RESUMO
BACKGROUND AND AIMS: Mycoheterotrophy entails plants meeting all or a portion of their carbon (C) demands via symbiotic interactions with root-inhabiting mycorrhizal fungi. Ecophysiological traits of mycoheterotrophs, such as their C stable isotope abundances, strongly correlate with the degree of species' dependency on fungal C gains relative to C gains via photosynthesis. Less explored is the relationship between plant evolutionary history and mycoheterotrophic plant ecophysiology. We hypothesized that the C and nitrogen (N) stable isotope compositions, and N concentrations of fully and partially mycoheterotrophic species differentiate them from autotrophs, and that plant family identity would be an additional and significant explanatory factor for differences in these traits among species. We focused on mycoheterotrophic species that associate with ectomycorrhizal fungi from plant families Ericaceae and Orchidaceae. METHODS: Published and unpublished data were compiled on the N concentrations, C and N stable isotope abundances (δ(13)C and δ(15)N) of fully (n = 18) and partially (n = 22) mycoheterotrophic species from each plant family as well as corresponding autotrophic reference species (n = 156). These data were used to calculate site-independent C and N stable isotope enrichment factors (ε). Then we tested for differences in N concentration, (13)C and (15)N enrichment among plant families and trophic strategies. KEY RESULTS: We found that in addition to differentiating partially and fully mycoheterotrophic species from each other and from autotrophs, C and N stable isotope enrichment also differentiates plant species based on familial identity. Differences in N concentrations clustered at the plant family level rather than the degree of dependency on mycoheterotrophy. CONCLUSIONS: We posit that differences in stable isotope composition and N concentrations are related to plant family-specific physiological interactions with fungi and their environments.
Assuntos
Carbono/metabolismo , Ericaceae/fisiologia , Micorrizas/fisiologia , Nitrogênio/metabolismo , Orchidaceae/fisiologia , Simbiose , Evolução Biológica , Isótopos de Carbono/análise , Ericaceae/microbiologia , Processos Heterotróficos , Isótopos de Nitrogênio/análise , Orchidaceae/microbiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologiaRESUMO
Investigating intraspecific trait variability is crucial for understanding plant adaptation to various environments, yet research on lithophytic mosses in extreme environments remains scarce. This study focuses on Indusiella thianschanica Broth. Hal., a unique lithophytic moss species in the extreme environments of the Tibetan Plateau, aiming to uncover its adaptation and response mechanisms to environmental changes. Specimens were collected from 26 sites across elevations ranging from 3642 m to 5528 m, and the relationships between 23 morphological traits and 15 environmental factors were analyzed. Results indicated that coefficients of variation (CV) ranged from 5.91% to 36.11%, with gametophyte height (GH) and basal cell transverse wall thickness (STW) showing the highest and lowest variations, respectively. Temperature, elevation, and potential evapo-transpiration (PET) emerged as primary environmental drivers. Leaf traits, especially those of the leaf sheath, exhibited a more pronounced response to the environment. The traits exhibited apparent covariation in response to environmental challenges and indicated flexible adaptive strategies. This study revealed the adaptation and response patterns of different morphological traits of I. thianschanica to environmental changes on the Tibetan Plateau, emphasizing the significant effect of temperature on trait variation. Our findings deepen the understanding of the ecology and adaptive strategies of lithophytic mosses.
RESUMO
Soil salinization has become a major global agricultural issue that threatens sustainable development goals related to food security, agriculture, resource conservation, and nutrition. The higher levels of salinity have detrimental effects on soil physico-chemical and biological characteristics and plant metabolism. Also, salinity poses a negative impact on the abundance and distribution of soil microbes and soil-dwelling organisms. Research has always been trying to overcome the salinity issue, but it does not fit well in conventional approaches. This review unravels traditional and modern salinity management techniques. Out of the available salinity management techniques, some are focused on enhancing soil properties (chemical amendments, biochar, earthworms, and their vermicompost, compost, microbial inoculants, electro remediation), some focus on improving plant properties (seed priming, afforestation, crop selection, genetic improvements, agroforestry) and some techniques augment both soil as well as plant properties in a synergic manner. Therefore, it is imperative to find a conclusive solution by integrating traditional and modern methods to find the most effective response to regionally-specific salinity related problems. This review aimed at critical analysis of the salinity problems, its impact on agroecosystem, and different management approaches available to date with a balanced viewpoint that would help to draw a possible roadmap towards the future investigation in this domain for sustainable management of salinity issues around the globe.
Assuntos
Salinidade , Solo , Agricultura , Medição de RiscoRESUMO
Drought and salinity are among the most important environmental factors that hampered agricultural productivity worldwide. Both stresses can induce several morphological, physiological, biochemical, and metabolic alterations through various mechanisms, eventually influencing plant growth, development, and productivity. The responses of plants to these stress conditions are highly complex and depend on other factors, such as the species and genotype, plant age and size, the rate of progression as well as the intensity and duration of the stresses. These factors have a strong effect on plant response and define whether mitigation processes related to acclimation will occur or not. In this review, we summarize how drought and salinity extensively affect plant growth in agriculture ecosystems. In particular, we focus on the morphological, physiological, biochemical, and metabolic responses of plants to these stresses. Moreover, we discuss mechanisms underlying plant-microbe interactions that confer abiotic stress tolerance.