Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Virol ; 97(10): e0078223, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37712702

RESUMO

IMPORTANCE: Human papillomavirus 16 (HPV16) is a causative agent in around 3%-4% of all human cancers, and currently, there are no anti-viral therapeutics available for combating this disease burden. In order to identify new therapeutic targets, we must increase our understanding of the HPV16 life cycle. Previously, we demonstrated that an interaction between E2 and the cellular protein TopBP1 mediates the plasmid segregation function of E2, allowing distribution of viral genomes into daughter nuclei following cell division. Here, we demonstrate that E2 interaction with an additional host protein, BRD4, is also essential for E2 segregation function, and that BRD4 exists in a complex with TopBP1. Overall, these results enhance our understanding of a critical part of the HPV16 life cycle and presents several therapeutic targets for disruption of the viral life cycle.


Assuntos
Cromatina , Proteínas Oncogênicas Virais , Humanos , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Plasmídeos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Appl Environ Microbiol ; 88(8): e0020722, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35389251

RESUMO

Partitioning systems ensure the stable inheritance of bacterial low-copy-number replicons, such as chromosomes, chromids, and megaplasmids. These loci consist of two genes encoding partition proteins A and B, and at least one parS centromere-like sequence. In chromids and megaplasmids, partitioning systems are often located in the vicinity of replication systems. An extreme example of this co-localization are alphaproteobacterial repABC replicons, where the partition (repAB) and replication (repC) genes form a single operon, with parS sequences usually positioned in close proximity to these genes. In this study, we characterized a more complex repABC system found in Paracoccus aminophilus (Rhodobacterales) megaplasmid pAMI4 (438 kb). Besides the repABC operon with a single parS site, this replicon has a 2-kb non-coding locus positioned 11.5 kb downstream of repC, which contains three additional parS repeats (3parS). We demonstrated that 3parS is bound by partition protein B in vitro and is essential for proper pAMI4 partitioning in vivo. In search of similar loci, we conducted a comparative analysis of parS distribution in other repABC replicons. This revealed different patterns of parS localization in Rhodobacterales and Rhizobiales. However, in both these taxonomic orders, parS sites are almost always located inside or close to the repABC operon. No other 3parS-like loci were found in the closest relatives of pAMI4. Another evolutionarily-independent example of such a locus was identified as a conserved feature in chromosome 2 of Allorhizobium vitis and related replicons. IMPORTANCE The repABC replication/partitioning loci are widespread in extrachromosomal replicons of Alphaproteobacteria. They are evolutionarily diverse, subject to multi-layer self-regulation, and are responsible for the maintenance of different types of replicons, such as plasmids (e.g., Agrobacterium pTi and pRi tumorigenic and rhizogenic plasmids), megaplasmids (e.g., Sinorhizobium pSymA and pSymB) and essential chromids (e.g., secondary chromosomes of Agrobacterium, Brucella and Rhodobacter). In this study, we functionally analyzed an atypical partition-related component of repABC systems, the 3parS locus, found in the P. aminophilus megaplasmid pAMI4. We also identified parS centromere-like site distribution patterns in different groups of repABC replicons and found other unrelated 3parS-like loci, which had been overlooked. Our findings raise questions concerning the biological reasons for differential parS distribution, which may reflect variations in repABC operon regulation as well as different replication and partition modes of replicons belonging to the repABC family.


Assuntos
Alphaproteobacteria , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Centrômero/genética , Plasmídeos/genética , Replicon
3.
J Membr Biol ; 254(3): 243-257, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33427942

RESUMO

Stable maintenance and partitioning of the 'Fertility' plasmid or the F plasmid in its host Escherichia coli require the function of a ParA superfamily of proteins known as SopA. The mechanism by which SopA mediates plasmid segregation is well studied. SopA is a nucleoid-binding protein and binds DNA in an ATP-dependent but sequence non-specific manner. ATP hydrolysis stimulated by the binding of the SopBC complex mediates the release of SopA from the nucleoid. Cycles of ATP-binding and hydrolysis generate an ATPase gradient that moves the plasmid through a chemophoresis force. Nucleoid binding of SopA thus assumes a central role in its plasmid-partitioning function. However, earlier work also suggests that the F plasmid can be partitioned into anucleate cells, thus implicating nucleoid independent partitioning. Interestingly, SopA is also reported to be associated with the inner membrane of the bacteria. Here, we report the identification of a possible membrane-targeting sequence, a predicted amphipathic helix, at the C-terminus of SopA. Molecular dynamics simulations indicate that the predicted amphipathic helical motif of SopA has weak affinity for membranes. Moreover, we experimentally show that SopA can associate with bacterial membranes, is detectable in the membrane fractions of bacterial lysates, and is sensitive to the membrane potential. Further, unlike the wild-type SopA, a deletion of the C-terminal 29 amino acids results in the loss of F plasmids from bacterial cells.


Assuntos
Proteínas de Escherichia coli , Fator F , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Plasmídeos/genética
4.
Proc Natl Acad Sci U S A ; 115(13): 3356-3361, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440491

RESUMO

Bacterial actins are an evolutionarily diverse family of ATP-dependent filaments built from protomers with a conserved structural fold. Actin-based segregation systems are encoded on many bacterial plasmids and function to partition plasmids into daughter cells. The bacterial actin AlfA segregates plasmids by a mechanism distinct from other partition systems, dependent on its unique dynamic properties. Here, we report the near-atomic resolution electron cryo-microscopy structure of the AlfA filament, which reveals a strikingly divergent filament architecture resulting from the loss of a subdomain conserved in all other actins and a mode of ATP binding. Its unusual assembly interfaces and nucleotide interactions provide insight into AlfA dynamics, and expand the range of evolutionary variation accessible to actin quaternary structure.


Assuntos
Actinas/metabolismo , Actinas/ultraestrutura , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Sequência de Aminoácidos , Microscopia Crioeletrônica , Cristalografia por Raios X , Citoesqueleto/metabolismo , Modelos Moleculares , Domínios Proteicos , Homologia de Sequência
5.
Proc Natl Acad Sci U S A ; 115(13): 3458-3463, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440489

RESUMO

Low copy-number plasmid pLS32 of Bacillus subtilis subsp. natto contains a partitioning system that ensures segregation of plasmid copies during cell division. The partitioning locus comprises actin-like protein AlfA, adaptor protein AlfB, and the centromeric sequence parN Similar to the ParMRC partitioning system from Escherichia coli plasmid R1, AlfA filaments form actin-like double helical filaments that arrange into an antiparallel bipolar spindle, which attaches its growing ends to sister plasmids through interactions with AlfB and parN Because, compared with ParM and other actin-like proteins, AlfA is highly diverged in sequence, we determined the atomic structure of nonbundling AlfA filaments to 3.4-Å resolution by cryo-EM. The structure reveals how the deletion of subdomain IIB of the canonical actin fold has been accommodated by unique longitudinal and lateral contacts, while still enabling formation of left-handed, double helical, polar and staggered filaments that are architecturally similar to ParM. Through cryo-EM reconstruction of bundling AlfA filaments, we obtained a pseudoatomic model of AlfA doublets: the assembly of two filaments. The filaments are antiparallel, as required by the segregation mechanism, and exactly antiphasic with near eightfold helical symmetry, to enable efficient doublet formation. The structure of AlfA filaments and doublets shows, in atomic detail, how deletion of an entire domain of the actin fold is compensated by changes to all interfaces so that the required properties of polymerization, nucleotide hydrolysis, and antiparallel doublet formation are retained to fulfill the system's biological raison d'être.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Bacillus subtilis/metabolismo , Bacillus subtilis/ultraestrutura , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica/métodos , Plasmídeos , Citoesqueleto de Actina/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Citoesqueleto/metabolismo , DNA Bacteriano , Modelos Moleculares
6.
Curr Genet ; 65(1): 179-192, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29909438

RESUMO

ColE1-like plasmid vectors are widely used for expression of recombinant genes in E. coli. For these vectors, segregation of individual plasmids into daughter cells during cell division appears to be random, making them susceptible to loss over time when no mechanisms ensuring their maintenance are present. Here we use the plasmid pGFPuv in a recA relA strain as a sensitized model to study factors affecting plasmid stability in the context of recombinant gene expression. We find that in this model, plasmid stability can be restored by two types of genetic modifications to the plasmid origin of replication (ori) sequence: point mutations and a novel 269 nt duplication at the 5' end of the plasmid ori, which we named DAS (duplicated anti-sense) ori. Combinations of these modifications produce a range of copy numbers and of levels of recombinant expression. In direct contradiction with the classic random distribution model, we find no correlation between increased plasmid copy number and increased plasmid stability. Increased stability cannot be explained by reduced levels of recombinant gene expression either. Our observations would be more compatible with a hybrid clustered and free-distribution model, which has been recently proposed based on detection of individual plasmids in vivo using super-resolution fluorescence microscopy. This work suggests a role for the plasmid ori in the control of segregation of ColE1 plasmids that is distinct from replication initiation, opening the door for the genetic regulation of plasmid stability as a strategy aimed at enhancing large-scale recombinant gene expression or bioremediation.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli/genética , Modelos Genéticos , Plasmídeos/genética , Origem de Replicação , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Ligases/genética , Ligases/metabolismo , Plasmídeos/metabolismo , Recombinases Rec A/genética , Recombinases Rec A/metabolismo
7.
Subcell Biochem ; 84: 1-26, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28500521

RESUMO

As discovered over the past 25 years, the cytoskeletons of bacteria and archaea are complex systems of proteins whose central components are dynamic cytomotive filaments. They perform roles in cell division, DNA partitioning, cell shape determination and the organisation of intracellular components. The protofilament structures and polymerisation activities of various actin-like, tubulin-like and ESCRT-like proteins of prokaryotes closely resemble their eukaryotic counterparts but show greater diversity. Their activities are modulated by a wide range of accessory proteins but these do not include homologues of the motor proteins that supplement filament dynamics to aid eukaryotic cell motility. Numerous other filamentous proteins, some related to eukaryotic IF-proteins/lamins and dynamins etc, seem to perform structural roles similar to those in eukaryotes.


Assuntos
Archaea/citologia , Bactérias/citologia , Citoesqueleto/metabolismo , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo
8.
Subcell Biochem ; 84: 323-356, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28500531

RESUMO

A family of tubulin-related proteins (TubZs) has been identified in prokaryotes as being important for the inheritance of virulence plasmids of several pathogenic Bacilli and also being implicated in the lysogenic life cycle of several bacteriophages. Cell biological studies and reconstitution experiments revealed that TubZs function as prokaryotic cytomotive filaments, providing one-dimensional motive forces. Plasmid-borne TubZ filaments most likely transport plasmid centromeric complexes by depolymerisation, pulling on the plasmid DNA, in vitro. In contrast, phage-borne TubZ (PhuZ) pushes bacteriophage particles (virions) to mid cell by filament growth. Structural studies by both crystallography and electron cryo-microscopy of multiple proteins, both from the plasmid partitioning sub-group and the bacteriophage virion centring group of TubZ homologues, allow a detailed consideration of the structural phylogeny of the group as a whole, while complete structures of both crystallographic protofilaments at high resolution and fully polymerised filaments at intermediate resolution by cryo-EM have revealed details of the polymerisation behaviour of both TubZ sub-groups.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófagos/metabolismo , Plasmídeos/metabolismo , Células Procarióticas/metabolismo , Tubulina (Proteína)/metabolismo , Bacillus/genética , Bacillus/metabolismo , Bacillus/patogenicidade , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Células Procarióticas/ultraestrutura , Tubulina (Proteína)/química , Tubulina (Proteína)/ultraestrutura
9.
Subcell Biochem ; 84: 299-321, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28500530

RESUMO

One of the well-known functions of the bacterial cytoskeleton is plasmid segregation. Type II plasmid segregation systems, among the best characterized with respect to the mechanism of action, possess an actin-like cytomotive filament as the motor component. This chapter describes the essential components of the plasmid segregation machinery and their mechanism of action, concentrating on the actin-like protein family of the bacterial cytoskeleton. The structures of the actin-like filaments depend on their nucleotide state and these in turn contribute to the dynamics of the filaments. The components that link the filaments to the plasmid DNA also regulate filament dynamics. The modulation of the dynamics facilitates the cytomotive filament to function as a mitotic spindle with a minimal number of components.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Bactérias/citologia , Bactérias/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Citoesqueleto de Actina/química , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Citoesqueleto/metabolismo , Movimento
10.
Proc Natl Acad Sci U S A ; 111(9): 3407-12, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24550513

RESUMO

Cytoskeletal filaments form diverse superstructures that are highly adapted for specific functions. The recently discovered TubZ subfamily of tubulins is involved in type III plasmid partitioning systems, facilitating faithful segregation of low copy-number plasmids during bacterial cell division. One such protein, TubZ-Bt, is found on the large pBtoxis plasmid in Bacillus thuringiensis, and interacts via its extended C terminus with a DNA adaptor protein TubR. Here, we use cryo-electron microscopy to determine the structure of TubZ-Bt filaments and light scattering to explore their mechanism of polymerization. Surprisingly, we find that the helical filament architecture is remarkably sensitive to nucleotide state, changing from two-stranded to four-stranded depending on the ability of TubZ-Bt to hydrolyze GTP. We present pseudoatomic models of both the two- and four-protofilament forms based on cryo-electron microscopy reconstructions (10.8 Å and 6.9 Å, respectively) of filaments formed under different nucleotide states. These data lead to a model in which the two-stranded filament is a necessary intermediate along the pathway to formation of the four-stranded filament. Such nucleotide-directed structural polymorphism is to our knowledge an unprecedented mechanism for the formation of polar filaments.


Assuntos
Bacillus thuringiensis/química , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Conformação Proteica , Tubulina (Proteína)/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Escherichia coli , Hidrólise , Tubulina (Proteína)/metabolismo
11.
Proc Natl Acad Sci U S A ; 111(37): 13264-71, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25197070

RESUMO

Research on tuberculosis and leprosy was revolutionized by the development of a plasmid transformation system in the fast-growing surrogate, Mycobacterium smegmatis. This transformation system was made possible by the successful isolation of a M. smegmatis mutant strain mc(2)155, whose efficient plasmid transformation (ept) phenotype supported the replication of Mycobacterium fortuitum pAL5000 plasmids. In this report, we identified the EptC gene, the loss of which confers the ept phenotype. EptC shares significant amino acid sequence homology and domain structure with the MukB protein of Escherichia coli, a structural maintenance of chromosomes (SMC) protein. Surprisingly, M. smegmatis has three paralogs of SMC proteins: EptC and MSMEG_0370 both share homology with Gram-negative bacterial MukB; and MSMEG_2423 shares homology with Gram-positive bacterial SMCs, including the single SMC protein predicted for Mycobacterium tuberculosis and Mycobacterium leprae. Purified EptC was shown to bind ssDNA and stabilize negative supercoils in plasmid DNA. Moreover, an EptC-mCherry fusion protein was constructed and shown to bind to DNA in live mycobacteria, and to prevent segregation of plasmid DNA to daughter cells. To our knowledge, this is the first report of impaired plasmid maintenance caused by a SMC homolog, which has been canonically known to assist the segregation of genetic materials.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium fortuitum/metabolismo , Mycobacterium smegmatis/metabolismo , Plasmídeos/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Biologia Computacional , Deleção de Genes , Genes Bacterianos , Dados de Sequência Molecular , Mutação/genética , Mycobacterium smegmatis/genética , Fenótipo , Homologia de Sequência de Aminoácidos , Transformação Genética
12.
J Biol Chem ; 290(30): 18782-95, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26055701

RESUMO

Firmicutes multidrug resistance inc18 plasmids encode parS sites and two small homodimeric ParA-like (δ2) and ParB-like (ω2) proteins to ensure faithful segregation. Protein ω2 binds to parS DNA, forming a short left-handed helix wrapped around the full parS, and interacts with δ2. Protein δ2 interacts with ω2 and, in the ATP-bound form, binds to nonspecific DNA (nsDNA), forming small clusters. Here, we have mapped the ω2·Î´2 and δ2·Î´2 interacting domains in the δ2 that are adjacent to but distinct from each other. The δ2 nsDNA binding domain is essential for stimulation of ω2·parS-mediated ATP hydrolysis. From the data presented here, we propose that δ2 interacts with ATP, nsDNA, and with ω2 bound to parS at near equimolar concentrations, facilitating a δ2 structural transition. This δ2 "activated" state overcomes its impediment in ATP hydrolysis, with the subsequent release of both of the proteins from nsDNA (plasmid unpairing).


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/química , Plasmídeos/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos/genética , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Centrômero/química , Centrômero/genética , Cromossomos Bacterianos/genética , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Resistência a Múltiplos Medicamentos/genética , Escherichia coli , Hidrólise , Plasmídeos/química , Plasmídeos/genética , Estrutura Terciária de Proteína
13.
Genes (Basel) ; 11(10)2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081159

RESUMO

Multidrug resistance (MDR) often results from the acquisition of mobile genetic elements (MGEs) that encode MDR gene(s), such as conjugative plasmids. The spread of MDR plasmids is founded on their ability of horizontal transference, as well as their faithful inheritance in progeny cells. Here, we investigated the genetic factors involved in the prevalence of the IncI conjugative plasmid pESBL, which was isolated from the Escherichia coli O104:H4 outbreak strain in Germany in 2011. Using transposon-insertion sequencing, we identified the pESBL partitioning locus (par). Genetic, biochemical and microscopic approaches allowed pESBL to be characterized as a new member of the Type Ib partitioning system. Inactivation of par caused mis-segregation of pESBL followed by post-segregational killing (PSK), resulting in a great fitness disadvantage but apparent plasmid stability in the population of viable cells. We constructed a variety of pESBL derivatives with different combinations of mutations in par, conjugational transfer (oriT) and pnd toxin-antitoxin (TA) genes. Only the triple mutant exhibited plasmid-free cells in viable cell populations. Time-lapse tracking of plasmid dynamics in microfluidics indicated that inactivation of pnd improved the survival of plasmid-free cells and allowed oriT-dependent re-acquisition of the plasmid. Altogether, the three factors-active partitioning, toxin-antitoxin and conjugational transfer-are all involved in the prevalence of pESBL in the E. coli population.


Assuntos
Conjugação Genética , Infecções por Escherichia coli/transmissão , Escherichia coli O104/genética , Proteínas de Escherichia coli/genética , Transferência Genética Horizontal , Plasmídeos/genética , Resistência beta-Lactâmica/genética , Antibacterianos/farmacologia , Infecções por Escherichia coli/microbiologia , Humanos , Sistemas Toxina-Antitoxina/genética
14.
J Mol Biol ; 431(5): 928-938, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30664868

RESUMO

We review the key role played by mathematical modeling in elucidating two center-finding patterning systems in Escherichia coli: midcell division positioning by the MinCDE system and DNA partitioning by the ParABS system. We focus particularly on how, despite much experimental effort, these systems were simply too complex to unravel by experiments alone, and instead required key injections of quantitative, mathematical thinking. We conclude the review by analyzing the frequency of modeling approaches in microbiology over time. We find that while such methods are increasing in popularity, they are still probably heavily under-utilized for optimal progress on complex biological questions.


Assuntos
Divisão Celular/fisiologia , Escherichia coli/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Teóricos
15.
Adv Biosyst ; 3(6): e1800316, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-32648710

RESUMO

Faithful segregation of replicated genomes to dividing daughter cells is a major hallmark of cellular life and needs to be part of the future design of the robustly proliferating minimal cell. So far, the complexity of eukaryotic chromosome segregation machineries has limited their applicability to synthetic systems. Prokaryotic plasmid segregation machineries offer promising alternative tools for bottom-up synthetic biology, with the first three-component DNA segregation system being reconstituted a decade ago. In this review, the mechanisms underlying DNA segregation in prokaryotes, with a particular focus on segregation of plasmids and chromosomal replication origins are reviewed, along with a brief discussion of archaeal and eukaryotic systems. In addition, this review shows how in vitro reconstitution has allowed deeper insights into these processes and discusses possible applications of these machineries for a minimal synthetic segrosome as well as the challenge of its coupling to a minimal replisome.


Assuntos
Células Artificiais , Cromossomos , Replicação do DNA , Células Eucarióticas , Plasmídeos , Células Procarióticas
16.
J Mol Biol ; 430(24): 5015-5028, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30414406

RESUMO

Tubulin/FtsZ-like GTPase TubZ is responsible for maintaining the stability of pXO1-like plasmids in virulent Bacilli. TubZ forms a filament in a GTP-dependent manner, and like other partitioning systems of low-copy-number plasmids, it requires the centromere-binding protein TubR that connects the plasmid to the TubZ filament. Systems regulating TubZ partitioning have been identified in Clostridium prophages as well as virulent Bacillus species, in which TubZ facilitates partitioning by binding and towing the segrosome: the nucleoprotein complex composed of TubR and the centromere. However, the molecular mechanisms of segrosome assembly and the transient on-off interactions between the segrosome and the TubZ filament remain poorly understood. Here, we determined the crystal structure of TubR from Bacillus cereus at 2.0-Å resolution and investigated the DNA-binding ability of TubR using hydroxyl radical footprinting and electrophoretic mobility shift assays. The TubR dimer possesses 2-fold symmetry and binds to a 15-bp palindromic consensus sequence in the tubRZ promoter region. Continuous TubR-binding sites overlap each other, which enables efficient binding of TubR in a cooperative manner. Interestingly, the segrosome adopts an extended DNA-protein filament structure and likely gains conformational flexibility by introducing non-consensus residues into the palindromes in an asymmetric manner. Together, our experimental results and structural model indicate that the unique centromere recognition mechanism of TubR allows transient complex formation between the segrosome and the dynamic polymer of TubZ.


Assuntos
Bacillus cereus/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Centrômero/metabolismo , Bacillus cereus/genética , Proteínas de Bactérias/genética , Sítios de Ligação , Dicroísmo Circular , Cristalografia por Raios X , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas
17.
mBio ; 9(2)2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29511075

RESUMO

Uropathogenic Escherichia coli (UPEC) strains cause most uncomplicated urinary tract infections (UTIs). These strains are a subgroup of extraintestinal pathogenic E. coli (ExPEC) strains that infect extraintestinal sites, including urinary tract, meninges, bloodstream, lungs, and surgical sites. Here, we hypothesize that UPEC isolates adapt to and grow more rapidly within the urinary tract than other E. coli isolates and survive in that niche. To date, there has not been a reliable method available to measure their growth rate in vivo Here we used two methods: segregation of nonreplicating plasmid pGTR902, and peak-to-trough ratio (PTR), a sequencing-based method that enumerates bacterial chromosomal replication forks present during cell division. In the murine model of UTI, UPEC strain growth was robust in vivo, matching or exceeding in vitro growth rates and only slowing after reaching high CFU counts at 24 and 30 h postinoculation (hpi). In contrast, asymptomatic bacteriuria (ABU) strains tended to maintain high growth rates in vivo at 6, 24, and 30 hpi, and population densities did not increase, suggesting that host responses or elimination limited population growth. Fecal strains displayed moderate growth rates at 6 hpi but did not survive to later times. By PTR, E. coli in urine of human patients with UTIs displayed extraordinarily rapid growth during active infection, with a mean doubling time of 22.4 min. Thus, in addition to traditional virulence determinants, including adhesins, toxins, iron acquisition, and motility, very high growth rates in vivo and resistance to the innate immune response appear to be critical phenotypes of UPEC strains.IMPORTANCE Uropathogenic Escherichia coli (UPEC) strains cause most urinary tract infections in otherwise healthy women. While we understand numerous virulence factors are utilized by E. coli to colonize and persist within the urinary tract, these properties are inconsequential unless bacteria can divide rapidly and survive the host immune response. To determine the contribution of growth rate to successful colonization and persistence, we employed two methods: one involving the segregation of a nonreplicating plasmid in bacteria as they divide and the peak-to-trough ratio, a sequencing-based method that enumerates chromosomal replication forks present during cell division. We found that UPEC strains divide extraordinarily rapidly during human UTIs. These techniques will be broadly applicable to measure in vivo growth rates of other bacterial pathogens during host colonization.


Assuntos
Infecções por Escherichia coli/genética , Infecções Urinárias/genética , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/patogenicidade , Infecções por Escherichia coli/microbiologia , Humanos , Plasmídeos/genética
18.
Front Mol Biosci ; 3: 32, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27486582

RESUMO

Bacterial conjugation is a form of type IV secretion used to transport protein and DNA directly to recipient bacteria. The process is cell contact-dependent, yet the mechanisms enabling extracellular events to trigger plasmid transfer to begin inside the cell remain obscure. In this study of plasmid R1 we investigated the role of plasmid proteins in the initiation of gene transfer. We find that TraI, the central regulator of conjugative DNA processing, interacts physically, and functionally with the plasmid partitioning proteins ParM and ParR. These interactions stimulate TraI catalyzed relaxation of plasmid DNA in vivo and in vitro and increase ParM ATPase activity. ParM also binds the coupling protein TraD and VirB4-like channel ATPase TraC. Together, these protein-protein interactions probably act to co-localize the transfer components intracellularly and promote assembly of the conjugation machinery. Importantly these data also indicate that the continued association of ParM and ParR at the conjugative pore is necessary for plasmid transfer to start efficiently. Moreover, the conjugative pilus and underlying secretion machinery assembled in the absence of Par proteins mediate poor biofilm formation and are completely dysfunctional for pilus specific R17 bacteriophage uptake. Thus, functional integration of Par components at the interface of relaxosome, coupling protein, and channel ATPases appears important for an optimal conformation and effective activation of the transfer machinery. We conclude that low copy plasmid R1 has evolved an active segregation system that optimizes both its vertical and lateral modes of dissemination.

19.
Trends Microbiol ; 22(2): 65-73, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24342487

RESUMO

The formation of protein concentration gradients is an effective means to restrict the activity of regulatory factors in space, thereby critically contributing to the spatiotemporal organization of biological systems. Although widely observed for extracellular proteins involved in tissue patterning, the implementation of this regulatory strategy was thought to be impossible in single, micron-sized cells. Recently, however, several intracellular proteins were shown to establish gradient-like distribution patterns, thereby relaying positional information to their downstream targets. In this review, we discuss gradient-forming systems from different microbial species, with an emphasis on their mode of action and the common principles that underlie their function.


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/fisiologia , Escherichia coli/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiologia , Modelos Biológicos , Mapas de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa