Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 25(1): 2363170, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903412

RESUMO

In this work, various methods were used to improve the printability of a photocurable polyvinylsilazane resin filled with silicon nitride particles for digital light processing. The developed resin was used as a preceramic polymer for polymer-to-ceramic conversion. The pyrolysis-induced structural changes of the additively manufactured objects were evaluated by comparing samples with different thicknesses, filler amounts and heating profiles. The printed green body retained its original geometry better and showed fewer cracks due to the addition of silicon nitride particles to the resin. Based on the thermally induced changes in a polyvinylsilazane resin system, a customized heating profile for the pyrolysis process was developed, which contributed to the reduction of pores and cracks while the average pyrolysis heating rate remained relatively high. This work provides insight into the pyrolysis of additively manufactured preceramic polymer green bodies and highlights various strategies for additive manufacturing of polymer-derived ceramics.


The presented work systematically demonstrates the microstructural optimization of additively manufactured polymer-derived ceramics through combination of high refractive index filler inclusion and pyrolysis procedure customization.

2.
Angew Chem Int Ed Engl ; : e202410961, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39118497

RESUMO

Interest is growing in transition metal-free compounds for small molecule activation and catalysis. We discuss the opportunities arising from synthesizing sodium-doped amorphous silicon-boron-nitride (Na-doped a-SiBN). Na+ cations and 3-fold coordinated BIII moieties were incorporated into an amorphous silicon nitride network via chemical modification of a polysilazane followed by pyrolysis in ammonia at 1000 °C. Emphasis is placed on the mechanisms of hydrogen (H2) activation within Na-doped a-SiBN structure. This material design approach allows the homogeneous distribution of Na+ and BIII moieties surrounded by SiN4 units contributing to the transformation of the BIII moieties into 4-fold coordinated geometry upon encountering H2, potentially serving as frustrated Lewis acid (FLA) sites. Exposure to H2 induced formation of frustrated Lewis base (FLB) N-= sites with Na+ as a charge-compensating cation, resulting in the in situ formation of a frustrated Lewis pair (FLP) motif (≡BFLA···Hδ-···Hδ+···:N-(Na+)=). Reversible H2 adsorption-desorption behavior with high activation energy for H2 desorption (124 kJ mol-1) suggested the H2 chemisorption on Na-doped a-SiBN. These findings highlight a future landscape full of possibilities within our reach, where we anticipate main-group-mediated small molecule activation will have an important impact on the design of more efficient catalytic processes and the discovery of new catalytic transformations.

3.
Small ; 19(5): e2206628, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36446727

RESUMO

The in situ free carbon generated in polymer-derived ceramics (PDCs) plays a crucial role in their unique microstructure and resultant properties. This study advances a new phenomenon of graphitization of PDCs. Specifically, whether in micro-/nanoscale films or millimeter-scale bulks, the surface/interface radically changes the fate of carbon and the evolution of PDC nanodomains, promotes the graphitization of carbon, and evolves a free carbon enriched layer in the near-surface/interface region. Affected by the enrichment behavior of free carbon in the near-surface/interface region, PDCs exhibit highly abnormal properties such as the skin behavior and edge effect of the current. The current intensity in the near-surface/interface region of PDCs is orders of magnitude higher than that in its interior. Ultrahigh conductivity of up to 14.47 S cm-1 is obtained under the action of the interface and surface, which is 5-8 orders of magnitude higher than that of the bulk prepared under the same conditions. Such surface/interface interactions are of interest for the regulation of free carbon and its resultant properties, which are the core of PDC applications. Finally, the first PDC thin-film strain gauge that can survive a butane flame with a high temperature of up to ≈1300 °C is fabricated.

4.
Small ; 19(41): e2303079, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37317021

RESUMO

Silicon oxycarbide (SiOC) materials have arisen in the past few decades as a promising new class of glasses and glass-ceramics thanks to their advantageous chemical and thermal properties. Many applications, such as ion storage, sensing, filtering, or catalysis, require materials or coatings with high surface area and might benefit from the high thermal stability of SiOC. This work reports the first facile bottom-up approach to textured high surface area SiOC coatings obtained via direct pyrolysis of polysiloxane structures of well-defined shapes, such as nanofilaments or microrods. This work further investigates the thermal behavior of these structures by means of FT-IR, SEM, and EDX up to 1400 °C. The rods shrink in volume by ≈30% while their aspect ratio remains unaffected by pyrolysis until at least 1100 °C. The nano-sized filaments show signs of viscous flow already at a comparably low temperature of 900 °C which is very probably due to the nano-size effect. This might open a way to experimentally study the size-effect on the glass transition temperature of oxide glasses, an experimentally unexplored but very relevant topic. These structures have great potential, for example, as ion storage materials and supports in high temperature catalysis and CO2 conversion.

5.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34948473

RESUMO

Bone tissue engineering has developed significantly in recent years as there has been increasing demand for bone substitutes due to trauma, cancer, arthritis, and infections. The scaffolds for bone regeneration need to be mechanically stable and have a 3D architecture with interconnected pores. With the advances in additive manufacturing technology, these requirements can be fulfilled by 3D printing scaffolds with controlled geometry and porosity using a low-cost multistep process. The scaffolds, however, must also be bioactive to promote the environment for the cells to regenerate into bone tissue. To determine if a low-cost 3D printing method for bespoke SiOC(N) porous structures can regenerate bone, these structures were tested for osteointegration potential by using human mesenchymal stem cells (hMSCs). This includes checking the general biocompatibilities under the osteogenic differentiation environment (cell proliferation and metabolism). Moreover, cell morphology was observed by confocal microscopy, and gene expressions on typical osteogenic markers at different stages for bone formation were determined by real-time PCR. The results of the study showed the pore size of the scaffolds had a significant impact on differentiation. A certain range of pore size could stimulate osteogenic differentiation, thus promoting bone regrowth and regeneration.


Assuntos
Osso e Ossos/fisiologia , Cerâmica/química , Células-Tronco Mesenquimais/citologia , Silício/química , Engenharia Tecidual/métodos , Regeneração Óssea , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Osteogênese , Porosidade , Impressão Tridimensional , Alicerces Teciduais
6.
Molecules ; 25(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182722

RESUMO

The pyrolysis (1000 °C) of a liquid poly(vinylmethyl-co-methyl)silazane modified by tetrakis(dimethylamido)titanium in flowing ammonia, nitrogen and argon followed by the annealing (1000-1800 °C) of as-pyrolyzed ceramic powders have been investigated in detail. We first provide a comprehensive mechanistic study of the polymer-to-ceramic conversion based on TG experiments coupled with in-situ mass spectrometry and ex-situ solid-state NMR and FTIR spectroscopies of both the chemically modified polymer and the pyrolysis intermediates. The pyrolysis leads to X-ray amorphous materials with chemical bonding and ceramic yields controlled by the nature of the atmosphere. Then, the structural evolution of the amorphous network of ammonia-, nitrogen- and argon-treated ceramics has been studied above 1000 °C under nitrogen and argon by X-ray diffraction and electron microscopy. HRTEM images coupled with XRD confirm the formation of nanocomposites after annealing at 1400 °C. Their unique nanostructural feature appears to be the result of both the molecular origin of the materials and the nature of the atmosphere used during pyrolysis. Samples are composed of an amorphous Si-based ceramic matrix in which TiNxCy nanocrystals (x + y = 1) are homogeneously formed "in situ" in the matrix during the process and evolve toward fully crystallized compounds as TiN/Si3N4, TiNxCy (x + y = 1)/SiC and TiC/SiC nanocomposites after annealing to 1800 °C as a function of the atmosphere.


Assuntos
Carbono/química , Nanocompostos/química , Nanotecnologia/métodos , Nitrogênio/química , Silício/química , Titânio/química , Amônia/química , Cerâmica , Técnicas de Química Sintética , Espectroscopia de Ressonância Magnética , Nanopartículas , Polímeros/química , Pós , Pirólise , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Difração de Raios X , Raios X
7.
J Eur Ceram Soc ; 35(9): 2679-2683, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26339126

RESUMO

In this contribution, a low-pressure/low-temperature casting technique for the preparation of novel free-standing macrocellular polymer-derived ceramic support structures is presented. Preceramic polymers (polycarbosilane and poly(vinyl)silazane) are combined with sacrificial porogens (ultra-high molecular weight polyethylene microbeads) to yield porous ceramic materials in the Si-C or Si-C-N systems, exhibiting well-defined pore structures after thermal conversion. The planar-disc-type specimens were found to exhibit biaxial flexural strengths of up to 60 MPa. In combination with their observed permeability characteristics, the prepared structures were found to be suitable for potential applications in filtration, catalysis, or membrane science.

8.
ChemSusChem ; : e202400561, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-39110122

RESUMO

The in situ confinement of nickel (Ni)-iron (Fe) nanoparticles (NPs) in a polymer-derived microporous silicon carboxynitride (Si-C-O-N)-based support is investigated to stimulate superior oxygen evolution reaction (OER) activity in an alkaline media. Firstly, we consider a commercial polysilazane (PSZ) and Ni and Fe chlorides to be mixed in N,N-dimethylformamide (DMF) and deliver after overnight solvent reflux a series of Ni-Fe : organosilicon coordination polymers. The latter are then heat-treated at 500 °C in flowing argon to form the title compounds. By considering a Ni : Fe ratio of 1.5, face centred cubic (fcc) NixFey alloy NPs with a size of 15-30 nm are in situ generated in a porous Si-C-O-N-based matrix displaying a specific surface area (SSA) as high as 237 m2 ⋅ g-1. Hence, encapsulated NPs are rendered accessible to promote electrocatalytic water oxidation. An OER overpotential as low as 315 mV at 10 mA ⋅ cm-2 is measured. This high catalytic performance (considering that the metal mass loading is as low as 0.24 mg cm-2) is rather stable as observed after an activation step; thus, validating our synthesis approach. This is clearly attributed to both the strong NP-matrix interaction and the confinement effect of the matrix as highlighted through post mortem microscopy observations.

9.
ACS Appl Mater Interfaces ; 16(15): 19507-19518, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569131

RESUMO

The Stöber method, a widely utilized sol-gel technique, stands as a green and reliable approach for preparing nanostructures on a large scale. In this study, we employed an enhanced Stöber method to synthesize organopolysilazane nanoparticles (OPSZ NPs), utilizing polysilazane oligomers as the primary precursor material and ammonia as the catalytic agent. By implementing a two-step addition process, control over crucial parameters facilitated the regulation of the nanoparticle size. Generally, maintaining relatively low concentrations of organopolysilazane and catalyst while adjusting the water/acetonitrile ratio can effectively enhance the surface energy of the organopolysilazane, resulting in the uniform formation of small spherical particles. The average particle size of the synthesized OPSZ NPs is about 140 nm, which were monodispersed and characterized by scanning electron microscopy, transmission electron microscopy, and dynamic light scattering. Furthermore, the composition of OPSZ NPs after pyrolysis was confirmed as SiC2.054N0.206O1.631 with 5.44 wt % free carbon structure by X-ray diffraction and energy-dispersive X-ray spectroscopy. Notably, the electrochemical performance assessment of SiCNO NPs as potential electrode materials for lithium-ion batteries exhibited promising outcomes. Specifically, at 1 A g-1 current density, the specific capacity is 585.45 mA h g-1 after 400 cycles, and the minimum capacity attenuation per cycle is only 0.1076 mA h g-1 (0.0172% of the original capacity), which indicates excellent energy storage capacity and cycle stability. In summary, this research contributes to the development of advanced anode materials for next-generation energy storage systems, marking a stride toward sustainable energy solutions.

10.
ACS Appl Mater Interfaces ; 16(17): 22379-22390, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636939

RESUMO

Structural colors offer a myriad of advantages over conventional pigment-based colors, which often rely on toxic chemical substances that are prone to UV degradation. To take advantage of these benefits in demanding environments, there is growing interest in producing structural colors from ceramics. Polymer-derived ceramics (PDCs) emerge as a compelling choice, presenting two distinct advantages: their enhanced shape ability in their polymeric state associated with impressive temperature resistance once converted to ceramics. This study pioneers the fabrication of noniridescent structural colors from silicon oxycarbide (SiOC) PDC, enabled by the nanostructuring of an inverse photonic glass within the PDC material. This design, a functionally graded material with an inverse photonic glass (FGM-PhG) structure, leverages the innate light-absorbing properties of SiOC, yielding a vivid structural color that maintains its saturation even in white surroundings. This study elucidates the process-structure-properties relationship for the obtained structural colors by investigating each layer of the functionally graded material (FGM) in a stepwise coating deposition process. To further emphasize the exceptional processing flexibility of PDCs, the three-step process is later transferred to an additive manufacturing approach. Finally, the FGM-PhG structural colors are demonstrated to have remarkable thermal stability up to 1000 °C for 100 h, possibly making them the most thermally stable ceramic structural colors to date.

11.
J Appl Crystallogr ; 57(Pt 4): 945-954, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39108813

RESUMO

Polymer-derived ceramics (PDCs) remain at the forefront of research for a variety of applications including ultra-high-temperature ceramics, energy storage and functional coatings. Despite their wide use, questions remain about the complex structural transition from polymer to ceramic and how local structure influences the final microstructure and resulting properties. This is further complicated when nanofillers are introduced to tailor structural and functional properties, as nanoparticle surfaces can interact with the matrix and influence the resulting structure. The inclusion of crystalline nanofiller produces a mixed crystalline-amorphous composite, which poses characterization challenges. With this study, we aim to address these challenges with a local-scale structural study that probes changes in a polysiloxane matrix with incorporated copper nanofiller. Composites were processed at three unique temperatures to capture mixing, pyrolysis and initial crystallization stages for the pre-ceramic polymer. We observed the evolution of the nanofiller with electron microscopy and applied synchrotron X-ray diffraction with differential pair distribution function (d-PDF) analysis to monitor changes in the matrix's local structure and interactions with the nanofiller. The application of the d-PDF to PDC materials is novel and informs future studies to understand interfacial interactions between nanofiller and matrix throughout PDC processing.

12.
ACS Appl Mater Interfaces ; 16(17): 22411-22420, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38632871

RESUMO

Massive production of SiO2 nanofibers with both high durability and exceptional performance remains a significant challenge. Herein, a novel approach was introduced to achieve the massive production of SiO2 nanofibers with lotus-leaf-inspired surfaces by combining solution blowing spinning (SBS) and the polymer-derived ceramics method. Based on the SBS technique, three types of precursor nanofiber products were fast spined with methyl silsesquioxane polymer and polymethyl hydrogen siloxane employed as Si sources. The flow rate of the SBS spined Si-based ceramic nanofibers was enhanced to 20 mL·h-1. Furthermore, through the integration of hydrophobic-oleophilic SiO2 nanoparticles into the precursor solution, SiO2 nanofibers with lotus-leaf nanoprotrusion surfaces were fabricated. Nanoparticle-decorated SiO2 fibers demonstrated excellent hydrophobicity (138.3°), compression resilience (∼60%), proficiency in organic pollutant adsorption, high-temperature resistance (∼1100 °C), and outstanding thermal insulation properties (thermal conductivity of 0.0165 W·(m·K)-1).

13.
Polymers (Basel) ; 15(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37571213

RESUMO

Polymer-derived ceramic (PDC) thin-film sensors have a very high potential for extreme environments. However, the erosion caused by high-temperature airflow at the hot-end poses a significant challenge to the stability of PDC thin-film sensors. Here, we fabricate a thin-film coating by PDC/TiB2/B composite ceramic material, which can be used to enhance the oxidation resistance and ablation resistance of the sensors. Due to the formation of a dense oxide layer on the surface of the thin-film coating in a high-temperature air environment, it effectively prevents the ingress of oxygen as a pivotal barrier. The coating exhibits an exceptionally thin oxide layer thickness of merely 8 µm, while its oxidation resistance was rigorously assessed under air exposure at 800 °C, proving its enduring protection for a minimum duration of 10 h. Additionally, during ablation testing using a flame gun that can generate temperatures of up to 1000 °C, the linear ablation rate of thin-film coating is merely 1.04 µm/min. Our analysis reveals that the volatilization of B2O3 occurs while new SiO2 is formed on the thin-film coating surface. This phenomenon leads to the absorption of heat, thereby enhancing the ablative resistance performance of the thin-film sensor. The results indicate that the thin-film sensor exhibits exceptional resistance to oxidation and ablation when protected by the coating, which has great potential for aerospace applications.

14.
Front Chem ; 11: 1163503, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035112

RESUMO

In this study, we investigated Ni supported on polymer-derived ceramics as a new class of catalyst materials. Catalysts have to withstand harsh reaction conditions requiring the use of a support with outstanding thermal and mechanical stability. Polymer-derived ceramics meet these requirements and bring the additional opportunity to realize complex porous structures. Ni-SiOC and La-modified Ni-SiOC catalysts were prepared by wet impregnation methods with target concentrations of 5 wt% for both metal and oxide content. Polymer-derived SiOC supports were produced using a photoactive methyl-silsesquioxane as preceramic polymer. Catalysts were characterized by N2-adsorption-desorption, XRD, SEM, H2-TPR, and in-situ DRIFTS. CO2 methanation was performed as a test reaction to evaluate the catalytic performance of these new materials at atmospheric pressure in the temperature range between 200°C and 400°C. XDR, H2-TPR, and in-situ DRIFTS results indicate both improved dispersion and stability of Ni sites and increased adsorption capacities for CO2 in La-modified samples. Also, modified catalysts exhibited excellent performance in the CO2 methanation with CO2 conversions up to 88% and methane selectivity >99% at 300°C reaction temperature. Furthermore, the pyrolysis temperature of the support material affected the catalytic properties, the surface area, the stability of active sites, and the hydrophobicity of the surface. Overall, the materials show promising properties for catalytic applications.

15.
Small Methods ; 7(7): e2300224, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37029583

RESUMO

Aiming to improve the environmental stability of organic photovoltaics, a multilayered SiOx Cy /a-SiNx (O):H composite barrier film coated with a hydrophobic perfluoro copolymer stop layer for polymer:non-fullerene solar cells is developed. The composite film is prepared by spin-coating of polysilicone and perhydropolysilazane (PHPS) following a densification process by vacuum ultraviolet irradiation in an inert atmosphere. The transformation of polysilicone and PHPS to SiOx Cy and a-SiNx (O):H is confirmed by Fourier transform infrared and energy-dispersive X-ray spectroscopy measurement. However, the as-prepared PHPS-derived silicon nitride (PDSN) can react with moisture in the ambient atmosphere, yielding microscale defects and a consequent poor barrier performance. Treating the incomplete PDSN with methanol vapor significantly densifies the film yielding low water vapor transmission rates (WVTRs)of 5.0 × 10-1 and 2.0 × 10-1 g m-2  d-1 for the one- and three-couple of SiOx Cy /a-SiNx (O):H (CON) composite films, respectively. By incorporating a thin hydrophobic perfluoro copolymer layer, the three-coupled methanol-treated CON film with a total thickness of 600 nm shows an extremely low WVTR of 8.7 × 10-4 g m-2  d-1 . No performance decay is measured for the PM6:Y6 and PM6:L8-BO cells after such an encapsulation process. These encapsulated polymer cells show good stability storaged at 25 °C/50% relative humidity, or under simulated extreme rainstorm tests.

16.
Adv Mater ; 35(39): e2302108, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37518813

RESUMO

The development of high-temperature structural materials, such as ceramics, is limited by their extremely high melting points and the difficulty in building complicated architectures. Four-dimensional (4D) printing helps enhance the geometrical flexibility of ceramics. However, ceramic 4D printing systems are limited by the separate processes for shape and material transformations, low accuracy of morphing systems, low resolution of ceramic structures, and their time-intensive nature. Here, a paradigm for a one-step shape/material transformation, high-2D/3D/4D-precision, high-efficiency, and scalable 4D additive-subtractive manufacturing of shape memory ceramics is developed. Original/reverse and global/local multimode shape memory capabilities are achieved using macroscale SiOC-based ceramic materials. The uniformly deposited Al2 O3 -rich layer on the printed SiOC-based ceramic lattice structures results in an unusually high flame ablation performance of the complex-shaped ceramics. The proposed framework is expected to broaden the applications of high-temperature structural materials in the aerospace, electronics, biomedical, and art fields.

17.
ACS Appl Mater Interfaces ; 15(29): 34895-34908, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37439783

RESUMO

Polymer-derived processing of ceramics (PDC) is an efficient technique to prepare porous nanocomposites with precise control over their phase composition and in relation to the Si-based ceramic matrix containing free carbon. The microstructure of these nanocomposites can be fine-tuned at the molecular scale for obtaining necessary properties by tailoring the chemical configuration of the preceramic polymer. In the present work, vanadium-based nanocomposites were synthesized as oxygen reduction reaction (ORR) catalysts with the objective of elucidating the effect of microstructure changes on catalytic efficiency. For this purpose, a single-source precursor (SSP) was synthesized by crosslinking phenyl- and hydrido-substituted polysiloxane and vanadium acetylacetonate followed by pyrolysis at 1100 °C. The resulting solid was composed of sparsely distributed nanodomains of vanadium carbide (VC) crystals precipitated within an amorphous silicon oxycarbide (-Si-O-C-) matrix. High-temperature treatment of the pyrolyzed samples beyond 1300 °C induced the crystallization of ß-SiC as well as VC. Furthermore, Raman spectroscopy confirmed the segregation of sp2-hybridized, turbostratic free carbon. The samples exposed to 1300 °C revealed a specific surface area of 239 m2/g. The electrocatalytic activity of the sample heat-treated at 1300 °C showed the best performance with respect to the ORR performance with onset potential (Eo) and half-wave potential (E1/2) values of 0.81 and 0.72 V, respectively. In addition, improved kinetics with a Tafel slope of 57 mV/dec and enhanced current density in the diffusion-controlled region (Id) of 3.7 mA/cm2 were observed for this sample. The increase in Eo was attributed to the optimal interfacial characteristics between the VC and SiOC matrix with better embedment of VC with free carbon through V-C bonds. The higher E1/2 and faster kinetics are because of the higher electronic conductivity caused by the free carbon effectively connecting metallic VC crystallites. Besides, the higher specific surface area of this sample enhanced Id.

18.
ACS Appl Mater Interfaces ; 15(25): 30039-30051, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37309875

RESUMO

Amorphous polymer-derived silicon-oxycarbide (SiOC) ceramics have a high theoretical capacity and good structural stability, making them suitable anode materials for lithium-ion batteries. However, SiOC has low electronic conductivity, poor transport properties, low initial Couloumbic efficiency, and limited rate capability. Therefore, there is an urgent need to explore an efficient SiOC-based anode material that could mitigate the abovementioned limitations. In this study, we synthesized carbon-rich SiOC (SiOC-I) and silicon-rich SiOC (SiOC-II) and evaluated their elemental and structural characteristics using a broad spectrum of characterization techniques. Li-ion cells were fabricated for the first time by pairing a buckypaper composed of carbon nanotubes with SiOC-I or SiOC-II as the anode. When mixed with graphene nanoplatelets, the SiOC-II/GNP composites exhibited improved electrochemical performance. High specific capacity (average specific capacity of 744 mAh/g at a 0.1C rate) was achieved with the composite anode (25 wt % SiOC-II and 75% GNP), which was much better than that of monolithic SiOC-I, SiOC-II, or GNPs. This composite also exhibited excellent cycling stability, achieving 344 mAh/g after 260 cycles at a 0.5C rate and high reversibility. The enhanced electrochemical performance is attributed to better electronic conductivity, lower charge-transfer resistance, and short ion diffusion length. Due to their superior electrochemical performance, SiOC/GNP composites with CNT buckypaper as a current collector can be considered a promising anode material for LiBs.

19.
Materials (Basel) ; 16(6)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36984326

RESUMO

Polymer-derived ceramics (PDCs) have many advantages in ceramic molding and ceramic properties, but because of the obvious volume shrinkage in the process of precursor transformation into ceramics, it is easy for defects to appear in the forming process of bulk PDCs. Herein, theoretical analyses and experimental studies were carried out to improve the quality of sintered samples and realize the parametric design of raw materials. Firstly, based on the HPSO/D4Vi cross-linking system, the mathematical model of the free cross-linking ratio was established, and the theoretical value was calculated. After that, the samples with different free cross-linking rates were heated at 450 °C and 650 °C for different holding times. It was found that the free cross-linking ratio (α) had a significant impact on the weight loss of the samples. When the difference of the α value was 10%, the difference of the samples' weight loss ratio could reach 30%. Finally, the morphology of sintered products with different α values was analyzed, and it was found that obvious defects will occur when the free cross-linking ratio is too high or low; when this value is 40.8%, dense and crack-free bulk ceramics can be obtained. According to analysis of the chemical reaction and cross-linking network density during sintering, the appropriate value of the free cross-linking ratio and reasonable control of the cross-linking network are beneficial for reducing the loss of the main chain element and C element, alleviating the sintering stress, and thus obtaining qualified pressureless sintered bulk ceramic samples.

20.
Materials (Basel) ; 16(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36770061

RESUMO

Polyborosilazanes with controllable B/N ratio were synthesized using high-boron-content m-carborane, dichloromethylsilane, and hexamethydisilazane. After high-temperature pyrolysis, Si-B-C-N quaternary ceramics with SiC and B4C as the main phases were obtained. The B/N ratio in the precursors corresponded to the change in the feeding ratio of carborane and dichloromethylsilane. The effects of boron content and B/N ratio on the ceramic precursors and microphase structure in Si-B-C-N quaternary ceramics were explored in detail through a series of analytical characterization methods. A high boron content results in a significant increase in the ceramic yield (up to 71 wt%) of polyborosilazanes, and at the same time, the B/N molar ratio was regulated from 28.4:1 to 1.62:1. The appearance of the B4C structure in the Si-B-C-N quaternary ceramics through the regulation of the B/N ratio, has rarely been reported.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa