RESUMO
BACKGROUND: Poly-L-lactic acid (PLLA) is one of the representative polymeric materials serving as bioresorbable stents (BRS) for cardiovascular disease due to its proper biodegradation, high biocompatibility, and adequate mechanical properties among polymer candidates for BRS. However, PLLA BRS as cardiovascular stents also have limitations because their mechanical properties including low radial strength and high elastic recoil are inferior to those of metallic-based BRS stents. METHODS: In the study, we developed and manufactured distinct and novel types of stent geometries for investigating mechanical properties of thin-walled PLLA BRS (110 µm) for cardiovascular applications. Five key mechanical tests, including radial strength, crimping profile, flexibility, elastic recoil, and foreshortening were performed through a comprehensive analysis. In addition, we applied the finite element method for further validation and insight of mechanical behaviors of the PLLA BRS. RESULTS: Results revealed that Model 2 had advantages in high flexibility as well as radial strengths, which would be a proper option for complex and acutely curved lesions. Model 3 would be an optimum selection for stent placement in mild target site due to its strength in minimum elastic recoil. Even though Model 4 showed the highest radial strength, finite element simulation showed that the geometry caused higher maximum stress than that of Model 2 and Model 3 during the crimping process. Model 1 showed the most vulnerable geometry among the tested models in both in vitro and finite element analysis. CONCLUSION: Such data may suggest potential guidance in regard to understanding the mechanical behaviors of PLLA BRS as not only applicable cardiovascular but also peripheral and intracranial stents.
RESUMO
The development of bio-based polymer materials, such as polylactic acid (PLA) -based polymers, is an effective strategy to reduce dependence on petrochemical-based polymers. However, the preparation of bio-based polymers with high barrier properties is a major challenge. To overcome this challenge, a nacreous layer structure with a ' brick and mud ' pattern is mimicked to improve the overall performance of the material. In this paper, Poly (L -lactic acid) (PLLA) and Polypropylene Glycol (PPG) was combined to prepare bio-based polyurethane (PU-PLLA), which is used as the slurry structure of nacreous layer. The bio-based biomimetic composite membrane (PU-PLLA/BN) is then obtained by adding boron nitride (BN, brick structure of pearl layer) to it. The water vapor permeability test results show that the permeability of PU-PLLA material can be reduced by more than 50% by 5 wt.% BN, which is because the addition of BN can increase the length and tortuosity of the gas molecular diffusion path in the composite. Therefore, this pearl-inspired PU-PLLA/BN film has excellent moisture resistance, which opens up a broad road for the practical application of PLLA in flexible laminated packaging.
Assuntos
Poliésteres , Polímeros , Poliésteres/química , Polímeros/química , Embalagem de Produtos , PermeabilidadeRESUMO
The bulk enthalpy of melting of α-crystals of poly (L-lactic acid) (PLLA) is evaluated by fast scanning calorimetry (FSC), by correlating the melting enthalpy of samples of different crystallinity with the corresponding heat capacity at 90 °C, that is at a temperature higher than the glass transition temperature of the bulk amorphous phase and lower than the melting temperature. Extrapolation of this relationship for crystals formed at 140 °C towards the heat capacity of fully solid PLLA yields a value of 104.5±6 J g-1 when melting occurs at 180-200 °C. The analysis relies on a two-phase structure, that is, absence of a vitrified rigid amorphous fraction (RAF) at the temperature of analysis the solid fraction (90 °C). Formation and vitrification of an RAF are suppressed by avoiding continuation of primary crystallization and secondary crystallization during cooling the system from the crystallization temperature of 140 °C to 90 °C, making use of the high cooling capacity of FSC. Small-angle X-ray scattering (SAXS) confirmed thickening of initially grown lamellae which only is possible if these lamellae are not surrounded by a glassy RAF. Linear crystallinity values obtained by SAXS and calorimetrically determined enthalpy-based crystallinities agree close to each other.
Assuntos
Ácido Láctico , Calorimetria , Varredura Diferencial de Calorimetria , Ácido Láctico/química , Espalhamento a Baixo Ângulo , Difração de Raios XRESUMO
Male pediatric survivors of cancers and bone marrow transplantation often require adjuvant chemoradiation therapy that may be gonadotoxic. The optimal methods to preserve fertility in these prepubertal males are still under investigation. This manuscript presents an in vivo experiment which involved transplantation of immature testicular tissues (ITT) from transgenic donor, to wild-type recipient mice. Donors and recipients were age-mismatched (from 20-week-old donors to 3-week-old recipients, and vice versa) and the transplantation sites involved the abdomen, skin of the head, back muscle, and scrotum. The application of poly-l-lactic acid (PLLA) scaffold was also evaluated in age-matched donors and recipients (both 3-weeks-old). To quantitively evaluate the process of spermatogenesis after ITT transplantation and scaffold application, bioluminescence imaging (BLI) was employed. Our result showed that ITT from 3-week-old mice had the best potential for spermatogenesis, and the optimal transplantation site was in the scrotum. Spermatogenesis was observed in recipient mice up to 51 days after transplantation, and up to the 85th day if scaffold was used. The peak of spermatogenesis occurred between the 42nd and 55th days in the scaffold group. This animal model may serve as a framework for further studies in prepubertal male fertility preservation.
Assuntos
Preservação da Fertilidade/métodos , Infertilidade Masculina/terapia , Espermatogênese , Testículo/citologia , Engenharia Tecidual/métodos , Animais , Infertilidade Masculina/etiologia , Masculino , Camundongos , Poliésteres/química , Lesões Experimentais por Radiação/complicações , Testículo/crescimento & desenvolvimento , Testículo/fisiologia , Alicerces Teciduais/químicaRESUMO
Prepubertal boys with cancer may suffer from reduced fertility and maturity following gonadotoxic chemoradiotherapy. Thus, a viable method of immature testicular tissue (ITT) preservation is required in this cohort. In this study, we used poly-L-lactic acid electrospun scaffolds with two levels of fineness to support the development of ITT transplanted from transgenic donors to wild-type recipient mice. The purpose of this study was to evaluate the potential of ITT transplantation and spermatogenesis after using the two scaffolds, employing bioluminescence imaging for evaluation. The results suggest that ITT from 4-week-old mice possessed the most potential in spermatogenesis on the 70th day, together with the fine electrospun scaffolds. Moreover, bioluminescent imaging intensity was observed in recipient mice for up to 107 days, approximately six times more than the coarse electrospun scaffold and the control group. This occurs since the fine scaffold is more akin to the microenvironment of native testicular tissue as it reduces stiffness resulting from micronization and body fluid infiltration. The thermal analysis also exhibited recrystallization during the biodegradation process, which can lead to a more stable microenvironment. Overall, these findings present the prospect of fertility preservation in prepubertal males and could serve as a framework for future applications.
Assuntos
Preservação da Fertilidade , Masculino , Camundongos , Animais , Preservação da Fertilidade/métodos , Camundongos Transgênicos , Testículo/metabolismo , Espermatogênese , Engenharia Tecidual , Modelos Animais de Doenças , CriopreservaçãoRESUMO
Tissue engineering is an interdisciplinary expertise that involves the use of nanoscaffolds for repairing, modifying, and removing tissue defects and formation of new tissues. Mesenchymal stem cells (MSCs) can differentiate into a variety of cell types, and they are attractive candidates for tissue engineering. In the current study, the electrospinning process was used for nanofiber preparation, based on a poly-l-lactic-acid (PLLA) polymer. The surface was treated with O 2 plasma to enhance hydrophilicity, cell attachment, growth, and differentiation potential. The nanoscaffolds were preconditioned with lipopolysaccharide (LPS) to enhance induction of differentiation. The nanoscaffolds were categorized by contact angle measurements and scanning electron microscopy. The MTT assay was used to analyze the rate of growth and proliferation of cells. Osteogenic differentiation of cultured MSCs was evaluated on nanofibers using common osteogenic markers, such as alkaline phosphatase activity, calcium mineral deposition, quantitative real-time polymerase chain reaction, and immunocytochemical analysis. Based on the in vitro results, primed MSCs with LPS on the PLLA nanoscaffold significantly enhanced the proliferation and osteogenesis of MSCs. Also, the combination of LPS and electrospun nanofibers can provide a new and suitable matrix to support stem cells' differentiation for bone tissue engineering.
Assuntos
Lipopolissacarídeos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanofibras , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Poliésteres/química , Alicerces Teciduais , Animais , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteoblastos/metabolismo , Osteogênese/genética , Transdução de Sinais , Propriedades de SuperfícieRESUMO
Implants that can enhance the stem cells differentiation in the absence of the chemical osteogenic growth factors will attract the great interest of orthopedic scientists. Inorganic polyphosphate (poly-P), as a ubiquitous biological polymer, is one of the factors that can be an alternative for osteogenic growth factors via activating Wnt/ß-catenin signaling. In this study, poly-P was incorporated at the blend of polycaprolactone (PCL)/poly (l-lactic acid) (PLLA) electrospun nanofibers and then osteogenic differentiation potential of human-induced pluripotent stem cells (iPSCs) was investigated by the important bone markers. 3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide (MTT) and scanning electron microscopy results confirmed the biocompatibility of the fabricated nanofibers, while higher proliferation rate of iPSCs was detected in PCL-PLLA(poly-P) group compared with the PCL-PLLA and tissue culture plate groups. Alkaline phosphatase activity, calcium content, and gene expression results demonstrated that osteogenic differentiation of iPSCs was increased when cultured on PCL-PLLA(poly-P) in comparison with other groups. According to the results, PCL-PLLA(poly-P) could be considered as a promising candidate for use as bone implants.
Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Osteogênese/efeitos dos fármacos , Poliésteres/química , Polifosfatos/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Microscopia Eletrônica de Varredura , Nanofibras , Polifosfatos/química , Alicerces TeciduaisRESUMO
Untargeted nuclear magnetic resonance (NMR) metabolomics was employed, for the first time to our knowledge, to characterize the metabolome of human osteoblast (HOb) cells and extracts in the presence of non-poled or negatively poled poly-L-lactic acid (PLLA). The metabolic response of these cells to this polymer, extensively used in bone regeneration strategies, may potentially translate into useful markers indicative of in vivo biomaterial performance. We present preliminary results of multivariate and univariate analysis of NMR spectra, which have shown the complementarity of lysed cells and extracts in terms of information on cell metabolome, and unveil that, irrespective of poling state, PLLA-grown cells seem to experience enhanced oxidative stress and activated energy metabolism, at the cost of storage lipids and glucose. Possible changes in protein and nucleic acid metabolisms were also suggested, as well as enhanced membrane biosynthesis. Therefore, the presence of PLLA seems to trigger cell catabolism and anti-oxidative protective mechanisms in HOb cells, while directing them towards cellular growth. This was not sufficient, however, to lead to a visible cell proliferation enhancement in the presence of PLLA, although a qualitative tendency for negatively poled PLLA to be more effective in sustaining cell growth than non-poled PLLA was suggested. These preliminary results indicate the potential of NMR metabolomics in enlightening cell metabolism in response to biomaterials and their properties, justifying further studies of the fine effects of poled PLLA on these and other cells of significance in tissue regeneration strategies.
Assuntos
Metabolômica , Osteoblastos/metabolismo , Poliésteres/metabolismo , Proliferação de Células , Humanos , Espectroscopia de Ressonância Magnética , Osteoblastos/citologia , Poliésteres/químicaRESUMO
Microsphere and particle technology with selective transport of radiation represents a new generation of therapeutics. Poly-L-lactic acid (PLLA) microspheres loaded with holmium-166 acetylacetonate ((166)Ho-PLLA-MS) are novel microdevices. In this research, (165)HoAcAc-PLLA microparticles were prepared by the solvent evaporation technique. Microspheres were irradiated at Tehran Research Reactor. The diameter and surface morphologies were characterized by particle sizer and scanning electron microscopy before and after irradiation. The complex stability, radiochemical purity, and in vivo biodistribiotion were checked in the final solution up to 3 days. In this study, (166)Ho-PLLA spherical particles with a smooth surface and diameter of 20-40 µm were obtained, which were stable in vitro and in vivo studies. Neutron irradiation did not damage the particles. The ease with which the PLLA spheres could be made in the optimal size range for later irradiation and their ability to retain the (166)Ho provided good evidence for their potential use in radioembolization.
Assuntos
Hólmio/química , Ácido Láctico/química , Microesferas , Polímeros/química , Compostos Radiofarmacêuticos/síntese química , Animais , Hidroxibutiratos/química , Pentanonas/química , Poliésteres , Radioisótopos/química , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Distribuição TecidualRESUMO
OBJECTIVES: This study evaluates the feasibility of delivery and deployment of low and medium molecular weight (LMW and MMW, respectively) double-opposing helical (DH) poly-l-lactic acid biodegradable stent (BDS) in rabbit descending aorta (DAO). Secondary objectives were to assess patency and inflammation of stented vessels at 9 months and to investigate safety following intentional embolization of stent fragments in DAO. BACKGROUND: A BDS that will relieve aortic obstruction and disappears as the child grows older allowing for preservation of aortic wall elasticity and natural growth of aorta will be ideal to treat Coarctation (CoA). BDS have never been evaluated in the DAO. METHODS: Seven New Zealand white rabbits underwent implantation of DH-LMW (n = 7), DH-MMW (n = 3), and metal stents (n = 7) in DAO. BDS fragments were intentionally embolized into DAO in two rabbits. RESULTS: All stents were deployed via a 6-French sheath. Five BDS covered the origin of major DAO side branches. Angiography and intravascular ultrasound showed good stent apposition to the wall of DAO with minimal luminal loss at 9 months follow-up. All stents had minimal neointimal hyperplasia on histopathology. Adverse events included 1 death, 1 aortic aneurysm, and lower extremity ulceration due to self-mutilation in an embolization rabbit. CONCLUSIONS: Pilot study confirms the feasibility of delivery and deployment of up to 6-millimeter diameter DH BDS in rabbit DAO. Stent integrity with DH design was maintained at 9 months with minimal vessel inflammation. Potential morbidity due to embolized BD fragments cannot be ruled out and needs further evaluation.
Assuntos
Implantes Absorvíveis , Aorta Torácica , Doenças da Aorta/terapia , Arteriopatias Oclusivas/terapia , Procedimentos Endovasculares/instrumentação , Cardiopatias Congênitas/terapia , Stents , Animais , Aorta Torácica/diagnóstico por imagem , Aorta Torácica/patologia , Aortografia , Arteriopatias Oclusivas/diagnóstico , Constrição Patológica , Modelos Animais de Doenças , Embolia/etiologia , Estudos de Viabilidade , Feminino , Migração de Corpo Estranho/etiologia , Ácido Láctico/química , Peso Molecular , Projetos Piloto , Poliésteres , Polímeros/química , Desenho de Prótese , Falha de Prótese , Coelhos , Fatores de Tempo , Ultrassonografia de IntervençãoRESUMO
OBJECTIVES: A novel double opposed helical (DH) biodegradable stent was designed and fabricated for CHD applications. The primary objective was to evaluate the feasibility of DH stent delivery and deployment in rabbit external iliac arteries (EIA). Secondary objectives were to assess stent patency, thrombosis and inflammation at 1-week and 1-month follow-up. BACKGROUND: Biodegradable stents have largely been designed for adult cardiovascular indications, to avoid long term complications of permanent implants. A growing child with congenital heart disease (CHD) would especially derive substantial benefit from this technology. METHODS: DH stents were manufactured to 3, 4, 5, and 6-mm diameter with poly-l-lactic acid (PLLA) fibers. Bench test analysis was performed. Six DH stents were implanted in rabbit EIA. Vessel patency was assessed at 1-week and 1-month follow-up with repeat angiography, intravascular ultrasound (IVUS). Histopathological evaluation was performed. RESULTS: The elastic recoil and collapse pressure of DH stents were comparable to conventional metal stents. All DH stents were successfully delivered and implanted with good apposition to the vessel wall and no collapse of the proximal, mid or distal ends. All stented vessels remained patent. No acute or early stent thrombosis was noted. Histopathology showed minimal inflammatory response and mild neointimal proliferation at 1 month follow-up. CONCLUSIONS: In vitro results of DH PLLA biodegradable stents are comparable to conventional metal stents. The pilot animal study confirms the delivery and deployment of the DH stents to the desired location. The DH design can be used to fabricate larger diameter stents needed for CHD.
Assuntos
Implantes Absorvíveis , Cateterismo Cardíaco/instrumentação , Cateterismo Periférico/instrumentação , Cardiopatias Congênitas/terapia , Artéria Ilíaca , Stents , Animais , Arteriopatias Oclusivas/etiologia , Arterite/etiologia , Cateterismo Cardíaco/efeitos adversos , Cateterismo Periférico/efeitos adversos , Módulo de Elasticidade , Estudos de Viabilidade , Artéria Ilíaca/diagnóstico por imagem , Artéria Ilíaca/patologia , Artéria Ilíaca/fisiopatologia , Ácido Láctico/química , Masculino , Teste de Materiais , Modelos Animais , Neointima , Projetos Piloto , Poliésteres , Polímeros/química , Desenho de Prótese , Falha de Prótese , Coelhos , Radiografia , Estresse Mecânico , Resistência à Tração , Trombose/etiologia , Fatores de Tempo , Ultrassonografia de Intervenção , Grau de Desobstrução VascularRESUMO
BACKGROUND: Injectable fillers for soft tissue augmentation stand out as one of the most favored procedures in the field of aesthetic medicine, especially in addressing the clinical signs of skin aging. Among soft tissue fillers, non-permanent fillers have been safely used in numerous medical applications for several decades. AIMS: The aim of this post-market observational, open-label, uncontrolled, multicentered, prospective study (PMS) was to evaluate the effects of an injectable poly-L-lactic acid-based collagen stimulator (Lanluma®, the study product). PARTICIPANTS/METHODS: This analysis is based on the clinical outcomes data (safety and effectiveness) collected from investigators and participants between the first injection (T0, September 2022) and 9 months thereafter (T3, June 2023) in the treatment of five body-contouring areas. RESULTS: Overall, 70 participants had 99 treatment sessions of the neck (31%), upper arm (20%), hand (17%), thigh (16%) and décolleté (15%). Lumps (neck, upper arm, hand) and nodules (neck, hand, thigh) were the most frequent adverse events (AEs) reported by investigators. All were treatment related. None were serious, severe or fatal. No AEs were reported following treatment of the décolleté. Both investigators and participants reported high levels of satisfaction during the nine-month follow-up period with the treatments in five body areas. CONCLUSIONS: These positive clinical outcomes can be attributed to a proper implementation of best practices and recommendations, and the rheological properties of the study product. This 9-month follow-up analysis should be reconsidered in light of the study's objectives for the final analysis at the 25-month follow-up.
RESUMO
Cell replacement therapy is under development for dry age-related macular degeneration (AMD). A thin membrane resembling the Bruch's membrane is required to form a cell-on-membrane construct with retinal pigment epithelial (RPE) cells. These cells have been differentiated from human embryonic stem cells (hESCs) in vitro. A carrier membrane is required for cell implantation, which is biocompatible for cell growth and has dimensions and physical properties resembling the Bruch's membrane. Here a nanofiber electrospun poly-L-lactic acid (PLLA) membrane is tested for capacity to support cell growth and maturation. The requirements for laminin coating of the membrane are identified here. A porous electrospun nanofibrous PLLA membrane of â¼50 nm fiber diameter was developed as a prototype support for functional RPE cells grown as a monolayer. The need for laminin coating applied to the membrane following treatment with poly-L-ornithine (PLO), was identified in terms of cell growth and survival. Test membranes were compared in terms of hydrophilicity after laminin coating, mechanical properties of surface roughness and Young's modulus, porosity and ability to promote the attachment and proliferation of hESC-RPE cells in culture for up to 8 weeks. Over this time, RPE cell proliferation, morphology, and marker and gene expression, were monitored. The functional capacity of cell monolayers was identified in terms of transepithelial electrical resistance (TEER), phagocytosis of cells, as well as expression of the cytokines, vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF). PLLA polymer fibers are naturally hydrophobic, so their hydrophilicity was improved by pretreatment with PLO for subsequent coating with the bioactive protein laminin. They were then assessed for amount of laminin adsorbed, contact angle and uniformity of coating using scanning electron microscopy (SEM). Pretreatment with 100% PLO gave the best result over 10% PLO treatment or no treatment prior to laminin adsorption with significantly greater surface stiffness and modulus. By 6 weeks after cell plating, the coated membranes could support a mature RPE monolayer showing a dense apical microvillus structure and pigmented 3D polygonal cell morphology. After 8 weeks, PLO (100%)-Lam coated membranes exhibited the highest cell number, cell proliferation, and RPE barrier function measured as TEER. RPE cells showed the higher levels of specific surface marker and gene expression. Microphthalmia-associated transcription factor expression was highly upregulated indicating maturation of cells. Functionality of cells was indicated by expression of VEGF and PEDF genes as well as phagocytic capacity. In conclusion, electrospun PLLA membranes coated with PLO-Lam have the physical and biological properties to support the distribution and migration of hESC-RPE cells throughout the whole structure. They represent a good membrane candidate for preparation of hESC-RPE cells as a monolayer for implantation into the subretinal space of AMD patients.
Assuntos
Lâmina Basilar da Corioide , Células-Tronco Embrionárias Humanas , Poliésteres , Epitélio Pigmentado da Retina , Humanos , Poliésteres/química , Lâmina Basilar da Corioide/citologia , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Membranas Artificiais , Regeneração/efeitos dos fármacos , Laminina/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Teste de Materiais , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Porosidade , Polímeros/química , Polímeros/farmacologia , Ácido Láctico/química , Ácido Láctico/farmacologia , Nanofibras/química , Linhagem Celular , Diferenciação Celular/efeitos dos fármacos , PeptídeosRESUMO
The inherent brittleness of poly(lactic acid) (PLA) limits its use in a wider range of applications that require plastic deformation at higher stress levels. To overcome this, a series of poly(l-lactic acid) (PLLA)/biodegradable thermoplastic polyester elastomer (TPE) blends and their ternary blends with an ethylene-methyl acrylate-glycidyl methacrylate (EMA-GMA) copolymer as a compatibilizer were prepared via melt blending to improve the poor impact strength and low ductility of PLAs. The thermal behavior, crystallinity, and miscibility of the binary and ternary blends were analyzed by differential scanning calorimetry (DSC). Tensile tests revealed a brittle-ductile transition when the binary PLLA/20TPE blend was compatibilized by 8.6 wt. % EMA-GMA, and the elongation at break increased from 10.9% to 227%. The "super tough" behavior of the PLLA/30TPE/12.9EMA-GMA ternary blend with the incomplete break and notched impact strength of 89.2 kJâm-2 was observed at an ambient temperature (23 °C). In addition, unnotched PLLA/40TPE samples showed a tremendous improvement in crack initiation resistance at sub-zero test conditions (-40 °C) with an impact strength of 178.1 kJâm-2. Morphological observation by scanning electron microscopy (SEM) indicates that EMA-GMA is preferentially located at the PLLA/TPE interphase, where it is partially incorporated into the matrix and partially encapsulates the TPE. The excellent combination of good interfacial adhesion, debonding cavitation, and subsequent matrix shear yielding worked synergistically with the phase transition from sea-island to co-continuous morphology to form an interesting super-toughening mechanism.
RESUMO
This study adopts an in vitro method to recapitulate the behavior of Saos-2 cells, using a system composed of a perfusion bioreactor and poly-L-lactic acid (PLLA) scaffold fabricated using the low-cost thermally-induced phase separation (TIPS) technique. Four distinct scaffold morphologies with different pore sizes were fabricated, characterized by Scanning electron microscopy and micro-CT analysis and tested with osteosarcoma cells under static and dynamic environments to identify the best morphology for cellular growth. In order to accomplish this purpose, cell growth and matrix deposition of the Saos-2 osteosarcoma cell line were assessed using Picogreen and OsteoImage assays. The obtained data allowed us to identify the morphology that better promotes Saos-2 cellular activity in static and dynamic conditions. These findings provided valuable insights into scaffold design and fabrication strategies, emphasizing the importance of the dynamic culture to recreate an appropriate 3D osteosarcoma model. Remarkably, the gradient scaffold exhibits promise for osteosarcoma applications, offering the potential for targeted tissue engineering approaches.
Assuntos
Osteossarcoma , Alicerces Teciduais , Humanos , Poliésteres/farmacologia , Engenharia Tecidual/métodosRESUMO
A system based on poly(l-lactic acid) (PLLA) and hydroxypropyl cellulose (HPC) was considered in this study to achieve electrospun mats with outstanding properties and applicability in biomedical engineering. A novel binary solvent system of chloroform/N,N-dimethylformamide (CF/DMF:70/30) was utilized to minimize the probable phase separation between the polymeric components. Moreover, Response Surface Methodology (RSM) was employed to model/optimize the process. Finally, to scrutinize the ability of the complex in terms of drug delivery, Calendula Officinalis (Marigold) extract was added to the solution of the optimal sample (Opt.PH), and then the set was electrospun (PHM). As a result, the presence of Marigold led to higher values of fiber diameter (262 ± 34 nm), pore size (483 ± 102 nm), and surface porosity (81.0 ± 7.3 %). As this drug could also prohibit the micro-scale phase separation, the PHM touched superior tensile strength and Young modulus of 11.3 ± 1.1 and 91.2 ± 4.2 MPa, respectively. Additionally, the cumulative release data demonstrated non-Fickian diffusion with the Korsmeyer-Peppas exponent and diffusion coefficient of n = 0.69 and D = 2.073 × 10-14 cm2/s, respectively. At the end stage, both the Opt.PH and PHM mats manifested satisfactory results regarding the hydrophilicity and cell viability/proliferation assessments, reflecting their high potential to be used in regenerative medicine applications.
RESUMO
In order to encourage the substitution of petrochemical polymers in medical technology with sustainable, bio-based materials, there is an urgent need for further investigations, especially data regarding their sterility performance. Within the scope of the investigations, selected material properties of poly-L-lactic-acid (PLLA), a specific type of poly(lactic-acid) (PLA), were analyzed before and after sterilization (using ethylene oxide or gamma irradiation) in order to investigate deviations in its chemical structure, wettability, optical, and mechanical properties. In particular, parameters such as molecular weight, complex viscosity, tensile strength, water contact angle, and color were discussed. Sterilization temperatures close to the glass transition of PLA, high humidity, and interactions with the ethylene oxide molecules have resulted in an increase in crystallinity, a decrease in elongation at break, and in some cases, a variation in wettability. As a consequence of exposure to high-energy radiation, the material's toughness is reduced due to chain scission, which is manifested through a decrease in molecular weight, an increase in crystallinity, and a partial change in surface energy. For the selected PLLA-materials (Luminy® L130, NP HT 202, and NP HT 203), ethylene oxide sterilization resulted in a comparatively minor variation in the characteristics behavior, and was chosen as the preferred method.
RESUMO
Synthetic biopolymers are effective cues to replace damaged tissue in the tissue engineering (TE) field, both for in vitro and in vivo application. Among them, poly-l-lactic acid (PLLA) has been highlighted as a biomaterial with tunable mechanical properties and biodegradability that allows for the fabrication of porous scaffolds with different micro/nanostructures via various approaches. In this review, we discuss the structure of PLLA, its main properties, and the most recent advances in overcoming its hydrophobic, synthetic nature, which limits biological signaling and protein absorption. With this aim, PLLA-based scaffolds can be exposed to surface modification or combined with other biomaterials, such as natural or synthetic polymers and bioceramics. Further, various fabrication technologies, such as phase separation, electrospinning, and 3D printing, of PLLA-based scaffolds are scrutinized along with the in vitro and in vivo applications employed in various tissue repair strategies. Overall, this review focuses on the properties and applications of PLLA in the TE field, finally affording an insight into future directions and challenges to address an effective improvement of scaffold properties.
RESUMO
As one of the main functions of vascular endothelial cells, Vascular permeability is determined by four tight junction proteins (TJPs): Zonula Occludens-1 (ZO-1), Claudin-5, Occludin and Tricellulin. The barrier function of blood vessels will be reconstructed after they are damaged by endothelial mechanical injuries caused by vascular interventions. In this study, the effects of balloon expansion (transient mechanical injury) on four TJPs and vascular permeability were compared with those of poly-l-lactic acid bioresorbable scaffolds (BRSs) implantation (continuous mechanical stimulation). We found that BRSs do not affect vascular permeability, while the recovery of vascular barrier function was found to be only related to the mechanical injuries and repair of endothelium. Mechanical stimulation affects and accelerates the recovery process of vascular permeability with the heterogeneous expression levels of TJPs induced after BRSs implantation. Different TJPs have different sensitivity to different loyal mechanical stimuli. ZO-1 is more sensitive to shear stress and tension than to static pressure. Occludin is sensitive to static pressure and shear stress. Tricellulin is more sensitive to tension stretching. Compared with the other three TJPs, Claudin-5 can respond to mechanical stimulation, with relatively low sensitivity, though. This difference in sensitivity determines the heterogeneous expression of TJPs. Mechanical stimulation of different kinds and strengths can also cause different cell morphological changes and inflammatory reactions. As an important element affecting endothelial function, the mechanical factors emerging after BRSs implantation are worthy of more attention.
RESUMO
BACKGROUND: Synthetic vascular graft calcification is a serious complication of graft placement. Here, we analysed migration and osteogenic genes of human umbilical vein endothelial cells (HUVEC) cultured with a poly-L-lactic acid (PLLA) electrospun mat. The role of epigallo-catechin-3-gallate (EGCG) in pathogenic processes involving HUVEC and peripheral blood mononuclear cells (PBMCs) was also tested. METHODS: HUVEC were cultured in indirect contact with PLLA for 48 h, with or without EGCG, and processed for mRNA expression. HUVEC proliferation, migration and osteogenic differentiation were evaluated after EGCG treatment. EGCG was also administrated to human PBMCs, to analyse proliferation and migration toward HUVEC cultured with PLLA. RESULTS: HUVEC cultured with PLLA exhibited increased expression of SLUG, VIMENTIN, MMP-9 (migration, vascular remodelling) and RUNX-2 (osteogenic transcription factor). EGCG at 25 µM significantly reduced HUVEC migration, osteogenic differentiation, without affecting cell viability, and mitigated PLLA influence on SLUG, MMP-9, VIMENTIN and RUNX-2 expression. EGCG affected PBMC proliferation and migration toward PLLA in a transwell co-culture system with HUVEC. CONCLUSION: Our study suggests the pro-calcific effect of PLLA, proposing EGCG as an anti-inflammatory modulatory approach. Research efforts need to deepen PLLA-vascular wall interactions for preventing vascular graft failure.