Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(26): e2311802, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38258398

RESUMO

Conductive polymers are recognized as ideal candidates for the development of noninvasive and wearable sensors for real-time monitoring of potassium ions (K+) in sweat to ensure the health of life. However, the low ion-to-electron transduction efficiency and limited active surface area hamper the development of high-performance sensors for low-concentration K+ detection in the sweat. Herein, a wearable K+ sensor is developed by tailoring the nanostructure of polypyrrole (PPy), serving as an ion-to-electron transduction layer, for accurately and stably tracing the K+ fluctuation in human sweat. The PPy nanostructures can be tailored from nanospheres to nanofibers by controlling the supramolecular assembly process during PPy polymerization. Resultantly, the ion-to-electron transduction efficiency (17-fold increase in conductivity) and active surface area (1.3-fold enhancement) are significantly enhanced, accompanied by minimized water layer formation. The optimal PPy nanofibers-based K+ sensor achieved a high sensitivity of 62 mV decade-1, good selectivity, and solid stability. After being integrated with a temperature sensor, the manufactured wearable sensor realized accurate monitoring of K+ fluctuation in the human sweat.


Assuntos
Nanofibras , Polímeros , Potássio , Pirróis , Dispositivos Eletrônicos Vestíveis , Nanofibras/química , Pirróis/química , Polímeros/química , Potássio/química , Potássio/análise , Humanos , Técnicas Biossensoriais/métodos , Elétrons , Íons , Suor/química , Condutividade Elétrica
2.
J Colloid Interface Sci ; 675: 336-346, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38972121

RESUMO

The development of soft hydrogel actuators with outstanding mechanical properties, fast actuation speed, and available quantification of self-sensing actuation remains a challenging endeavor. In this work, dopamine-decorated polypyrrole nanofibers (DAPPy) were introduced into the polyethylene glycol diacrylate (PEGDA)-crosslinked poly(N-isopropyl acrylamide) network to generate a stretchable, NIR-responsive, and strain sensitive DAPPy/PNIPAM hydrogel layer. Besides, this active layer was combined with the passive ligninsulfonate sodium/polyacrylamide (LS/PAAM) to give DAPPy/PNIPAM//LS/PAAM bilayer hydrogel actuator, which exhibits ultrafast thermo-responsive actuation (19°/s) and underwater grasping and lifting performance. Moreover, the DAPPy/PNIPAM layer has excellent electrical conductivity (0.29 S/m) and thermal conversion ability (10.8 °C/min), which enable such a conductive hydrogel to act as a highly sensitive strain and temperature sensor with real-time resistance change in response to tensile strain (gauge factor up to 3.4), applied pressure, temperature, and remote NIR light irradiation. More importantly, the bilayer hydrogel actuator can integrate both actuation and self-sensing functions through the bending angle-surface temperature-relative resistance change relationship of the photothermal process. With excellent mechanical actuation and self-sensing ability, the resulting bilayer hydrogel showed a promising application potential as soft biomimetic actuating materials and soft intelligent actuators.

3.
ACS Appl Mater Interfaces ; 15(23): 28491-28502, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37256265

RESUMO

The accuracy of data collected by optical instruments can be greatly impacted by radar band electromagnetic waves (EM) and scattered visible light. Traditional electromagnetic-wave-absorbing (EMA) materials face challenges in effectively attenuating electromagnetic waves within the visible light spectrum. To address this issue, a structural engineering-based assembly strategy was developed to construct PVDF/Ti3CNTx@PPyNF composites with multiple heterogeneous interfaces, inspired by snake scales. And through the self-doping of N elements and the coating process, the material finally exhibits excellent microwave and visible light absorption properties. This approach generates multiple polarization losses of electromagnetic waves, enabling the material to exhibit excellent electromagnetic wave absorption performance. Specifically, the PVDF/Ti3CNTx@PPyNF composite, containing 5 wt % Ti3CNTx@PPyNFs, demonstrates exceptional microwave absorption performance, with a minimum reflection loss of -65.5 dB and an effective absorption bandwidth of up to 6.95 GHz. Additionally, the composite coating exhibits 97.4% visible light absorption performance, providing a promising solution to the challenges of protecting against complex electromagnetic environments.

4.
Turk J Chem ; 44(4): 1002-1015, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488208

RESUMO

In this study, carbon nanotubes (CNTs) added polyacrylonitrile/polypyrrole (PAN/PPy) electrospun nanofibers were produced. Average diameters of the nanofibers were measured as 268 and 153 nm for 10 and 25 wt% of PPy contents, respectively. A relatively higher strain to failure values (23.3%) were observed for the low PPy content. When as-grown CNTs (1 and 4 wt%) were added into the PAN/PPy blends, disordered nanofibers were observed to form within the microstructure. To improve the interfacial properties of CNTs/PAN/PPy composites, CNTs were functionalized with H2SO4/HNO3/HCl solution. The functionalized CNTs were well dispersed within the nanofibers and aligned along the direction of nanofibers. Therefore, beads formation on nanofibers decreased. The impedance of the nanofibers was found to decrease with the PPy content and CNT addition. These nanofibers had a great potential to be used as an electrochemical actuator or a tissue engineering scaffold.

5.
ACS Appl Mater Interfaces ; 10(26): 22031-22041, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29882651

RESUMO

The surfactant-assisted liquid-phase exfoliation of expanded graphite can produce graphene sheets in large quantities with minimal defects. However, it is difficult to completely remove the surfactant from the final product, thus affecting the electrochemical properties of the produced graphene. In this article, a novel approach to fabricate flexible graphene/polypyrrole film was developed: using surfactant cetyltrimethylammonium bromide as a template for growth of polypyrrole nanofibers (PPyNFs) instead of removal after the exfoliation process; followed by a simple filtration method. The introduction of PPyNF not only increases the electrochemical performance, but also ensures flexibility. This composite film electrode offers a capacitance up to 161 F g-1 along with a capacitance retention rate of over 80% after 5000 cycles.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa