Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 22(1): 390, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34332528

RESUMO

BACKGROUND: Plasmids are mobile genetic elements, key in the dissemination of antibiotic resistance, virulence determinants and other adaptive traits in bacteria. Obtaining a robust method for plasmid classification is necessary to better understand the genetics and epidemiology of many pathogens. Until now, plasmid classification systems focused on specific traits, which limited their precision and universality. The definition of plasmid taxonomic units (PTUs), based on average nucleotide identity metrics, allows the generation of a universal plasmid classification scheme, applicable to all bacterial taxa. Here we present COPLA, a software able to assign plasmids to known and novel PTUs, based on their genomic sequence. RESULTS: We implemented an automated pipeline able to assign a given plasmid DNA sequence to its cognate PTU, and assessed its performance using a sample of 1000 unclassified plasmids. Overall, 41% of the samples could be assigned to a previously defined PTU, a number that reached 63% in well-known taxa such as the Enterobacterales order. The remaining plasmids represent novel PTUs, indicating that a large fraction of plasmid backbones is still uncharacterized. CONCLUSIONS: COPLA is a bioinformatic tool for universal, species-independent, plasmid classification. Offered both as an automatable pipeline and an open web service, COPLA will help bacterial geneticists and clinical microbiologists to quickly classify plasmids.


Assuntos
Transferência Genética Horizontal , Genômica , Resistência Microbiana a Medicamentos , Plasmídeos/genética , Fatores de Virulência
2.
Artigo em Inglês | MEDLINE | ID: mdl-32122890

RESUMO

In this study, the plasmid content of clinical and commensal strains was analyzed and compared. The replicon profile was similar in both populations, except for L, M, A/C, and N (detected only in clinical strains) and HI1 (only in commensal strains). Although I1 and F were the most frequent replicons, only IncI1, sequence type 12 (ST12) was associated with blaCMY-2 in both populations. In contrast, the widespread resistant IncF plasmids were not linked to a single epidemic plasmid.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Klebsiella pneumoniae/genética , Plasmídeos/genética , beta-Lactamases/genética , Escherichia coli/isolamento & purificação , Fezes/microbiologia , Humanos , Klebsiella pneumoniae/isolamento & purificação , Tipagem de Sequências Multilocus
3.
Microb Genom ; 9(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36961505

RESUMO

Antimicrobial resistance (AMR) mechanisms, especially those conferring resistance to critically important antibiotics, are a great concern for public health. 16S rRNA methyltransferases (16S-RMTases) abolish the effectiveness of most clinically used aminoglycosides, but some of them are considered sporadic, such as RmtE. The main goals of this work were the genomic analysis of bacteria producing 16S-RMTases from a 'One Health' perspective in Venezuela, and the study of the epidemiological and evolutionary scenario of RmtE variants and their related mobile genetic elements (MGEs) worldwide. A total of 21 samples were collected in 2014 from different animal and environmental sources in the Cumaná region (Venezuela). Highly aminoglycoside-resistant Enterobacteriaceae isolates were selected, identified and screened for 16S-RMTase genes. Illumina and Nanopore whole-genome sequencing data were combined to obtain hybrid assemblies and analyse their sequence type, resistome, plasmidome and pan-genome. Genomic collections of rmtE variants and their associated MGEs were generated to perform epidemiological and phylogenetic analyses. A single 16S-RMTase, the novel RmtE4, was identified in five Klebsiella isolates from wastewater samples of Cumaná. This variant possessed three amino acid modifications with respect to RmtE1-3 (Asn152Asp, Val216Ile and Lys267Ile), representing the most genetic distant among all known and novel variants described in this work, and the second most prevalent. rmtE variants were globally spread, and their geographical distribution was determined by the associated MGEs and the carrying bacterial species. Thus, rmtE4 was found to be confined to Klebsiella isolates from South America, where it was closely related to ISVsa3 and an uncommon IncL plasmid related with hospital environments. This work uncovered the global scenario of RmtE and the existence of RmtE4, which could potentially emerge from South America. Surveillance and control measures should be developed based on these findings in order to prevent the dissemination of this AMR mechanism and preserve public health worldwide.


Assuntos
Klebsiella , Aminoglicosídeos/farmacologia , Plasmídeos/genética , Hospitais , Animais , Venezuela , Klebsiella/isolamento & purificação , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa