzyme-substrate reaction intermediate.


Assuntos
Aminoaciltransferases , Corynebacterium diphtheriae , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Corynebacterium diphtheriae/metabolismo , Proteínas de Bactérias/metabolismo , Lisina , Cádmio/metabolismo , Aminoaciltransferases/metabolismo
13.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33593905

RESUMO

Type IV pili (TFP) function through cycles of extension and retraction. The coordination of these cycles remains mysterious due to a lack of quantitative measurements of multiple features of TFP dynamics. Here, we fluorescently label TFP in the pathogen Pseudomonas aeruginosa and track full extension and retraction cycles of individual filaments. Polymerization and depolymerization dynamics are stochastic; TFP are made at random times and extend, pause, and retract for random lengths of time. TFP can also pause for extended periods between two extension or two retraction events in both wild-type cells and a slowly retracting PilT mutant. We developed a biophysical model based on the stochastic binding of two dedicated extension and retraction motors to the same pilus machine that predicts the observed features of the data with no free parameters. We show that only a model in which both motors stochastically bind and unbind to the pilus machine independent of the piliation state of the machine quantitatively explains the experimentally observed pilus production rate. In experimental support of this model, we show that the abundance of the retraction motor dictates the pilus production rate and that PilT is bound to pilus machines even in their unpiliated state. Together, the strong quantitative agreement of our model with a variety of experiments suggests that the entire repetitive cycle of pilus extension and retraction is coordinated by the competition of stochastic motor binding to the pilus machine, and that the retraction motor is the major throttle for pilus production.


Assuntos
Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/metabolismo , Proteínas de Fímbrias/química , Corantes Fluorescentes/química , Maleimidas/química , Microscopia de Fluorescência , Modelos Biológicos , Proteínas Motores Moleculares/metabolismo , Processos Estocásticos
14.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(4): 253-263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38599846

RESUMO

I. Watanabe et al. isolated approximately 30 strains of RNA phages from various parts of Japan. To isolate RNA phages, they assessed the infection specificity of male Escherichia coli and RNase sensitivity. They found that the isolated strains of RNA phages could be serologically separated into three groups. Furthermore, most of them were serologically related, and the antiphage rabbit serum prepared by one of these phages neutralized most of the other phages. The only serologically unrelated phage was the RNA phage Qß, which was isolated at the Institute for Virus Research, Kyoto University, in 1961.


Assuntos
Fagos RNA , Humanos , Masculino , Coelhos , Animais , Escherichia coli/genética , Japão
15.
Int J Mol Sci ; 25(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791440

RESUMO

The pil gene cluster for Type IV pilus (Tfp) biosynthesis is commonly present and highly conserved in Streptococcus sanguinis. Nevertheless, Tfp-mediated twitching motility is less common among strains, and the factors determining twitching activity are not fully understood. Here, we analyzed the functions of three major pilin proteins (PilA1, PilA2, and PilA3) in the assembly and activity of Tfp in motile S. sanguinis CGMH010. Using various recombinant pilA deletion strains, we found that Tfp composed of different PilA proteins varied morphologically and functionally. Among the three PilA proteins, PilA1 was most critical in the assembly of twitching-active Tfp, and recombinant strains expressing motility generated more structured biofilms under constant shearing forces compared to the non-motile recombinant strains. Although PilA1 and PilA3 shared 94% identity, PilA3 could not compensate for the loss of PilA1, suggesting that the nature of PilA proteins plays an essential role in twitching activity. The single deletion of individual pilA genes had little effect on the invasion of host endothelia by S. sanguinis CGMH010. In contrast, the deletion of all three pilA genes or pilT, encoding the retraction ATPase, abolished Tfp-mediated invasion. Tfp- and PilT-dependent invasion were also detected in the non-motile S. sanguinis SK36, and thus, the retraction of Tfp, but not active twitching, was found to be essential for invasion.


Assuntos
Proteínas de Fímbrias , Streptococcus sanguis , Biofilmes/crescimento & desenvolvimento , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/genética , Streptococcus sanguis/metabolismo , Streptococcus sanguis/genética
16.
J Bacteriol ; 205(9): e0022123, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37695853

RESUMO

The regulation of biofilm and motile states as alternate bacterial lifestyles has been studied extensively in flagellated bacteria, where the second messenger cyclic-di-GMP (cdG) plays a crucial role. However, much less is known about the mechanisms of such regulation in motile bacteria without flagella. The bacterial type IV pilus (T4P) serves as a motility apparatus that enables Myxococcus xanthus to move on solid surfaces. PilB, the T4P assembly ATPase, is, therefore, required for T4P-dependent motility in M. xanthus. Interestingly, T4P is also involved in the regulation of exopolysaccharide as the biofilm matrix material in this bacterium. A newly discovered cdG-binding domain, MshEN, is conserved in the N-terminus of PilB (PilBN) in M. xanthus and other bacteria. This suggests that cdG may bind to PilB to control the respective outputs that regulate biofilm development and T4P-powered motility. In this study, we aimed to validate M. xanthus PilB as a cdG effector protein. We performed a systematic mutational analysis of its cdG-binding domain to investigate its relationship with motility, piliation, and biofilm formation. Excluding those resulting in low levels of PilB protein, all other substitution mutations in PilBN resulted in pilB mutants with distinct and differential phenotypes in piliation and biofilm levels in M. xanthus. This suggests that the PilBN domain plays dual roles in modulating motility and biofilm levels, and these two functions of PilB can be dependent on and independent of each other in M. xanthus. IMPORTANCE The regulation of motility and biofilm by cyclic-di-GMP in flagellated bacteria has been extensively investigated. However, our knowledge regarding this regulation in motile bacteria without flagella remains limited. Here, we aimed to address this gap by investigating a non-flagellated bacterium with motility powered by bacterial type-IV pilus (T4P). Previous studies hinted at the possibility of Myxococcus xanthus PilB, the T4P assembly ATPase, serving as a cyclic-di-GMP effector involved in regulating both motility and biofilm. Our findings strongly support the hypothesis that PilB directly interacts with cyclic-di-GMP to act as a potential switch to promote biofilm formation or T4P-dependent motility. These results shed light on the bifurcation of PilB functions and its pivotal role in coordinating biofilm formation and T4P-mediated motility.


Assuntos
Myxococcus xanthus , Myxococcus xanthus/genética , GMP Cíclico , Adenosina Trifosfatases , Biofilmes
17.
Mol Microbiol ; 117(5): 1275-1290, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35434837

RESUMO

F plasmids circulate widely among the Enterobacteriaceae through encoded type IV secretion systems (T4SSF s). Assembly of T4SSF s and associated F pili requires 10 VirB/VirD4-like Tra subunits and eight or more F-specific subunits. Recently, we presented evidence using in situ cryoelectron tomography (cryoET) that T4SSF s undergo structural transitions when activated for pilus production, and that assembled pili are deposited onto alternative basal platforms at the cell surface. Here, we deleted eight conserved F-specific genes from the MOBF12C plasmid pED208 and quantitated effects on plasmid transfer, pilus production by fluorescence microscopy, and elaboration of T4SSF structures by in situ cryoET. Mutant phenotypes supported the assignment of F-specific subunits into three functional Classes: (i) TraF, TraH, and TraW are required for all T4SSF -associated activities, (ii) TraU, TraN, and TrbC are nonessential but contribute significantly to distinct T4SSF functions, and (iii) TrbB is essential for F pilus production but not for plasmid transfer. Equivalent mutations in a phylogenetically distantly related MOB12A F plasmid conferred similar phenotypes and generally supported these Class assignments. We present a new structure-driven model in which F-specific subunits contribute to distinct steps of T4SSF assembly or activation to regulate DNA transfer and F pilus dynamics and deposition onto alternative platforms.


Assuntos
Proteínas de Escherichia coli , Fator F , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Conjugação Genética , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Plasmídeos/genética , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo
18.
EMBO J ; 38(22): e102145, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31609039

RESUMO

Type IV pili (TFP) are multifunctional micrometer-long filaments expressed at the surface of many prokaryotes. In Neisseria meningitidis, TFP are crucial for virulence. Indeed, these homopolymers of the major pilin PilE mediate interbacterial aggregation and adhesion to host cells. However, the mechanisms behind these functions remain unclear. Here, we simultaneously determined regions of PilE involved in pilus display, auto-aggregation, and adhesion by using deep mutational scanning and started mining this extensive functional map. For auto-aggregation, pili must reach a minimum length to allow pilus-pilus interactions through an electropositive cluster of residues centered around Lys140. For adhesion, results point to a key role for the tip of the pilus. Accordingly, purified pili interacting with host cells initially bind via their tip-located major pilin and then along their length. Overall, these results identify functional domains of PilE and support a direct role of the major pilin in TFP-dependent aggregation and adhesion.


Assuntos
Aderência Bacteriana , Agregação Celular , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/fisiologia , Mutação , Neisseria meningitidis/fisiologia , Proteínas de Fímbrias/química , Regulação Bacteriana da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Mutagênese Sítio-Dirigida
19.
Immunol Cell Biol ; 101(6): 545-555, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36967611

RESUMO

Group A Streptococcus (GAS) is a human pathogenic bacterium that can trigger a wide range of diseases, including the autoimmune diseases acute rheumatic fever and rheumatic heart disease, causing major morbidity and mortality in many low- and middle-income countries. Primary intervention programs have had limited success thus far, and a licensed vaccine has yet to be developed. The pilus of GAS is known to be involved in host cell adhesion, biofilm formation and immune evasion. We have a mucosal vaccine in development that expresses the pilus of GAS on the surface of the nonpathogenic bacterium Lactococcus lactis. To expand strain coverage, we combined seven L. lactis constructs, each expressing a different GAS pilus variant, and investigated the systemic and mucosal immune responses following immunization. Mice immunized with this combination showed specific immunoglobin G and immunoglobin A responses to the GAS pilus proteins of vaccine strains, at levels comparable to mice immunized with a single construct. Cross-reactivity to pilus proteins of nonvaccine strains was also evident. Furthermore, protective efficacy against a homologous strain of GAS in a murine nasopharyngeal colonization model was observed. Overall, this study provides further evidence for using pilus-expressing lactic acid bacteria as a vaccine to prevent upper respiratory tract GAS infections.


Assuntos
Lactococcus lactis , Vacinas , Humanos , Animais , Camundongos , Lactococcus lactis/genética , Fímbrias Bacterianas/genética , Vacinação , Imunidade nas Mucosas , Streptococcus pyogenes/genética
20.
J Virol ; 96(5): e0176921, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35020473

RESUMO

There is a continuously expanding gap between predicted phage gene sequences and their corresponding functions, which has largely hampered the development of phage therapy. Previous studies reported several phage proteins that could interfere with the intracellular processes of the host to obtain efficient infection. But few phage proteins that protect host against phage infection have been identified and characterized in detail. Here, we isolate a phage, vB_Pae_QDWS, capable of infecting Pseudomonas aeruginosa PAO1 and report that its encoded Gp21 protein protects PAO1 against phage infection. Expression of Gp21 regulates bacterial quorum sensing with an inhibitory effect in low cell density and an activation effect in high cell density. By testing the type IV pilus (TFP)-mediated twitching motility and transmission electron microscopy analysis, Gp21 was found to decrease the pilus synthesis. Further, by constructing the TFP synthesis gene pilB mutant and performing adsorption and phage resistance assay, we demonstrated that the Gp21 protein could block phage infection via decreasing the TFP-mediated phage adsorption. Gp21 is a novel protein that inhibits phage efficacy against bacteria. The study deepens our understanding of phage-host interactions. IMPORTANCE The majority of the annotated phage genes are currently deposited as "hypothetical protein" with unknown function. Research has revealed that some phage proteins serve to inhibit or redirect the host intracellular processes for phage infection. Conversely, we report a phage encoded protein Gp21 that protects the host against phage infection. The pathways that Gp21 involved in antiphage defense in Pseudomonas aeruginosa PAO1 interfere with quorum sensing and decrease type IV pilus-mediated phage adsorption. Gp21 is a novel protein with a low sequence homology with other reported twitching inhibitory proteins. As a lytic phage-derived protein, Gp21 expression protects P. aeruginosa PAO1 from reinfection by phage vB_Pae_QDWS, which may explain the well-known pseudolysogeny caused by virulent phages. Our discoveries provide valuable new insight into phage-host evolutionary dynamics.


Assuntos
Fagos de Pseudomonas , Pseudomonas aeruginosa , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Expressão Gênica , Fagos de Pseudomonas/fisiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/virologia , Percepção de Quorum
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa