Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38832864

RESUMO

Gram-negative, aerobic, rod-shaped, non-spore-forming, motile bacteria, designated strains F2T and PGU16, were isolated from the midgut crypts of the bordered plant bug Physopelta gutta, collected in Okinawa prefecture, Japan. Although these strains were derived from different host individuals collected at different times, their 16S rRNA gene sequences were identical and showed the highest similarity to Paraburkholderia caribensis MWAP64T (99.3 %). The genome of strain F2T consisted of two chromosomes and two plasmids, and its size and G+C content were 9.28 Mb and 62.4 mol% respectively; on the other hand, that of strain PGU16 consisted of two chromosomes and three plasmids, and its size and G+C content were 9.47 Mb and 62.4 mol%, respectively. Phylogenetic analyses revealed that these two strains are members of the genus Paraburkholderia. The digital DNA-DNA hybridization value between these two strains was 92.4 %; on the other hand, the values between strain F2T and P. caribensis MWAP64T or phylogenetically closely related Paraburkholderia species were 44.3 % or below 49.1 %. The predominant fatty acids of both strains were C16 : 0, C17 : 0 cyclo, summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c), and C19 : 0 cyclo ω8c, and their respiratory quinone was ubiquinone 8. Based on the above genotypic and phenotypic characteristics, strains F2T and PGU16 represent a novel species of the genus Paraburkholderia for which the name Paraburkholderia largidicola sp. nov. is proposed. The type strain is F2T (=NBRC 115765T=LMG 32765T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Simbiose , DNA Bacteriano/genética , Animais , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Japão , Heterópteros/microbiologia , Trato Gastrointestinal/microbiologia
2.
Gen Comp Endocrinol ; 303: 113708, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33388363

RESUMO

Peptides are the largest and most diverse class of molecules modulating physiology and behavior. Previously, we predicted a peptidome for the western tarnished plant bug, Lygus hesperus, using transcriptomic data produced from whole individuals. A potential limitation of that analysis was the masking of underrepresented genes, in particular tissue-specific transcripts. Here, we reassessed the L. hesperus peptidome using a more comprehensive dataset comprised of the previous transcriptomic data as well as tissue-specific reads produced from heads and accessory glands. This augmented assembly significantly improves coverage depth providing confirmatory transcripts for essentially all of the previously identified families and new transcripts encoding a number of new peptide precursors corresponding to 14 peptide families. Several families not targeted in our initial study were identified in the expanded assembly, including agatoxin-like peptide, CNMamide, neuropeptide-like precursor 1, and periviscerokinin. To increase confidence in the in silico data, open reading frames of a subset of the newly identified transcripts were amplified using RT-PCR and sequence validated. Further PCR-based profiling of the putative L. hesperus agatoxin-like peptide precursor revealed evidence of alternative splicing with near ubiquitous expression across L. hesperus development, suggesting the peptide serves functional roles beyond that of a toxin. The peptides predicted here, in combination with those identified in our earlier study, expand the L. hesperus peptidome to 42 family members and provide an improved platform for initiating molecular and physiological investigations into peptidergic functionality in this non-model agricultural pest.


Assuntos
Heterópteros , Transcriptoma , Animais , Clonagem Molecular , Heterópteros/genética , Plantas , Reação em Cadeia da Polimerase , Transcriptoma/genética
3.
Plant Dis ; 105(1): 53-59, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33197381

RESUMO

The tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), is an important insect pest in cotton that feeds on reproductive fruit, contributing to yield loss. Economically damaging infestations of L. lineolaris have doubled in Virginia since 2013. Escalation of L. lineolaris abundance may increase Fusarium hardlock disease observed in this region, compounding economic losses. Research has linked Fusarium hardlock with fungal species Fusarium verticillioides and F. proliferatum. Field and greenhouse experiments were performed to investigate (i) Fusarium hardlock occurrence in field plots managed and unmanaged for L. lineolaris, (ii) severity of F. verticillioides infection of cotton bolls with and without the presence of L. lineolaris feeding in a greenhouse setting, and (iii) Fusarium species composition and prevalence within field-collected L. lineolaris and cotton lint with and without insect feeding injury and hardlock symptoms present. Nearly twice the amount of hardlock (i.e., proportion of hardlocked locules) occurred in field-collected bolls with L. lineolaris feeding symptoms (0.40 ± 0.02) compared with bolls without (0.21 ± 0.01). Based on real-time quantitative PCR, cotton bolls exposed to F. verticillioides inoculum and caged with L. lineolaris adults had greater levels of F. verticillioides DNA compared with untreated bolls. F. proliferatum, F. verticillioides, and F. fujikuroi were isolated from field-collected L. lineolaris and hardlocked cotton lint at harvest. These findings suggest that the presence of L. lineolaris is associated with an increased risk of Fusarium hardlock in Southeastern cotton, and both should be carefully managed using timely insecticide applications and cultural control practices to minimize yield loss.


Assuntos
Fusarium , Heterópteros , Inseticidas , Animais , Fusarium/genética , Virginia
4.
J Insect Sci ; 21(3)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33974083

RESUMO

Host plant preference of agricultural pests may shift throughout the growing season, allowing the pests to persist on wild hosts when crops are not available. Lygus Hahn (Hemiptera: Miridae) bugs are severe pests of cotton during flowering and fruiting stages, but can persist on alternative crops, or on weed species. Diversity of digestive enzymes produced by salivary glands and gut tissues play a pivotal role in an organism's ability to utilize various food sources. Polyphagous insects produce an array of enzymes that can process carbohydrates, lipids, and proteins. In this study, the digestive enzyme repertoire of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), was identified by high-throughput sequencing followed by cDNA cloning and sequencing. This study identified 87 digestive genes, including 30 polygalacturonases (PG), one ß-galactosidase, three α-glucosidases, six ß-glucosidases, 28 trypsin-like proteases, three serine proteases, one apyrase-like protease, one cysteine protease, 12 lipases, and two transcripts with low similarity to a xylanase A-like genes. RNA-Seq expression profiles of these digestive genes in adult tarnished plant bugs revealed that 57 and 12 genes were differentially expressed in the salivary gland and gut (≥5-fold, P ≤ 0.01), respectively. All polygalacturonase genes, most proteases, and two xylanase-like genes were differentially expressed in salivary glands, while most of the carbohydrate and lipid processing enzymes were differentially expressed in the gut. Seven of the proteases (KF208689, KF208697, KF208698, KF208699, KF208700, KF208701, and KF208702) were not detected in either the gut or salivary glands.


Assuntos
Digestão/genética , Heterópteros , Intestinos/enzimologia , Glândulas Salivares/enzimologia , Transcriptoma , Animais , Genes de Insetos , Heterópteros/enzimologia , Heterópteros/genética , RNA-Seq/métodos
5.
J Insect Sci ; 20(6)2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33347589

RESUMO

A molecular gut analysis technique is described to identify predators of Lygus hesperus (Knight), a significant pest of many crops. The technique is unique because it can pinpoint which life stage of the pest was consumed. Sentinel egg masses designed to mimic the endophytic egg-laying behavior of L. hesperus were marked with rabbit serum, while third instar and adult L. hesperus were marked with chicken and rat sera, respectively. Then, the variously labeled L. hesperus life stages were introduced into field cages that enclosed the native arthropod population inhabiting an individual cotton plant. After a 6-h exposure period, the predator assemblage, including the introduced and native L. hesperus population, in each cage were counted and had their gut contents examined for the presence of the variously marked L. hesperus life stages by a suite of serum-specific enzyme-linked immunosorbent assays (ELISA). The whole-plant sampling scheme revealed that Geocoris punticpes (Say) and Geocoris pallens Stal (Hemiptera: Geocoridae) and members of the spider complex were the numerically dominant predator taxa in the cotton field. The gut content analyses also showed that these two taxa appeared to be the most prolific predators of the L. hesperus nymph stage. Other key findings include that Collops vittatus (Say) (Coleoptera: Melyridae) and Solenopsis xyloni McCook (Hymenoptera: Formicidae) appear to be adept at finding and feeding on the cryptic L. hesperus egg stage, and that L. hesperus, albeit at low frequencies, engaged in cannibalism. The methods described here could be adapted for studying life stage-specific feeding preferences for a wide variety of arthropod taxa.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Hemípteros/imunologia , Comportamento Predatório , Animais , Formigas , Besouros , Ovos , Comportamento Alimentar , Ninfa/imunologia , Aranhas
6.
J Insect Sci ; 20(4)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32658274

RESUMO

A laboratory, diet-overlay pesticide bioassay was developed using a susceptible population of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), to study its susceptibility to neonicotinoid, sulfoxamine, organophosphate, and pyrethroid insecticides (thiamethoxam, sulfoxaflor, acephate, and permethrin, respectively). The diet-overlay bioassay was compared to the traditional glass-vial surface residue bioassay. We measured LC50 values by feeding tarnished plant bug adults known doses of insecticides dispensed on top of diet in a 10% solution of honey water for thiamethoxam and 10% acetone in water solutions for permethrin, acephate, and sulfoxaflor. Both the diet-overlay and glass-vial bioassays used dose-response (mortality) regression lines to calculate LC50 values for each insecticide at 6-, 24-, 48-, and 72-h post-exposure. Data variability from the glass-vial bioassay was higher for permethrin, sulfoxaflor, and thiamethoxam than the diet-overlay bioassay, for all evaluation times. In contrast, there was lower variability among replicates to acephate in the glass-vial assay compared to the diet-overlay assay. Control mortalities observed on diet-overlay bioassay were lower (0-5%) than those observed on the glass-vial bioassay (4-27%). The use of green beans, floral-foam, rolling glass vials, and insect handling made the existing standard method tedious to manipulate and difficult to handle large numbers of individuals. The nonautoclaved solid diet provides an opportunity to significantly reduce cost and variability associated with procedures of other bioassay methods. In general, the baseline data provide a basis for future comparison to determine changes in resistance over time.


Assuntos
Heterópteros/efeitos dos fármacos , Resistência a Inseticidas/fisiologia , Inseticidas/farmacologia , Animais , Bioensaio , Dieta , Feminino , Heterópteros/fisiologia , Masculino
7.
J Insect Sci ; 19(3)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31172194

RESUMO

A universal food immunomarking technique (UFIT) is described for postmortem gut analysis detection of predation on the egg stage of Lygus hesperus Knight (Hemiptera: Miridae). Collops vittatus Say (Coleoptera: Melyridae) and Hippodamia convergens Guérin-Méneville (Coleoptera: Coccinellidae) were fed a single L. hesperus egg that was marked with rabbit and chicken sera proteins. The protein-marked egg remnants were detectable in the guts of the majority of the predators by each sera-specific enzyme-linked immunosorbent assay (ELISA) for 3 to 6 h after a feeding event. A novel technique was then developed to expose protein-marked eggs to predators that simulated the L. hesperus endophytic oviposition behavior. The procedure entailed embedding L. hesperus eggs in an artificial substrate that mimicked the stem of a plant. A predator feeding choice study was then conducted in cages that contained a cotton plant and artificial stems containing endophytic (concealed) and exophytic (exposed) egg patches. The endophytic and exophytic egg treatments were marked with chicken and rabbit protein, respectively. The gut analyses revealed that higher proportions of both predator populations contained remnants of the exophytic egg treatment and L. hesperus eggs were more vulnerable to C. vittatus than H. convergens. This study shows how the UFIT can be used to pinpoint stage-specific feeding activity on two distinct egg exposure treatments (endophytic and exophytic) of the same species.


Assuntos
Hemípteros , Técnicas de Imunoadsorção , Óvulo , Comportamento Predatório , Animais , Besouros , Dieta , Feminino , Análise de Alimentos/métodos , Gossypium
8.
J Insect Sci ; 17(1)2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28423424

RESUMO

Plant bugs (Hemiptera: Miridae) are phytophagous pests of cultivated plants around the world. In the mid-South region of the United States, Lygus lineolaris (Palisot de Beauvois) is a primary pest of cotton, and causes economic damage. Previously published research about the volatiles produced by members of the genus Lygus, and other closely related groups, indicated that they produce blends of hexyl butyrate, (E)-2-hexenyl butyrate, and (E)-4-oxo-2-hexenal. Varying ratios of the three compounds were loaded into pipette tips, and screened in combination with non-UV white sticky cards for attractiveness to field populations of L. lineolaris in Mississippi. Field screening indicated that a lure expressing a ratio of 4:10:7 was the most effective at collecting L. lineolaris, and collected similar numbers of individuals to those reported in other studies using traps baited with live virgin insects over a similar period of time. Availability of a synthetic pheromone usable in the climate of the mid-South will enable broader scale landscape level monitoring for populations of L. lineolaris before movement into cotton fields and resulting economic damage.


Assuntos
Quimiotaxia , Heterópteros/efeitos dos fármacos , Controle de Insetos , Feromônios/farmacologia , Animais , Feminino , Masculino , Mississippi
9.
Insect Mol Biol ; 25(5): 550-65, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27189651

RESUMO

Ecdysteroids play a critical role in coordinating insect growth, development and reproduction. A suite of cytochrome P450 monooxygenases coded by what are collectively termed Halloween genes mediate ecdysteroid biosynthesis. In this study, we describe cloning and RNA interference (RNAi)-mediated knockdown of the CYP307B1 Halloween gene (Spookiest) in the western tarnished plant bug, Lygus hesperus. Transcripts for Ly. hesperus Spookiest (LhSpot) were amplified from all life stages and correlated well with timing of the pre-moult ecdysteroid pulse. In adults, LhSpot was amplified from heads of both genders as well as female reproductive tissues. Heterologous expression of a LhSpot fluorescent chimera in cultured insect cells co-localized with a fluorescent marker of the endoplasmic reticulum/secretory pathway. RNAi-mediated knockdown of LhSpot in fifth instars reduced expression of ecdysone-responsive genes E74 and E75, and prevented adult development. This developmental defect was rescued following application of exogenous 20-hydroxyecdysone but not exogenous 7-dehydrocholesterol. The unequivocal RNAi effects on Ly. hesperus development and the phenotypic rescue by 20-hydroxyecdysone are causal proof of the involvement of LhSpot in ecdysteroid biosynthesis and related developmental processes, and may provide an avenue for development of new control measures against Ly. hesperus.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Heterópteros/genética , Proteínas de Insetos/genética , Muda , Interferência de RNA , Sequência de Aminoácidos , Animais , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Heterópteros/crescimento & desenvolvimento , Heterópteros/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Masculino , Ninfa/genética , Ninfa/crescimento & desenvolvimento , Ninfa/metabolismo , Filogenia , Alinhamento de Sequência
10.
Arch Insect Biochem Physiol ; 92(2): 108-26, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27192063

RESUMO

Vital physiological processes that drive the insect molt represent areas of interest for the development of alternative control strategies. The western tarnished plant bug (Lygus hesperus Knight) is a pest of numerous agronomic and horticultural crops but the development of novel control approaches is impeded by limited knowledge of the mechanisms regulating its molt. To address this deficiency, we examined the fundamental relationship underlying the hormonal and molecular components of ecdysis. At 27°C L. hesperus exhibits a temporally controlled nymph-adult molt that occurs about 4 days after the final nymph-nymph molt with ecdysteroid levels peaking 2 days prior to the final molt. Application of exogenous ecdysteroids when endogenous levels had decreased disrupted the nymphal-adult molt, with treated animals exhibiting an inability to escape the old exoskeleton and resulting in mortality compared to controls. Using accessible transcriptomic data, we identified 10 chitinase-like sequences (LhCht), eight of which had protein motifs consistent with chitinases. Phylogenetic analyses revealed orthologous relationships to chitinases critical to molting in other insects. RT-PCR based transcript profiling revealed that expression changes to four of the LhChts was coordinated with the molt period and ecdysteroid levels. Collectively, our results support a role for ecdysteroid regulation of the L. hesperus molt and suggest that cuticle clearance is mediated by LhCht orthologs of chitinases that are essential to the molt process. These results provide the initial hormonal and molecular basis for future studies to investigate the specific roles of these components in molting.


Assuntos
Quitinases/genética , Ecdisteroides/genética , Regulação da Expressão Gênica no Desenvolvimento , Heterópteros/genética , Proteínas de Insetos/genética , Muda , Transcriptoma , Animais , Quitinases/metabolismo , Ecdisteroides/metabolismo , Heterópteros/crescimento & desenvolvimento , Heterópteros/metabolismo , Proteínas de Insetos/metabolismo , Ninfa/genética , Ninfa/crescimento & desenvolvimento , Ninfa/metabolismo , Filogenia
11.
J Econ Entomol ; 109(1): 339-44, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26546489

RESUMO

Tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), populations were collected from field locations in the Mississippi River Delta of Arkansas, Louisiana, and Mississippi. Third-instar F(1) nymphs from each field location, in addition to a laboratory colony, were screened for susceptibility to novaluron. Both a glass vial bioassay and a diet-incorporated bioassay used dose-response regression lines to calculate LC(50) and LC(90) values for novaluron. Mean LC(50s) for glass vial bioassays ranged from 44.70 ± 3.58 to 66.54 ± 4.19 µg/vial, while mean LC(50s) for diet-incorporated bioassays ranged from 12.10 ± 0.77 to 17.63 ± 2.42 µg/200 ml of artificial diet. A comparison of LC(50) values from the same field population screened using both bioassay methods failed to show a relationship. LC(50) values from field locations were compared with a historically susceptible population from Crossett, AR. Results indicated that considerable variability in susceptibility to novaluron exists within field populations of tarnished plant bugs across the Delta, including some locations with lower LC(50) values than a historically susceptible population.


Assuntos
Heterópteros , Inseticidas , Compostos de Fenilureia , Animais , Arkansas , Heterópteros/crescimento & desenvolvimento , Resistência a Inseticidas , Dose Letal Mediana , Louisiana , Mississippi , Ninfa
12.
Insect Mol Biol ; 23(3): 301-19, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24467643

RESUMO

Lygus hesperus females exhibit a post-mating behavioural switch that triggers increased egg laying and decreased sexual interest. In Drosophila melanogaster, these changes are controlled by sex peptide (SP) and the sex peptide receptor (DmSPR). In Helicoverpa armigera, SPR (HaSPR) also regulates some post-mating behaviour; however, myoinhibiting peptides (MIPs) have been identified as the SPR ancestral ligand, indicating that SPR is a pleiotropic receptor. In the present study, we identified a transcript, designated L. hesperus SPR (LhSPR), that is homologous to known SPRs and which is expressed throughout development and in most adult tissues. LhSPR was most abundant in female seminal depositories and heads as well as the hindgut/midgut of both sexes. In vitro analyses revealed that fluorescent chimeras of LhSPR, DmSPR and HaSPR localized to the cell surface of cultured insect cells, but only DmSPR and HaSPR bound carboxytetramethylrhodamine-labelled analogues of DmSP21-36 and DmMIP4. Injected DmSP21-36 also failed to have an effect on L. hesperus mating receptivity. Potential divergence in the LhSPR binding pocket may be linked to receptor-ligand co-evolution as 9 of 13 MIPs encoded by a putative L. hesperus MIP precursor exhibit an atypical W-X7 -Wamide motif vs the W-X6 -Wamide and W-X8 -Wamide motifs of Drosophila MIPs and SP.


Assuntos
Heterópteros/fisiologia , Fenômenos Reprodutivos Fisiológicos/genética , Comportamento Sexual Animal/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Feminino , Expressão Gênica , Masculino , Dados de Sequência Molecular , Peptídeos , Receptores de Peptídeos
13.
Insect Biochem Mol Biol ; 166: 104085, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307215

RESUMO

In most holometabolous insects, sex differentiation occurs via a hierarchical cascade of transcription factors, with doublesex (dsx) regulating genes that control sex-specific traits. Although less is known in hemimetabolous insects, early evidence suggests that substantial differences exist from more evolutionarily advanced insects. Here, we identified and characterized dsx in Lygus hesperus (western tarnished plant bug), a hemipteran pest of many agricultural crops in western North America. The full-length transcript for L. hesperus dsx (Lhdsx) and several variants encode proteins with conserved DNA binding and oligomerization domains. Transcript profiling revealed that Lhdsx is ubiquitously expressed, likely undergoes alternative pre-mRNA splicing, and, unlike several model insects, is sex-biased rather than sex-specific. Embryonic RNA interference (RNAi) of Lhdsx only impacted sex development in adult males, which lacked both internal reproductive organs and external genitalia. No discernible impacts on adult female development or reproductivity were observed. RNAi knockdown of Lhdsx in nymphs likewise only affected adult males, which lacked the characteristic dimorphic coloration but had dramatically elevated vitellogenin transcripts. Gene knockout of Lhdsx by CRISPR/Cas9 editing yielded only females in G0 and strongly biased heterozygous G1 offspring to females with the few surviving males showing severely impaired genital development. These results indicate that L. hesperus male development requires Lhdsx, whereas female development proceeds via a basal pathway that functions independently of dsx. A fundamental understanding of sex differentiation in L. hesperus could be important for future gene-based management strategies of this important agricultural pest.


Assuntos
Besouros , Heterópteros , Feminino , Masculino , Animais , Heterópteros/genética , Diferenciação Sexual , Desenvolvimento Sexual
14.
Toxics ; 12(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38535921

RESUMO

The tarnished plant bug (TPB, Lygus lineolaris) remains a major pest for a variety of crops. Frequent sprays on row crops, especially cotton, prompted resistance development in field populations. To maintain chemical control as an effective tool against the pest, knowledge of global gene regulations is desirable for better understanding and managing the resistance. Novel microarray expressions of 6688 genes showed 685 significantly upregulated and 1382 significantly downregulated genes in oxamyl-selected TPBs (Vyd1515FF[R]) from a cotton field. Among the 685 upregulated genes (participated in 470 pathways), 176 genes code 30 different enzymes, and 7 of the 30 participate in 24 metabolic pathways. Six important detoxification pathways were controlled by 20 genes, coding 11 esterases, two P450s, two oxidases, and three pathway-associated enzymes (synthases, reductase, and dehydrogenase). Functional analyses showed substantially enhanced biological processes and molecular functions, with hydrolase activity as the most upregulated molecular function (controlled by 166 genes). Eleven esterases belong to the acting on ester bond subclass of the 166 hydrolases. Surprisingly, only one GST showed significant upregulation, but it was not involved in any detoxification pathway. Therefore, this research reports a set of 20 genes coding 6 enzyme classes to detoxify a carbamate insecticide oxamyl in Vyd1515FF. Together with three previous reports, we have obtained the best knowledge of resistance mechanisms to all four conventional insecticide classes in the economically important crop pest. This valuable finding will greatly facilitate the development of molecular tools to monitor and manage the resistance and to minimize risk to environment.

15.
BMC Res Notes ; 16(1): 125, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370172

RESUMO

OBJECTIVE: The tarnished plant bug (TPB), Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae), is a pest damaging many cultivated crops in North America. Although partial transcriptome data are available for this pest, a genome assembly was not available for this species. This assembly of a high-quality chromosome-length genome of TPB is aimed to develop the genetic resources that can provide the foundation required for advancing research on this species. RESULTS: The initial genome of TPB assembled with paired-end nucleotide sequences generated with Illumina technology was scaffolded with Illumina HiseqX reads generated from a proximity ligated (HiC) library to obtain a high-quality genome assembly. The final assembly contained 3963 scaffolds longer than 1 kbp to yield a genome of 599.96 Mbp. The N50 of the TPB genome assembly was 35.64 Mbp and 98.68% of the genome was assembled into 17 scaffolds larger than 1 Mbp. This megabase scaffold number is the same as the number of chromosomes observed in karyotyping of this insect. The TPB genome is known to have high repetitive DNA content, and the reduced assembled genome size compared to flowcytometric estimates of approximately 860 Mbp may be due to the collapsed assembly of highly similar regions.


Assuntos
Heterópteros , Animais , Heterópteros/genética , Biblioteca Gênica , Genoma de Planta , Cromossomos
16.
Pest Manag Sci ; 79(9): 3364-3375, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37133424

RESUMO

BACKGROUND: Pycnoderes quadrimaculatus is a pest that feeds on several plants, many of which are economically important. It is native to North/Central America and its distribution has expanded to several countries in South America. RESULTS: Ecological niche models show that P. quadrimaculatus has invaded regions with climates different from those of its native range, and that there are suitable climatic conditions for its establishment worldwide. Regions where P. quadrimaculatus is a major threat and possible natural pathways of ingression were identified. In the future, its distribution will be modified by climate change. CONCLUSIONS: This study provides useful information for risk assessment and pest management of P. quadrimaculatus. According to our results, the species has great potential as a pest because it can adapt to different climatic conditions and feeds on a wide range of economically important plants. Over time, its distribution has expanded, and our models suggest that it will continue to invade other regions unless preventive measures are taken. © 2023 Society of Chemical Industry.


Assuntos
Heterópteros , Animais , América do Norte , Modelos Teóricos , América Central , Mudança Climática , Ecossistema , Espécies Introduzidas
17.
Insects ; 14(10)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37887817

RESUMO

The tarnished plant bug, Lygus lineolaris (Hemiptera: Miridae), has a wide host range of over 700 plant species, including 130 crops of economic importance. During early spring, managing the field edges with weeds and other wild hosts is important in preventing early-season infestations of L. lineolaris in cotton to prevent damage to the squares and other fruiting structures. Scouting fields for L. lineolaris is time- and labor-intensive, and end-user variability associated with field sampling can lead to inaccuracies. Insect traps that combine visual cues and pheromones are more accurate, sustainable, and economically feasible in contrast to traditional insect detection methods. In this study, we investigated the application of red or white sticky cards baited with the female-produced sex pheromone to monitor overwintering L. lineolaris populations in early spring. Field experiments demonstrated that the red sticky cards baited with a pheromone blend containing hexyl butyrate, (E)-2-hexenyl butyrate, and (E)-4-oxo-2-hexenal in 4:10:7 ratio are highly effective in trapping L. lineolaris adults in early spring before the row crops are planted, and in monitoring their movement into a cotton crop. The monitoring of L. lineolaris should help growers to make judicious decisions on insecticide applications to control early pest infestations, thereby reducing economic damage to cotton.

18.
Microbes Environ ; 38(3)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37438113

RESUMO

The sorghum plant bug, Stenotus rubrovittatus (order Heteroptera: family Miridae), is a notorious insect pest in Japan that causes pecky rice. In the present study, we sampled this insect pest in the northern part of Honshu Island in Japan and investigated its associated microbiota. The results obtained showed that Pantoea dominated the associated microbiota and was the sole genus detected in all samples. The dominant Pantoea were phylogenetically close to rice pathogens. The present results suggest that the sorghum plant bug needs to be regarded and controlled not only as a notorious insect pest, but also as a potential vector of rice pathogenic Pantoea spp.


Assuntos
Heterópteros , Microbiota , Oryza , Pantoea , Sorghum , Animais , Prevalência , Pantoea/genética
19.
Insects ; 14(3)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36975915

RESUMO

Snap bean is an important crop in the United States. Insecticides are commonly used against pests on snap bean, but many pests have developed resistance to the insecticides and beneficials are threatened by the insecticides. Therefore, host plant resistance is a sustainable alternative. Population dynamics of insect pests and beneficials were assessed on 24 snap bean cultivars every week for six weeks. The lowest number of sweetpotato whitefly (Bemisia tabaci) eggs was observed on cultivar 'Jade', and the fewest nymphs were found on cultivars 'Gold Mine', 'Golden Rod', 'Long Tendergreen', and 'Royal Burgundy'. The numbers of potato leafhopper (Empoasca fabae) and tarnished plant bug (Lygus lineolaris) adults were the lowest on cultivars 'Greencrop' and 'PV-857'. The highest numbers of adults were found in Week 1 (25 days following plant emergence) for B. tabaci and Mexican bean beetle (Epilachna varivestis); Week 3 for cucumber beetle, kudzu bug (Megacopta cribraria), and E. fabae; Weeks 3 and 4 for thrips; Week 4 for L. lineolaris; and Weeks 5 and 6 for bees. Temperature and relative humidity correlated with B. tabaci, E. varivestis, bee, and predator ladybird beetle populations. These results provide valuable information on the integrated pest management of snap beans.

20.
Insect Sci ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37850504

RESUMO

Due to rapidly developed resistance, pest management relies less on pyrethroids to control economically damaging infestations of the tarnished plant bug (TPB), Lygus lineolaris (Palisot de Beauvois) in cotton fields of Mississippi. Yet, pyrethroid resistance remains prevalent in TPB populations. This study assessed the resistance levels in adult TPB to six common pyrethroids and acephate. Resistant TBPs were collected from wild host plants in late October after harvest in the Mississippi Delta region of the United States. Based on LC50 values, the field-resistant TPBs displayed higher resistance to permethrin, esfenvalerate, and bifenthrin (approximately 30 fold) and moderate resistance to λ-cyhalothrin, ß-cyfluthrin, ζ-cypermethrin, and acephate (approximately 15 fold). Further investigations showed that the inhibitors of three detoxification enzyme, triphenyl phosphate (TPP), diethyl maleate (DEM), and piperonyl butoxide (PBO) had synergistic effects on permethrin, λ-cyhalothrin, and bifenthrin in resistant TPBs. Furthermore, elevated esterase, GST, and P450 activities were significantly expressed in field-resistant TPBs. Additionally, GST and esterase were reduced after 48 h exposure to certain pyrethroids at LC50 dose. The synergistic and biochemical assays consistently indicated that P450 and esterase were involved in pyrethroid detoxification in TPBs. This study provides valuable information for the continued use of pyrethroids and acephate in controlling TPBs in cotton fields in the Mississippi Delta region of the United States.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa