Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Development ; 150(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37213081

RESUMO

The most anterior structure of the ascidian larva is made of three palps with sensory and adhesive functions essential for metamorphosis. They derive from the anterior neural border and their formation is regulated by FGF and Wnt. Given that they also share gene expression profiles with vertebrate anterior neural tissue and cranial placodes, their study should shed light on the emergence of the unique vertebrate telencephalon. We show that BMP signaling regulates two phases of palp formation in Ciona intestinalis. During gastrulation, the anterior neural border is specified in a domain of inactive BMP signaling, and activating BMP prevented its formation. During neurulation, BMP defines ventral palp identity and indirectly specifies the inter-papilla territory separating the ventral and dorsal palps. Finally, we show that BMP has similar functions in the ascidian Phallusia mammillata, for which we identified novel palp markers. Collectively, we provide a better molecular description of palp formation in ascidians that will be instrumental for comparative studies.


Assuntos
Urocordados , Animais , Urocordados/genética , Sistema Nervoso/metabolismo , Transdução de Sinais , Gastrulação/genética , Placa Neural/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
2.
Semin Cell Dev Biol ; 138: 15-27, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35760729

RESUMO

During development of the vertebrate sensory system, many important components like the sense organs and cranial sensory ganglia arise within the head and neck. Two progenitor populations, the neural crest, and cranial ectodermal placodes, contribute to these developing vertebrate peripheral sensory structures. The interactions and contributions of these cell populations to the development of the lens, olfactory, otic, pituitary gland, and cranial ganglia are vital for appropriate peripheral nervous system development. Here, we review the origins of both neural crest and placode cells at the neural plate border of the early vertebrate embryo and investigate the molecular and environmental signals that influence specification of different sensory regions. Finally, we discuss the underlying molecular pathways contributing to the complex vertebrate sensory system from an evolutionary perspective, from basal vertebrates to amniotes.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Crista Neural , Animais , Ectoderma/metabolismo , Vertebrados , Organogênese
3.
Dev Biol ; 508: 64-76, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38190932

RESUMO

Feathers originate as protofeathers before birds, in pterosaurs and basal dinosaurs. What characterizes a feather is not only its outgrowth, but its barb cells differentiation and a set of beta-corneous proteins. Reticula appear concomitantly with feathers, as small bumps on plantar skin, made only of keratins. Avian scales, with their own set of beta-corneous proteins, appear more recently than feathers on the shank, and only in some species. In the chick embryo, when feather placodes form, all the non-feather areas of the integument are already specified. Among them, midventral apterium, cornea, reticula, and scale morphogenesis appear to be driven by negative regulatory mechanisms, which modulate the inherited capacity of the avian ectoderm to form feathers. Successive dermal/epidermal interactions, initiated by the Wnt/ß-catenin pathway, and involving principally Eda/Edar, BMP, FGF20 and Shh signaling, are responsible for the formation not only of feather, but also of scale placodes and reticula, with notable differences in the level of Shh, and probably FGF20 expressions. This sequence is a dynamic and labile process, the turning point being the FGF20 expression by the placode. This epidermal signal endows its associated dermis with the memory to aggregate and to stimulate the morphogenesis that follows, involving even a re-initiation of the placode.


Assuntos
Ectoderma , Plumas , Animais , Embrião de Galinha , Plumas/metabolismo , Ectoderma/metabolismo , Evolução Biológica , Aves , Queratinas/metabolismo , Morfogênese
4.
Dev Biol ; 515: 79-91, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39019425

RESUMO

The trigeminal ganglion, the largest of the vertebrate cranial ganglia, is comprised of sensory neurons that relay sensations of pain, touch, and temperature to the brain. These neurons are derived from two embryonic cell types, the neural crest and ectodermal placodes, whose interactions are critical for proper ganglion formation. While the T-cell leukemia homeobox 3 (Tlx3) gene is known to be expressed in placodally-derived sensory neurons and necessary for their differentiation, little was known about Tlx3 expression and/or function in the neural crest-derived component of the developing trigeminal ganglion. By combining lineage labeling with in situ hybridization in the chick embryo, we show that neural crest-derived cells that contribute to the cranial trigeminal ganglion express Tlx3 at a time point that coincides with the onset of ganglion condensation. Importantly, loss of Tlx3 function in vivo diminishes the overall size and abundance of neurons within the trigeminal ganglion. Conversely, ectopic expression of Tlx3 in migrating cranial neural crest results in their premature neuronal differentiation. Taken together, our results demonstrate a critical role for Tlx3 in neural crest-derived cells during chick trigeminal gangliogenesis.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Crista Neural , Gânglio Trigeminal , Animais , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/embriologia , Gânglio Trigeminal/citologia , Embrião de Galinha , Crista Neural/metabolismo , Crista Neural/embriologia , Crista Neural/citologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Neurônios/metabolismo , Neurogênese/genética , Movimento Celular , Linhagem da Célula
5.
Development ; 149(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36040061

RESUMO

Placodes are embryonic structures originating from the rostral ectoderm that give rise to highly diverse organs and tissues, comprising the anterior pituitary gland, paired sense organs and cranial sensory ganglia. Their development, including the underlying gene regulatory networks and signalling pathways, have been for the most part characterised in animal models. In this Review, we describe how placode development can be recapitulated by the differentiation of human pluripotent stem cells towards placode progenitors and their derivatives, highlighting the value of this highly scalable platform as an optimal in vitro tool to study the development of human placodes, and identify human-specific mechanisms in their development, function and pathology.


Assuntos
Ectoderma , Células-Tronco Pluripotentes , Animais , Diferenciação Celular , Ectoderma/metabolismo , Gânglios Sensitivos , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Órgãos dos Sentidos
6.
Proc Natl Acad Sci U S A ; 119(28): e2118938119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867760

RESUMO

The vertebrate inner ear arises from a pool of progenitors with the potential to contribute to all the sense organs and cranial ganglia in the head. Here, we explore the molecular mechanisms that control ear specification from these precursors. Using a multiomics approach combined with loss-of-function experiments, we identify a core transcriptional circuit that imparts ear identity, along with a genome-wide characterization of noncoding elements that integrate this information. This analysis places the transcription factor Sox8 at the top of the ear determination network. Introducing Sox8 into the cranial ectoderm not only converts non-ear cells into ear progenitors but also activates the cellular programs for ear morphogenesis and neurogenesis. Thus, Sox8 has the unique ability to remodel transcriptional networks in the cranial ectoderm toward ear identity.


Assuntos
Orelha Interna , Ectoderma , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição SOXE , Animais , Orelha Interna/embriologia , Ectoderma/embriologia , Fatores de Transcrição SOXE/fisiologia , Crânio , Vertebrados/embriologia
7.
Differentiation ; 138: 100792, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38935992

RESUMO

The role extracellular matrix (ECM) in multiple events of morphogenesis has been well described, little is known about its specific role in early eye development. One of the first morphogenic events in lens development is placodal thickening, which converts the presumptive lens ectoderm from cuboidal to pseudostratified epithelium. This process occurs in the anterior pre-placodal ectoderm when the optic vesicle approaches the cephalic ectoderm and is regulated by transcription factor Pax6 and secreted BMP4. Since cells and ECM have a dynamic relationship of interdependence and modulation, we hypothesized that the ECM evolves with cell shape changes during lens placode formation. This study investigates changes in optic ECM including both protein distribution deposition, extracellular gelatinase activity and gene expression patterns during early optic development using chicken and mouse models. In particular, the expression of Timp2, a metalloprotease inhibitor, corresponds with a decrease in gelatinase activity within the optic ECM. Furthermore, we demonstrate that optic ECM remodeling depends on BMP signaling in the placode. Together, our findings suggest that the lens placode plays an active role in remodeling the optic ECM during early eye development.


Assuntos
Matriz Extracelular , Regulação da Expressão Gênica no Desenvolvimento , Cristalino , Fator de Transcrição PAX6 , Animais , Matriz Extracelular/metabolismo , Camundongos , Cristalino/metabolismo , Cristalino/crescimento & desenvolvimento , Cristalino/citologia , Fator de Transcrição PAX6/metabolismo , Fator de Transcrição PAX6/genética , Proteínas do Olho/metabolismo , Proteínas do Olho/genética , Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 4/genética , Embrião de Galinha , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Inibidor Tecidual de Metaloproteinase-2/genética , Fatores de Transcrição Box Pareados/metabolismo , Fatores de Transcrição Box Pareados/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais , Galinhas/genética , Olho/metabolismo , Olho/crescimento & desenvolvimento , Olho/embriologia
8.
Development ; 148(4)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33531433

RESUMO

All paired sensory organs arise from a common precursor domain called the pre-placodal region (PPR). In Xenopus, Zic1 non-cell autonomously regulates PPR formation by activating retinoic acid (RA) production. Here, we have identified two Zic1 targets, the RA catabolizing enzyme Cyp26c1 and the transcription factor Pitx2c, expressed in the vicinity of the PPR as being crucially required for maintaining low RA levels in a spatially restricted, PPR-adjacent domain. Morpholino- or CRISPR/Cas9-mediated Cyp26c1 knockdown abrogated PPR gene expression, yielding defective cranial placodes. Direct measurement of RA levels revealed that this is mediated by a mechanism involving excess RA accumulation. Furthermore, we show that pitx2c is activated by RA and required for Cyp26c1 expression in a domain-specific manner through induction of FGF8. We propose that Zic1 anteriorly establishes a program of RA containment and regulation through activation of Cyp26c1 and Pitx2c that cooperates to promote PPR specification in a spatially restricted domain.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Homeodomínio/metabolismo , Organogênese , Fatores de Transcrição/metabolismo , Tretinoína/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Padronização Corporal/genética , Sistema Enzimático do Citocromo P-450/genética , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/genética , Imuno-Histoquímica , Modelos Biológicos , Organogênese/genética , Fenótipo , Fatores de Transcrição/genética , Proteínas de Xenopus/genética , Xenopus laevis
9.
Stem Cells ; 41(1): 26-38, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36153788

RESUMO

The inner ear is derived from the otic placode, one of the numerous cranial sensory placodes that emerges from the pre-placodal ectoderm (PPE) along its anterior-posterior axis. However, the molecular dynamics underlying how the PPE is regionalized are poorly resolved. We used stem cell-derived organoids to investigate the effects of Wnt signaling on early PPE differentiation and found that modulating Wnt signaling significantly increased inner ear organoid induction efficiency and reproducibility. Alongside single-cell RNA sequencing, our data reveal that the canonical Wnt signaling pathway leads to PPE regionalization and, more specifically, medium Wnt levels during the early stage induce (1) expansion of the caudal neural plate border (NPB), which serves as a precursor for the posterior PPE, and (2) a caudal microenvironment that is required for otic specification. Our data further demonstrate Wnt-mediated induction of rostral and caudal cells in organoids and more broadly suggest that Wnt signaling is critical for anterior-posterior patterning in the PPE.


Assuntos
Orelha Interna , Via de Sinalização Wnt , Animais , Camundongos , Reprodutibilidade dos Testes , Orelha Interna/metabolismo , Diferenciação Celular , Ectoderma/metabolismo , Organoides , Células-Tronco , Regulação da Expressão Gênica no Desenvolvimento
10.
EMBO Rep ; 23(2): e52963, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34889034

RESUMO

While the chemical signals guiding neuronal migration and axon elongation have been extensively studied, the influence of mechanical cues on these processes remains poorly studied in vivo. Here, we investigate how mechanical forces exerted by surrounding tissues steer neuronal movements and axon extension during the morphogenesis of the olfactory placode in zebrafish. We mainly focus on the mechanical contribution of the adjacent eye tissue, which develops underneath the placode through extensive evagination and invagination movements. Using quantitative analysis of cell movements and biomechanical manipulations, we show that the developing eye exerts lateral traction forces on the olfactory placode through extracellular matrix, mediating proper morphogenetic movements and axon extension within the placode. Our data shed new light on the key participation of intertissue mechanical interactions in the sculpting of neuronal circuits.


Assuntos
Condutos Olfatórios , Peixe-Zebra , Animais , Axônios/fisiologia , Ectoderma , Morfogênese , Neurogênese , Condutos Olfatórios/anatomia & histologia , Condutos Olfatórios/fisiologia , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/fisiologia
11.
Dev Genes Evol ; 233(1): 13-23, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37079132

RESUMO

Cranial neurogenic placodes have been considered vertebrate innovations. However, anterior neural plate border (ANB) cells of ascidian embryos share many properties with vertebrate neurogenic placodes; therefore, it is now believed that the last common ancestor of vertebrates and ascidians had embryonic structures similar to neurogenic placodes of vertebrate embryos. Because BMP signaling is important for specifying the placode region in vertebrate embryos, we examined whether BMP signaling is also involved in gene expression in the ANB region of ascidian embryos. Our data indicated that Admp, a divergent BMP family member, is mainly responsible for BMP signaling in the ANB region, and that two BMP-antagonists, Noggin and Chordin, restrict the domain, in which BMP signaling is activated, to the ANB region, and prevent it from expanding to the neural plate. BMP signaling is required for expression of Foxg and Six1/2 at the late gastrula stage, and also for expression of Zf220, which encodes a zinc finger transcription factor in late neurula embryos. Because Zf220 negatively regulates Foxg, when we downregulated Zf220 by inhibiting BMP signaling, Foxg was upregulated, resulting in one large palp instead of three palps (adhesive organs derived from ANB cells). Functions of BMP signaling in specification of the ANB region give further support to the hypothesis that ascidian ANB cells share an evolutionary origin with vertebrate cranial placodes.


Assuntos
Urocordados , Animais , Urocordados/genética , Placa Neural/metabolismo , Vertebrados/genética , Evolução Biológica , Proteínas Morfogenéticas Ósseas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
12.
Development ; 147(24)2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33144399

RESUMO

Sense organs acquire their distinctive shapes concomitantly with the differentiation of sensory cells and neurons necessary for their function. Although our understanding of the mechanisms controlling morphogenesis and neurogenesis in these structures has grown, how these processes are coordinated remains largely unexplored. Neurogenesis in the zebrafish olfactory epithelium requires the bHLH proneural transcription factor Neurogenin 1 (Neurog1). To address whether Neurog1 also controls morphogenesis, we analysed the migratory behaviour of early olfactory neural progenitors in neurog1 mutant embryos. Our results indicate that the oriented movements of these progenitors are disrupted in this context. Morphogenesis is similarly affected by mutations in the chemokine receptor gene, cxcr4b, suggesting it is a potential Neurog1 target gene. We find that Neurog1 directly regulates cxcr4b through an E-box cluster located just upstream of the cxcr4b transcription start site. Our results suggest that proneural transcription factors, such as Neurog1, directly couple distinct aspects of nervous system development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Morfogênese/genética , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Mucosa Olfatória/crescimento & desenvolvimento , Receptores CXCR4/genética , Proteínas de Peixe-Zebra/genética , Animais , Elementos E-Box/genética , Embrião não Mamífero , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Mutação/genética , Neurônios/metabolismo , Sítio de Iniciação de Transcrição , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
13.
Development ; 147(4)2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31988190

RESUMO

Epibranchial placodes are the geniculate, petrosal and nodose placodes that generate parts of cranial nerves VII, IX and X, respectively. How the three spatially separated placodes are derived from the common posterior placodal area is poorly understood. Here, we reveal that the broad posterior placode area is first patterned into a Vgll2+/Irx5+ rostral domain and a Sox2+/Fgf3+/Etv5+ caudal domain relative to the first pharyngeal cleft. This initial rostral and caudal patterning is then sequentially repeated along each pharyngeal cleft for each epibranchial placode. The caudal domains give rise to the neuronal and non-neuronal cells in the placode, whereas the rostral domains are previously unrecognized structures, serving as spacers between the final placodes. Notch signalling regulates the balance between the rostral and caudal domains: high levels of Notch signalling expand the caudal domain at the expense of the rostral domain, whereas loss of Notch signalling produces the converse phenotype. Collectively, these data unravel a new patterning principle for the early phases of epibranchial placode development and a role for Notch signalling in orchestrating epibranchial placode segregation and differentiation.


Assuntos
Região Branquial/embriologia , Nervos Cranianos/embriologia , Ectoderma/embriologia , Receptores Notch/fisiologia , Animais , Padronização Corporal , Diferenciação Celular , Linhagem da Célula , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Fenótipo , Domínios Proteicos , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/genética
14.
Dev Growth Differ ; 65(2): 109-119, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36606534

RESUMO

The tetraspanins (Tspans) constitute a family of cell surface proteins with four transmembrane domains. Tspans have been found on the plasma membrane and on exosomes of various organelles. Reports on the function of Tspans during the early development of Xenopus have mainly focused on the expression of uroplakins in gametes. Although the roles of extracellular vesicles (EVs) including exosomes have been actively analyzed in cancer research, the contribution of EVs to early development is not well understood. This is because the diffusivity of EVs is not compatible with a very strict developmental process. In this study, we analyzed members of the Tspan family in early development of Xenopus. Expression was prominent in specific organs such as the notochord, eye, cranial neural crest cells (CNCs), trunk neural crest cells, placodes, and somites. We overexpressed several combinations of Tspans in CNCs in vitro and in vivo. Changing the partner changed the distribution of fluorescent-labeled Tspans. Therefore, it is suggested that expression of multiple Tspans in a particular tissue might produce heterogeneity of intercellular communication, which has not yet been recognized.


Assuntos
Crista Neural , Tetraspaninas , Animais , Xenopus laevis/metabolismo , Tetraspaninas/metabolismo , Crista Neural/metabolismo , Somitos/metabolismo
15.
Br J Neurosurg ; 37(6): 1514-1522, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34802355

RESUMO

Chaotic lipomas are an extremely rare variant of spinal lipomas. This entity was first defined in 2009 by Pang and colleagues. Not much has been written about this variant. Its characteristic is the haphazard distribution of DREZ (Dorsal root entry zone), nerve roots and placode-lipoma interface. Thus complete/near-total excision of this lesion is quite difficult. We describe a case of chaotic spinal lipoma and elucidate the challenges faced in the management of this entity and review the literature. We performed a thorough systematic review with the keyword 'chaotic', 'Lipomyelomeningocele', 'Complex Lipomyelomeningocele', 'LMMC', 'Lumbar lipoma', 'spinal lipoma' in the google scholar and PUBMED data system for indexed literature on the above topic with no particular time frame. The studies quoted range earliest from 1970 till currently. Additional potential relevant articles were further retrieved through a manual search of references from original reports. Out of 42 studies, a total of 21 publications were selected which could have encountered a chaotic variant, but due to the term introduced only recently in 2009, may have been described differently. Studies encompassing true lipomeningomyelocele were excluded from our review. What we found out? Chaotic lipoma may not be a new entity. The scarce description in literature may be in part due to non-introduction and unclear description of this term earlier. The management of this variant is particularly challenging with basic principles remaining the same. Meticulous near-total excision and placode-lipoma construct are the major obstacles.


Assuntos
Lipoma , Meningomielocele , Siringomielia , Humanos , Resultado do Tratamento , Procedimentos Neurocirúrgicos , Lipoma/cirurgia , Lipoma/patologia , Meningomielocele/cirurgia , Siringomielia/cirurgia
16.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37108158

RESUMO

Sensorineural hearing loss is the most prevalent sensory deficit in humans. Most cases of hearing loss are due to the degeneration of key structures of the sensory pathway in the cochlea, such as the sensory hair cells, the primary auditory neurons, and their synaptic connection to the hair cells. Different cell-based strategies to replace damaged inner ear neurosensory tissue aiming at the restoration of regeneration or functional recovery are currently the subject of intensive research. Most of these cell-based treatment approaches require experimental in vitro models that rely on a fine understanding of the earliest morphogenetic steps that underlie the in vivo development of the inner ear since its initial induction from a common otic-epibranchial territory. This knowledge will be applied to various proposed experimental cell replacement strategies to either address the feasibility or identify novel therapeutic options for sensorineural hearing loss. In this review, we describe how ear and epibranchial placode development can be recapitulated by focusing on the cellular transformations that occur as the inner ear is converted from a thickening of the surface ectoderm next to the hindbrain known as the otic placode to an otocyst embedded in the head mesenchyme. Finally, we will highlight otic and epibranchial placode development and morphogenetic events towards progenitors of the inner ear and their neurosensory cell derivatives.


Assuntos
Orelha Interna , Perda Auditiva Neurossensorial , Humanos , Orelha Interna/fisiologia , Células Ciliadas Auditivas/metabolismo , Audição , Perda Auditiva Neurossensorial/terapia , Perda Auditiva Neurossensorial/metabolismo , Células Receptoras Sensoriais
17.
Dev Dyn ; 251(3): 498-512, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34536327

RESUMO

BACKGROUND: Development of paired sensory organs is a highly complex and coordinated process. These organs arise from ectodermal thickenings in the cephalic region known as cranial placodes. We have previously shown that Zic1 is a critical regulator for the formation of the pre-placodal region (PPR), the common territory for the development of all cranial placodes in Xenopus laevis. RESULTS: In this study, we have analyzed a number of Zic1 targets for their expression during PPR patterning, as well as their regulation by retinoic acid (RA) and one of its major metabolites, 4-oxo-RA. Our findings show that anteriorly Zic1 regulates several transcription factors, Crx, Fezf2, Nkx3-1, and Xanf1 as well as a serine/threonine/tyrosine kinase, Pkdcc.2. These factors are all expressed in the vicinity of the PPR and as such are candidate regulators of placode formation downstream of Zic1. In addition to their differential regulation by RA, we find that 4-oxo-RA is also capable of modulating the expression of these genes, as well as a broad array of RA-regulated genes. CONCLUSION: Our data highlight the complexity of retinoid-mediated regulation required for Zic1-activated anterior structure specification in Xenopus, and the potential physiological role of 4-oxo-RA in cranial placode development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Tretinoína , Animais , Ectoderma/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tretinoína/metabolismo , Tretinoína/farmacologia , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo
18.
Development ; 146(22)2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754007

RESUMO

The embryonic development of the pineal organ, a neuroendocrine gland on top of the diencephalon, remains enigmatic. Classic fate-mapping studies suggested that pineal progenitors originate from the lateral border of the anterior neural plate. We show here, using gene expression and fate mapping/lineage tracing in zebrafish, that pineal progenitors originate, at least in part, from the non-neural ectoderm. Gene expression in chick indicates that this non-neural origin of pineal progenitors is conserved in amniotes. Genetic repression of placodal, but not neural crest, cell fate results in pineal hypoplasia in zebrafish, while mis-expression of transcription factors known to specify placodal identity during gastrulation promotes the formation of ectopic pineal progenitors. We also demonstrate that fibroblast growth factors (FGFs) position the pineal progenitor domain within the non-neural border by repressing pineal fate and that the Otx transcription factors promote pinealogenesis by inhibiting this FGF activity. The non-neural origin of the pineal organ reveals an underlying similarity in the formation of the pineal and pituitary glands, and suggests that all CNS neuroendocrine organs may require a non-neural contribution to form neurosecretory cells.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Glândula Pineal/citologia , Glândula Pineal/embriologia , Transdução de Sinais , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Linhagem da Célula , Embrião de Galinha , Ectoderma/citologia , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Crista Neural/citologia , Placa Neural/citologia , Neuroglia/citologia , Neurônios/citologia , Sistemas Neurossecretores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo
19.
Cell Mol Life Sci ; 78(12): 5069-5082, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33871676

RESUMO

The vomeronasal organ (VNO) is sensory organ located in the ventral region of the nasal cavity in rodents. The VNO develops from the olfactory placode during the secondary invagination of olfactory pit. The embryonic vomeronasal structure appears as a neurogenic area where migratory neuronal populations like endocrine gonadotropin-releasing hormone-1 (GnRH-1) neurons form. Even though embryonic vomeronasal structures are conserved across most vertebrate species, many species including humans do not have a functional VNO after birth. The vomeronasal epithelium (VNE) of rodents is composed of two major types of vomeronasal sensory neurons (VSNs): (1) VSNs distributed in the apical VNE regions that express vomeronasal type-1 receptors (V1Rs) and the G protein subunit Gαi2, and (2) VSNs in the basal territories of the VNE that express vomeronasal type-2 receptors (V2Rs) and the G subunit Gαo. Recent studies identified a third subclass of Gαi2 and Gαo VSNs that express the formyl peptide receptor family. VSNs expressing V1Rs or V2Rs send their axons to distinct regions of the accessory olfactory bulb (AOB). Together, VNO and AOB form the accessory olfactory system (AOS), an olfactory subsystem that coordinates the social and sexual behaviors of many vertebrate species. In this review, we summarize our current understanding of cellular and molecular mechanisms that underlie VNO development. We also discuss open questions for study, which we suggest will further enhance our understanding of VNO morphogenesis at embryonic and postnatal stages.


Assuntos
Morfogênese , Células Receptoras Sensoriais/fisiologia , Órgão Vomeronasal/embriologia , Órgão Vomeronasal/crescimento & desenvolvimento , Animais , Humanos , Células Receptoras Sensoriais/citologia
20.
Dev Dyn ; 250(11): 1524-1551, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33830554

RESUMO

Progress in understanding mechanisms of inner ear development has been remarkably rapid in recent years. The research community has benefited from the availability of several diverse model organisms, including zebrafish, chick, and mouse. The complexity of the inner ear has proven to be a challenge, and the complexity of the mammalian cochlea in particular has been the subject of intense scrutiny. Zebrafish lack a cochlea and exhibit a number of other differences from amniote species, hence they are sometimes seen as less relevant for inner ear studies. However, accumulating evidence shows that underlying cellular and molecular mechanisms are often highly conserved. As a case in point, consideration of the diverse functions of Fgf and its downstream effectors reveals many similarities between vertebrate species, allowing meaningful comparisons the can benefit the entire research community. In this review, I will discuss mechanisms by which Fgf controls key events in early otic development in zebrafish and provide direct comparisons with chick and mouse.


Assuntos
Orelha Interna , Modelos Animais , Peixe-Zebra , Animais , Orelha Interna/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa