Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 407(25): 7757-63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26253230

RESUMO

Proton transfer reaction mass spectrometry (PTR-MS) is a well-established technique for real-time analysis of volatile organic compounds (VOCs). Although it is extremely sensitive (with sensitivities of up to 4500 cps/ppbv, limits of detection <1 pptv and the response times of approximately 100 ms), the selectivity of PTR-MS is still somewhat limited, as isomers cannot be separated. Recently, selectivity-enhancing measures, such as manipulation of drift tube parameters (reduced electric field strength) and using primary ions other than H3O(+), such as NO(+) and O2 (+), have been introduced. However, monoterpenes, which belong to the most important plant VOCs, still cannot be distinguished so more traditional technologies, such as gas chromatography mass spectrometry (GC-MS), have to be utilised. GC-MS is very time consuming (up to 1 h) and cannot be used for real-time analysis. Here, we introduce a sensitive, near-to-real-time method for plant monoterpene research-PTR-MS coupled with fastGC. We successfully separated and identified six of the most abundant monoterpenes in plant studies (α- and ß-pinenes, limonene, 3-carene, camphene and myrcene) in less than 80 s, using both standards and conifer branch enclosures (Norway spruce, Scots pine and black pine). Five monoterpenes usually present in Norway spruce samples with a high abundance were separated even when the compound concentrations were diluted to 20 ppbv. Thus, fastGC-PTR-ToF-MS was shown to be an adequate one-instrument solution for plant monoterpene research.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Monoterpenos/análise , Picea/química , Pinus/química , Compostos Orgânicos Voláteis/análise , Monoterpenos Acíclicos , Alcenos/análise , Alcenos/isolamento & purificação , Monoterpenos Bicíclicos , Compostos Bicíclicos com Pontes/análise , Compostos Bicíclicos com Pontes/isolamento & purificação , Monoterpenos/isolamento & purificação , Prótons , Compostos Orgânicos Voláteis/isolamento & purificação , Volatilização
2.
Foods ; 12(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37107517

RESUMO

The larvae of Clanis bilineata tsingtauica, a special species of Chinese edible insect, are of great nutritional, medicinal and economic value to humans. This study aimed to clarify the effect of different soybean varieties (Guandou-3 (G3), Ruidou-1 (R1), September cold (SC)) on the nutritional quality and feeding selection behavior of C. bilineata tsingtauica larvae. The results showed that soybean isoleucine (Ile) and phenylalanine (Phe) were positively correlated with larval host selection (HS) and protein content. The order of soybean plants selected by C. bilineata tsingtauica larvae was R1 > SC > G3, and they selected R1 significantly higher than SC and G3 by 50.55% and 109.01%, respectively. The protein content of the larvae fed on R1 was also the highest among the three cultivars. In addition, a total of 17 volatiles belonging to 5 classes were detected from soybeans: aldehydes, esters, alcohols, ketones, and heterocyclic compounds. Pearson's analysis showed that soybean methyl salicylate was positively correlated with larval HS and their protein content, and soybean 3-octenol was negatively correlated with larval HS and their palmitic acid content. In conclusion, C. bilineata tsingtauica larvae are more adapted to R1 than to the other two soybean species. This study provides a theoretical basis for the production of more protein-rich C. bilineata tsingtauica in the food industry.

3.
Pest Manag Sci ; 79(12): 5208-5219, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37591815

RESUMO

BACKGROUND: Plant volatile organic compounds (VOCs) modified by plant-associated microbes can attract or repel the oviposition of herbivores. Here, we explored the effects of three different fungi on apples' VOCs and the cascading impacts on the oviposition preference of yellow peach moth [YPM, Conogethes punctiferalis (Guenée)]. RESULTS: Among Penicillium crustosum-infected apples (PCA), Rhizopus oryzae-infected apples (ROA), Colletotrichum gloeosporioides-infected apples (CGA) and healthy apples (HA), mated YPM females preferred to oviposit eggs on ROA and CGA, and showed significant attractiveness to VOCs from PCA, ROA, and CGA under laboratory conditions. The VOCs analyses showed that there were significant differences between fungi-infected apples (ROA, CGA) and control treatments (mechanically damaged apples (MDA), HA) in terms of the relative contents of 13 VOCs. The relative contents of ethyl 2-methylbutyrate, ethyl caprylate, estragole, ethyl hexanoate in ROA and CGA were higher than those in MDA. The relative content of isopropyl 2-methylbutyrate in ROA was significantly higher than those in HA and CGA. The relative contents of 2-methylbutyl acetate, butyl 2-methylbutyrate, hexyl 2-methylbutyrate, amyl hexanoate, hexyl hexanoate, (E, E)-α-farnesene in ROA and CGA were lower than those in HA. The relative content of hexyl acetate in ROA and CGA was significantly higher than that in MDA, but lower than that in HA. Additionally, 10 fungi-induced VOCs were detected in ROA and/or CGA. When 20 VOCs from ROA and/or CGA were tested as individuals or mixed blends in Y-tube olfactometer assays, mated YPM females preferred amyl 2-methylbutyrate, isoamyl 2-methylbutyrate, isopropyl 2-methylbutyrate, hexyl propionate (common VOCs in ROA, CGA, and HA), and heptacosane (a fungi-induced VOC in ROA), but no significant preferences were observed between individual compounds and mixed blends, except for hexyl propionate. CONCLUSION: Different fungi infection increased the relative contents of common VOCs from healthy and fungi-infected apples, which ultimately resulted in the significant attractiveness for the oviposition of mated YPM females. This study clarified why fungi-infected apples were more attractive to YPMs than healthy apples and screened out the crucial VOCs for YPM oviposition. © 2023 Society of Chemical Industry.


Assuntos
Butiratos , Malus , Mariposas , Prunus persica , Compostos Orgânicos Voláteis , Humanos , Animais , Feminino , Oviposição , Compostos Orgânicos Voláteis/farmacologia , Propionatos , Fungos , Acetatos
4.
Ecol Evol ; 12(3): e8522, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35342567

RESUMO

Invasive plants often pose great threats to the growth of co-occurring native plant species. Identifying environmental factors that facilitate exotic plant invasion and native species decline are important. In this study, we measured the effects of plant volatile organic compounds (VOCs), light intensity, and their interactions on the growth and reproduction performance of indigenous Phytolacca acinosa, and invasive Phytolacca americana, which has largely replaced the former in China. VOCs of invasive P. americana and low light levels both had negative effects on P. acinosa morphological and reproductive traits (stem length, average leaf number, total number, and length of racemes), and biomass allocation (total biomass, and leaf and flower mass fraction); low light also affected photosynthesis-related trait (specific leaf area) of P. acinosa. In contrast, VOCs of P. acinosa had no significant effect on P. americana, but low light levels adversely affected its morphological and reproductive traits (stem length, total number, and length of racemes) and biomass allocation (total biomass, stem, and leaf mass fraction). Interactions between plant VOCs and light intensity had no significant effects on P. acinosa or P. americana. Under all experimental treatments, stem length, average leaf area, total number, and length of racemes, Root/Shoot ratio, root and flower mass fraction of P. americana were higher than those of P. acinosa, while average leaf number, specific leaf area, and leaf mass fraction was lower. These results indicated that P. acinosa was sensitive to P. americana VOCs and low light, which might affect the growth of sympatric P. acinosa. P. americana was negatively influenced by low light, but higher plant height and more reproductive organ resource allocation relative to sympatric P. acinosa might contribute to invasion success.

5.
Front Plant Sci ; 11: 636, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547579

RESUMO

Insect herbivores have dramatic effects on the chemical composition of plants. Many of these induced metabolites contribute to the quality (e.g., flavor, human health benefits) of specialty crops such as the tea plant (Camellia sinensis). Induced chemical changes are often studied by comparing plants damaged and undamaged by herbivores. However, when herbivory is quantitative, the relationship between herbivore pressure and induction can be linearly or non-linearly density dependent or density independent, and induction may only occur after some threshold of herbivory. The shape of this relationship can vary among metabolites within plants. The tea green leafhopper (Empoasca onukii) can be a widespread pest on tea, but some tea farmers take advantage of leafhopper-induced metabolites in order to produce high-quality "bug-bitten" teas such as Eastern Beauty oolong. To understand the effects of increasing leafhopper density on tea metabolites important for quality, we conducted a manipulative experiment exposing tea plants to feeding by a range of E. onukii densities. After E. onukii feeding, we measured volatile and non-volatile metabolites, and quantified percent damaged leaf area from scanned leaf images. E. onukii density had a highly significant effect on volatile production, while the effect of leaf damage was only marginally significant. The volatiles most responsive to leafhopper density were mainly terpenes that increased in concentration monotonically with density, while the volatiles most responsive to leaf damage were primarily fatty acid derivatives and volatile phenylpropanoids/benzenoids. In contrast, damage (percent leaf area damaged), but not leafhopper density, significantly reduced total polyphenols, epigallocatechin gallate (EGCG), and theobromine concentrations in a dose-dependent manner. The shape of induced responses varied among metabolites with some changing linearly with herbivore pressure and some responding only after a threshold in herbivore pressure with a threshold around 0.6 insects/leaf being common. This study illustrates the importance of measuring a diversity of metabolites over a range of herbivory to fully understand the effects of herbivores on induced metabolites. Our study also shows that any increases in leafhopper density associated with climate warming, could have dramatic effects on secondary metabolites and tea quality.

6.
J Agric Food Chem ; 65(38): 8501-8509, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28854785

RESUMO

Plants produce volatile organic compounds (VOCs) with diverse structures and functions, which change in response to environmental stimuli and have important consequences for interactions with other organisms. To understand these changes, in situ sampling is necessary. In contrast to dynamic headspace (DHS), which is the most often employed method, direct contact sampling employing a magnetic stir bar held in place by a magnet eliminates artifacts produced by enclosing plant materials in glass or plastic chambers. Direct-contact sorptive extraction (DCSE) using polydimethylsiloxane coated stir bars (Twisters) coated stir bars is more sensitive than DHS, captures a wider range of compounds, minimizes VOC collection from neighboring plants, and distinguishes the effects of herbivory in controlled and field conditions. Because DCSE is relatively inexpensive and simple to employ, scalability of field trials can be expanded concomitant with increased sample replication. The sensitivity of DCSE combined with the spectral deconvolution data analysis software makes the two ideal for comprehensive, in situ profiling of plant volatiles.


Assuntos
Plantas/química , Extração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Plantas/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa