Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Nanotechnology ; 35(40)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38981456

RESUMO

Low-k SiONC thin films with excellent thermal stabilities were deposited using plasma-assisted molecular layer deposition (PA-MLD) with a tetraisocyanatesilane (Si(NCO)4) precursor, N2plasma, and phloroglucinol (C6H3(OH)3). By adjusting the order of the N2plasma exposure steps within the PA-MLD process, we successfully developed a deposition technique that allows accurate control of thickness at the Ångström level via self-limiting reactions. The thicknesses of the thin films were measured through spectroscopic ellipsometry (SE). By tuning the N2plasma power, we facilitated the formation of -NH2sites for phloroglucinol adsorption, achieving a growth per cycle of 0.18 Å cycle-1with 300 W of N2plasma power. Consequently, the thickness of the films increased linearly with each additional cycle. Moreover, the organic linkers within the film formed stable bonds through surface reactions, resulting in a negligible decrease in thickness of approximately -11% even upon exposure to a high annealing temperature of 600 °C. This observation was confirmed by SE, distinguishing the as-prepared film from previously reported low-k films that fail to maintain their thickness under similar conditions. X-ray photoelectron spectroscopy (XPS) and current-voltage (I-V) and capacitance-voltage (C-V) measurement were conducted to evaluate the composition, insulating properties, and dielectric constant according to the deposition and annealing conditions. XPS results revealed that as the plasma power increased from 200 to 300 W, the C/Si ratio increased from 0.37 to 0.67, decreasing the dielectric constant from 3.46 to 3.12. Furthermore, there was no significant difference in the composition before and after annealing, and the hysteresis decreased from 0.58 to 0.19 V owing to defect healing, while maintaining the leakage current density, breakdown field, and dielectric constant. The low dielectric constant, accurate thickness control, and excellent thermal stability of this MLD SiONC thin film enable its application as an interlayer dielectric in back-end-of-line process.

2.
Sci Technol Adv Mater ; 25(1): 2378684, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135761

RESUMO

The cubic perovskite SrMoO3 with a paramagnetic ground state and remarkably low room-temperature resistivity has been considered as a suitable candidate for the new-era oxide-based technology. However, the difficulty of preparing single-phase SrMoO3 thin films by hydrogen-free sputtering has hindered their practical use, especially due to the formation of thermodynamically favorable SrMoO4 impurity. In this work, we developed a radio frequency sputtering technology enabling the reduction reaction and achieved conductive epitaxial SrMoO3 films with pure phase from a SrMoO4 target in a hydrogen-free, pure argon environment. We demonstrated the significance of controlling the target-to-substrate distance (TSD) on the synthesis of SrMoO3; the film resistivity drastically changes from 1.46 × 105 µΩ·cm to 250 µΩ·cm by adjusting the TSD. Cross-sectional microstructural analyses demonstrated that films with the lowest resistivity, deposited for TSD = 2.5 cm, possess a single-phase SrMoO3 with an epitaxial perovskite structure. The formation mechanism of the conductive single-phase SrMoO3 films can be attributed to the plasma-assisted growth process by tuning the TSD. Temperature-dependent resistivity and Hall effect studies revealed metal-like conducting properties for low-resistive SrMoO3 films, while the high-resistive ones displayed semiconductor-like behavior. Our approach makes hydrogen-free, reliable and cost-efficient scalable deposition of SrMoO3 films possible, which may open up promising prospects for a wide range of future applications of oxide materials.


For the first time, we developed a plasma-assisted RF sputtering technology enabling the reduction reaction for the synthesis of single-phase conductive SrMoO3 epitaxial films from insulating SrMoO4 in pure-argon atmosphere.

3.
Chem Rec ; 23(6): e202200263, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36633461

RESUMO

As a porous and network materials consisting of metals and organic ligands, metal-organic frameworks (MOFs) have become one of excellent crystalline porous materials and play an important role in the era about materials science. Plasma, as a useful tool for stimulating efficient reactions under many conditions, and the plasma-assisted technology gets more attractions and endows MOFs more properties. Based on its feature, the research about the modifications and functionalities of MOFs have been developing a certain extent. This review contains a description of the methods for plasma-assisted modification and synthesis of MOFs, with specifically focusing on the plasma-assisted potential for modifications and functionalities of MOFs. The different applications of plasma-assisted MOFs were also presented.


Assuntos
Estruturas Metalorgânicas , Porosidade
4.
J Sci Food Agric ; 103(4): 2186-2195, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36418203

RESUMO

BACKGROUND: Haskap berries (Lonicera caerulea L.) are rich in anthocyanins. Cold plasma-assisted enzyme method (CPEM) is an innovative method for green extraction of anthocyanins, which was optimized by an artificial neural network-genetic algorithm (ANN-GA) to maximize the yield. In this study, seven factors were screened using by Plackett-Burman design based on single-factor experiments and optimized by ANN-GA. RESULTS: The results showed that the maximum total anthocyanin content (TAC, 42.45 ± 0.25 g cyanidin-3-glucoside equivalent (C3G) kg-1 dry weight, DW) was obtained under optimal pretreatment power of 192 W, pretreatment time of 29 s and liquid-to-solid ratio of 39 mL g-1 . Cleavage and porosity appeared on the surface of the treated sample. The active ingredients and antioxidant capacity of the CPEM extracts were identified by ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Compared with other extraction technologies, CPEM presents the advantages of shortening the extraction time, reducing the solvent volume, and significantly increasing active ingredients and antioxidant activity. CONCLUSION: The ANN-GA has better predictive and higher accuracy than the response surface methodology (RSM) model and is more suitable for optimizing the CPEM by greatly improving the process yield and the utilization of biomass, thus contributing to the sustainability of the agri-food chain. © 2022 Society of Chemical Industry.


Assuntos
Antocianinas , Gases em Plasma , Antocianinas/análise , Frutas/química , Espectrometria de Massas/métodos , Cromatografia Líquida de Alta Pressão/métodos , Antioxidantes/análise , Extratos Vegetais/química
5.
Chemphyschem ; 23(17): e202200288, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35689533

RESUMO

We have performed a study on the accommodation of nitrogen doping toward superatomic states of transition metal clusters. By reacting cobalt clusters with N2 in the presence of plasma radiation, a large number of odd-nitrogen clusters were observed, typically Co3 N2m-1 + (m=1-5) and Co4 N2m-1 + (m=1-6) series, showing N≡N bond cleavage in the mild plasma atmosphere. Interestingly, the Co3 N7 + , Co4 N9 + , and Co5 N9 + clusters exhibit prominent mass abundances. First-principles calculation results elucidate the stability of the diverse cobalt nitride clusters and find unique stability of Co4 N9 + with a swallow-kite structure of which four coordinated N2 molecules causes a significantly enlarged HOMO-LUMO gap, while the single N atom doping gives rise to superatomic states of 1S2 1P3 ||1D0 . We reveal an efficient dinitrogen activation strategy by reacting multiple N2 molecules with cobalt clusters under a plasma atmosphere.


Assuntos
Cobalto , Nitrogênio , Cobalto/química , Nitrogênio/química
6.
Nanotechnology ; 33(40)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35196259

RESUMO

In and Sn are the type of catalysts which do not introduce deep level electrical defects within the bandgap of germanium (Ge). However, Ge nanowires produced using these catalysts usually have a large diameter, a tapered morphology, and mixed crystalline and amorphous phases. In this study, we show that plasma-assisted vapor-liquid-solid (PA-VLS) method can be used to synthesize Ge nanowires. Moreover, at certain parameter domains, the sidewall deposition issues of this synthesis method can be avoided and long, thin tapering-free monocrystalline Ge nanowires can be obtained with In and Sn catalysts. We find two quite different parameter domains where Ge nanowire growth can occur via PA-VLS using In and Sn catalysts: (i) a low temperature-low pressure domain, below âˆ¼235 °C at a GeH4partial pressure of âˆ¼6 mTorr, where supersaturation in the catalyst occurs thanks to the low solubility of Ge in the catalysts, and (ii) a high temperature-high pressure domain, at ∼400 °C and a GeH4partial pressure above âˆ¼20 mTorr, where supersaturation occurs thanks to the high GeH4concentration. While growth at 235 °C results in tapered short wires, operating at 400 °C enables cylindrical nanowire growth. With the increase of growth temperature, the crystalline structure of the nanowires changes from multi-crystalline to mono-crystalline and their growth rate increases from ∼0.3 nm s-1to 5 nm s-1. The cylindrical Ge nanowires grown at 400°C usually have a length of few microns and a radius of around 10 nm, which is well below the Bohr exciton radius in bulk Ge (24.3 nm). To explain the growth mechanism, a detailed growth model based on the key chemical reactions is provided.

7.
Nanotechnology ; 33(34)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902851

RESUMO

Chemisorbed oxygen acts a crucial role in the redox reaction of semiconductor gas sensors, and which is of great significance for improving gas sensing performance. In this study, an oxygen-plasma-assisted technology is presented to enhance the chemisorbed oxygen for improving the formaldehyde sensing performance of SnO2electropun fiber. An inductively coupled plasma device was used for oxygen plasma treatment of SnO2electrospun fibers. The surface of SnO2electrospun fibers was bombarded with high-energy oxygen plasma for facilitating the chemisorption of electronegative oxygen molecules on the SnO2(110) surface to obtain an oxygen-rich structure. Oxygen-plasma-assisted SnO2electrospun fibers exhibited excellent formaldehyde sensing performance. The formaldehyde adsorption mechanism of oxygen-rich SnO2was investigated using density functional theory. After oxygen plasma modification, the adsorption energy and the charge transfer number of formaldehyde to SnO2were increased significantly. And an unoccupied electronic state appeared in the SnO2band structure, which could enhance the formaldehyde adsorption ability of SnO2. The gas sensing test revealed that plasma-treated SnO2electrospun fibers exhibited excellent gas sensing properties to formaldehyde, low operating temperature, high response sensitivity, and considerable cross-selectivity. Thus, plasma modification is a simple and effective method to improve the gas sensing performance of sensors.

8.
Int J Mol Sci ; 22(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069725

RESUMO

Nitrogen fixation is crucial for plants as it is utilized for the biosynthesis of almost all biomolecules. Most of our atmosphere consists of nitrogen, but plants cannot straightforwardly assimilate this from the air, and natural nitrogen fixation is inadequate to meet the extreme necessities of global nutrition. In this study, nitrogen fixation in water was achieved by an AC-driven non-thermal atmospheric pressure nitrogen plasma jet. In addition, Mg, Al, or Zn was immersed in the water, which neutralized the plasma-treated water and increased the rate of nitrogen reduction to ammonia due to the additional hydrogen generated by the reaction between the plasma-generated acid and metal. The effect of the plasma-activated water, with and without metal ions, on germination and growth in corn plants (Zea Mays) was investigated. The germination rate was found to be higher with plasma-treated water and more efficient in the presence of metal ions. Stem lengths and germination rates were significantly increased with respect to those produced by DI water irrigation. The plants responded to the abundance of nitrogen by producing intensely green leaves because of their increased chlorophyll and protein contents. Based on this report, non-thermal plasma reactors could be used to substantially enhance seed germination and seedling growth.


Assuntos
Fixação de Nitrogênio/fisiologia , Gases em Plasma/farmacologia , Sementes/metabolismo , Clorofila/metabolismo , Temperatura Baixa , Germinação/efeitos dos fármacos , Germinação/fisiologia , Nitrogênio/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos , Folhas de Planta/metabolismo , Plântula/metabolismo , Água/metabolismo , Zea mays/metabolismo
9.
Small ; 16(17): e2000421, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32227457

RESUMO

The electrochemical N2 reduction reaction (NRR) is emerging as a promising alternative to the industrial Haber-Bosch process for distributed and modular production of NH3 . Nevertheless, developing high-efficiency catalysts to simultaneously realize both high activity and selectivity for the development of a sustainable NRR is very critical but extremely challenging. Here, a unique plasma-assisted strategy is developed to synthesize iridium diphosphide nanocrystals with abundant surface step atoms anchored in P,N-codoped porous carbon nanofilms (IrP2 @PNPC-NF), where the edges of the IrP2 nanocrystals are extremely irregular, and the ultrathin PNPC-NF possesses a honeycomb-like macroporous structure. These characteristics ensure that IrP2 @PNPC-NF delivers superior NRR performance with an NH3 yield rate of 94.0 µg h-1 mg-1 cat. and a faradaic efficiency (FE) of 17.8%. Density functional theory calculations reveal that the unique NRR performance originates from the low-coordinate step atoms on the edges of IrP2 nanocrystals, which can lower the reaction barrier to improve the NRR activity and simultaneously inhibit hydrogen evolution to achieve a high FE for NH3 formation. More importantly, such a plasma-assisted strategy is general and can be extended to the synthesis of other high-melting-point noble-metal phosphides (OsP2 @PNPC-NF, Re3 P4 @PNPC-NF, etc.) with abundant step atoms at lower temperatures.

10.
Nano Lett ; 19(7): 4250-4256, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31241343

RESUMO

We have shown that both the morphology and elongation mechanism of GaN nanowires homoepitaxially grown by plasma-assisted molecular beam epitaxy (PA-MBE) on a [0001]-oriented GaN nanowire template are strongly affected by the nominal gallium/nitrogen flux ratio as well as by additional Ga flux diffusing from the side walls. Nitrogen-rich growth conditions are found to be associated with a surface energy-driven morphology and reduced Ga diffusion on the (0001) plane. This leads to random nucleation on the (0001) top surface and preferential material accumulation at the periphery. By contrast, gallium-rich growth conditions are characterized by enhanced Ga surface diffusion promoting a kinetically driven morphology. This regime is governed by a potential barrier that limits diffusion from the top surface toward nanowire side walls, leading to a concave nanowire top surface morphology. Switching from one regime to the other can be achieved using the surfactant effect of an additional In flux. The optical properties are found to be strongly affected by growth mode, with point defect incorporation and stacking fault formation depending on gallium/nitrogen flux ratio.

11.
Small ; 14(19): e1800032, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29635730

RESUMO

The formation of PtSe2 -layered films is reported in a large area by the direct plasma-assisted selenization of Pt films at a low temperature, where temperatures, as low as 100 °C at the applied plasma power of 400 W can be achieved. As the thickness of the Pt film exceeds 5 nm, the PtSe2 -layered film (five monolayers) exhibits a metallic behavior. A clear p-type semiconducting behavior of the PtSe2 -layered film (≈trilayers) is observed with the average field effective mobility of 0.7 cm2 V-1 s-1 from back-gated transistor measurements as the thickness of the Pt film reaches below 2.5 nm. A full PtSe2 field effect transistor is demonstrated where the thinner PtSe2 , exhibiting a semiconducting behavior, is used as the channel material, and the thicker PtSe2 , exhibiting a metallic behavior, is used as an electrode, yielding an ohmic contact. Furthermore, photodetectors using a few PtSe2 -layered films as an adsorption layer synthesized at the low temperature on a flexible substrate exhibit a wide range of absorption and photoresponse with the highest photocurrent of 9 µA under the laser wavelength of 408 nm. In addition, the device can maintain a high photoresponse under a large bending stress and 1000 bending cycles.

12.
Mikrochim Acta ; 185(4): 210, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29594705

RESUMO

The work describes a gold nanoparticle-based colorimetric enzyme-linked immunosorbent assay (ELISA) for ractopamine. The ELISA is based on an indirect competitive approach. In the presence of ractopamine, gold(III) ions are oxidized by H2O2 to form red AuNPs. On the other hand, the AuNP in solution are purple-blue due to aggregation if the sample does not contain ractopamine. The absorption, best measured at 560 nm, increases linearly in the 2 to 512 ng·mL-1 ractopamine concentration range, and the detection limit is as low as 0.35 ng·mL-1 in urine. Ractopamine can also be detected visually, even in the presence of other ß-agonists and antibiotics. The results obtained by this method are consistent with those obtained by LC-MS/MS as demonstrated by analysis of sheep urine. The ELISA method described here is inexpensive, easy-to-use, and suitable for rapid screening of ractopamine in animal samples. Graphical abstract Schematic presentation of a colorimetric indirect competitive immunoassay for ractopamine. It is based on the use of catalase labeled IgG and the measurement of the absorption of red gold nanoparticles (AuNPs) that are generated by the reaction of gold ions with H2O2. In the absence of ractopamine, the solution becomes blue.


Assuntos
Colorimetria/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Ouro/química , Nanopartículas Metálicas/química , Fenetilaminas/análise , Animais , Catalase/metabolismo , Peróxido de Hidrogênio/química , Fenetilaminas/urina , Estreptavidina/metabolismo
13.
Biomed Microdevices ; 18(6): 112, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27900618

RESUMO

In this paper, we have fabricated 3D carbon nanofiber microelectrode arrays (MEAs) with highly reproducible and rich chemical surface areas for fast scan cyclic voltammetry (FSCV). Carbon nanofibers are created from negative photoresist by a new process called dual O2 plasma-assisted pyrolysis. The proposed approach significantly improves film adhesion and increases surface reactivity. We showcase our sensor's compatibility with FSCV analysis by demonstrating highly sensitive and stable FSCV dopamine measurements on a prototype 4-channel array. We envision with proper surface fuctionalization the 3D carbon nanofiber MEA enable sensitive and reliable detection of multiple neurotransmitters simultaneously.


Assuntos
Carbono/química , Dopamina/análise , Nanofibras/química , Nanotecnologia/instrumentação , Gases em Plasma/química , Calibragem , Eletroquímica , Limite de Detecção , Microeletrodos , Oxigênio/química , Fatores de Tempo
14.
Anal Bioanal Chem ; 408(30): 8843-8850, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27651047

RESUMO

The detection of ethyne is crucial not only in environmental monitoring but also in process controlling and mechanism studies in industrial fields. Here, a new sensor based on the plasma-assisted cataluminescence (PA-CTL) has been fabricated for the detection of ethyne. Based on the assistance of low-temperature plasma (LTP) generated by air, which can enhance the catalytic ability of catalysts and the reactivity of the analytes, we observed significant cataluminescence (CTL) emissions on the surface of nanomaterials of Zn/SiO2. CTL emission has demonstrated to be affected by the type of discharge gases or the metal ions doping on the catalysts of SiO2. By the optimizations on the working temperature and gas flow rate of the air, a PA-CTL based sensor was constructed for the detection of ethyne. As demonstrated, this sensor exhibited a linearity of 11-1160 ng/mL (10-1000 ppm) with a limit of detection (LOD) of 5 ng/mL (5 ppm), and also showed good selectivity as well as good stability. This sensor is simple, low-cost, and could give stable responses for actual applications, which will expand the applications of CTL and show potentials in industrial substances detections. Graphical Abstract A plasma-assisted cataluminescence gas sensor for ethyne detection.

15.
Anal Bioanal Chem ; 408(11): 2839-59, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26715246

RESUMO

A cataluminescence (CTL)-based sensor is fabricated based on the CTL signals generated from catalytic reaction on the surface of solid catalytic materials. CTL-based sensors have been developed since the 1990s and have attracted extensive attention due to long-term stability, linear concentration dependence, good reproducibility and fast response. In recent years, CTL-based sensors and sensor arrays have played important roles in chemical analysis, and were applied to determine the presence of organic gas, inorganic gas, or biological molecules, or to evaluate catalysts. However, due to the relatively low catalytic ability of catalysts or low reactivity of some analytes, high working temperature was normally adopted, which limited the applications. Recently, more advanced techniques were introduced into the fabrication of CTL-based sensors to increase the range of applications, such as advanced enrichment techniques, advanced sampling methods, advanced assisted devices, or multiple detections in array or tandem forms. This review summarizes the recent advancements of CTL-based sensors on development of advanced equipment, advanced sensing materials, new working principles examination, and new applications. Finally, we discuss some critical challenges and prospects in this field.


Assuntos
Luminescência , Catálise , Microscopia Eletrônica de Varredura
16.
Philos Trans A Math Phys Eng Sci ; 373(2048)2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26170428

RESUMO

A simulation is developed to investigate the kinetics of nitric oxide (NO) formation in premixed methane/air combustion stabilized by nanosecond-pulsed discharges. The simulation consists of two connected parts. The first part calculates the kinetics within the discharge while considering both plasma/combustion reactions and species diffusion, advection and thermal conduction to the surrounding flow. The second part calculates the kinetics of the overall flow after mixing the discharge flow with the surrounding flow to account for the effect that the discharge has on the overall kinetics. The simulation reveals that the discharge produces a significant amount of atomic oxygen (O) as a result of the high discharge temperature and dissociative quenching of excited state nitrogen by molecular oxygen. This atomic oxygen subsequently produces hydroxyl (OH) radicals. The fractions of these O and OH then undergo Zel'dovich reactions and are found to contribute to as much as 73% of the total NO that is produced. The post-discharge simulation shows that the NO survives within the flow once produced.

17.
Philos Trans A Math Phys Eng Sci ; 373(2048)2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26170433

RESUMO

Speciation and temperature measurements of methane oxidation during a nanosecond repetitively pulsed discharge in a low-temperature flow reactor have been performed. Measurements of temperature and formaldehyde during a burst of pulses were made on a time-dependent basis using tunable diode laser absorption spectroscopy, and measurements of all other major stable species were made downstream of a continuously pulsed discharge using gas chromatography. The major species for a stoichiometric methane/oxygen/helium mixture with 75% dilution are H(2)O, CO, CO(2), H(2), CH(2)O, CH(3)OH, C(2)H(6), C(2)H(4) and C(2)H(2). A modelling tool to simulate homogeneous plasma combustion kinetics is assembled by combining the ZDPlasKin and CHEMKIN codes. In addition, a kinetic model for plasma-assisted combustion (HP-Mech/plasma) of methane, oxygen and helium mixtures has been assembled to simulate the measurements. Predictions can accurately capture reactant consumption as well as production of the major product species. However, significant disagreement is found for minor species, particularly CH(2)O and CH(3)OH. Further analysis revealed that the plasma-activated low-temperature oxidation pathways, particularly those involving CH(3)O(2) radical reactions and methane reactions with O((1)D), are responsible for this disagreement.

18.
Philos Trans A Math Phys Eng Sci ; 373(2048)2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26170434

RESUMO

The results of experimental study of plasma-based mixing, ignition and flameholding in a supersonic model combustor are presented in the paper. The model combustor has a length of 600 mm and cross section of 72 mm width and 60 mm height. The fuel is directly injected into supersonic airflow (Mach number M=2, static pressure P(st)=160-250 Torr) through wall orifices. Two series of tests are focused on flameholding and mixing correspondingly. In the first series, the near-surface quasi-DC electrical discharge is generated by flush-mounted electrodes at electrical power deposition of W(pl)=3-24 kW. The scope includes parametric study of ignition and flame front dynamics, and comparison of three schemes of plasma generation: the first and the second layouts examine the location of plasma generators upstream and downstream from the fuel injectors. The third pattern follows a novel approach of combined mixing/ignition technique, where the electrical discharge distributes along the fuel jet. The last pattern demonstrates a significant advantage in terms of flameholding limit. In the second series of tests, a long discharge of submicrosecond duration is generated across the flow and along the fuel jet. A gasdynamic instability of thermal cavity developed after a deposition of high-power density in a thin plasma filament promotes the air-fuel mixing. The technique studied in this work has weighty potential for high-speed combustion applications, including cold start/restart of scramjet engines and support of transition regime in dual-mode scramjet and at off-design operation.

19.
Philos Trans A Math Phys Eng Sci ; 373(2048)2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26170423

RESUMO

The oxidation of n-alkanes (C1-C7) has been studied with and without the effects of a nanosecond, non-equilibrium plasma discharge at 1 atm pressure from 420 to 1250 K. Experiments have been performed under nearly isothermal conditions in a flow reactor, where reactive mixtures are diluted in Ar to minimize temperature changes from chemical reactions. Sample extraction performed at the exit of the reactor captures product and intermediate species and stores them in a multi-position valve for subsequent identification and quantification using gas chromatography. By fixing the flow rate in the reactor and varying the temperature, reactivity maps for the oxidation of fuels are achieved. Considering all the fuels studied, fuel consumption under the effects of the plasma is shown to have been enhanced significantly, particularly for the low-temperature regime (T<800 K). In fact, multiple transitions in the rates of fuel consumption are observed depending on fuel with the emergence of a negative-temperature-coefficient regime. For all fuels, the temperature for the transition into the high-temperature chemistry is lowered as a consequence of the plasma being able to increase the rate of fuel consumption. Using a phenomenological interpretation of the intermediate species formed, it can be shown that the active particles produced from the plasma enhance alkyl radical formation at all temperatures and enable low-temperature chain branching for fuels C3 and greater. The significance of this result demonstrates that the plasma provides an opportunity for low-temperature chain branching to occur at reduced pressures, which is typically observed at elevated pressures in thermal induced systems.

20.
Philos Trans A Math Phys Eng Sci ; 373(2048)2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26170424

RESUMO

This paper reports on an experimental study of the influence of a nanosecond repetitively pulsed spark discharge on the stability domain of a propane/air flame. This flame is produced in a lean premixed swirled combustor representative of an aeronautical combustion chamber. The lean extinction limits of the flame produced without and with plasma are determined and compared. It appears that only a low mean discharge power is necessary to increase the flame stability domain. Lastly, the effects of several parameters (pulse repetition frequency, global flowrate, electrode location) are studied.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa