RESUMO
While species distribution models (SDM) are frequently used to predict species occurrences to help inform conservation management, there is limited evidence evaluating whether habitat suitability can reliably predict intrinsic growth rates or distinguish source populations from sinks. Filling this knowledge gap is critical for conservation science, as applications of SDMs for management purposes ultimately depend on these typically unobserved population or metapopulation dynamics. Using linear regression, we associated previously published population level estimates of intrinsic growth and abundance derived from a Bayesian analysis of mark-recapture data for 17 bird species found in the contiguous United States with SDM habitat suitability estimates fitted here to opportunistic data for these same species. We then used the area under the ROC curve (AUC) to measure how well SDMs can distinguish populations categorized as sources and sinks. We built SDMs using two different approaches, boosted regression trees (BRT) and generalized linear models (GLM), and compared their source/sink predictive performance. Each SDM was built with presence points obtained from eBird (a web-available database) and 10 environmental variables previously selected to model intrinsic growth rates and abundance for these species. We show that SDMs built with opportunistic data are poor predictors of species demography in general; both BRT and GLM explained very little spatial variation of intrinsic growth rate and population abundance (median R2 across 17 species was close to 0.1 for both SDM methods). SDMs, however, estimated higher suitability for source populations as compared to sinks. Out of 13 species which had both source and sink populations, both BRT and GLM had AUC values greater than 0.7 for 7 species when discriminating between sources and sinks. Habitat suitability have the potential to be a useful measure to indicate a population's ability to sustain itself as a source population; however more research on a diverse set of taxa is essential to fully explore this potential. This interpretation of habitat suitability can be particularly useful for conservation practice, and identification of explicit cases of when and how SDMs fail to match population demography can be informative for advancing ecological theory.
RESUMO
Brook trout (Salvelinus fontinalis) are a highly prized species found in lakes and streams throughout Ontario. A broadscale monitoring program (BsM) has been conducted in lakes throughout the province, in 5-year cycles, which targets Salvelinus fontinalis populations. The objective of this study was to use the data gained from the BsM and establish a contemporary baseline on the variation of relative abundance and demographics of natural lake populations of S. fontinalis in Ontario. Additionally, given the variability in environmental conditions across the landscape, an objective was to assess the factors, abiotic and biotic, that influence relative abundance among waterbodies. Over the three BsM cycles (2008-2022), 273 S. fontinalis waterbodies were assessed, some multiple times, and 124 were unique populations. S. fontinalis were sampled in 112 of these unique lakes. In total, 7487 S. fontinalis were caught and 5372 were fully sampled (length, weight, and age assessed). The mean catch-per-unit-effort (CPUE) in all waterbodies was 1.4 (0.12 standard error) S. fontinalis per net gang. There was not a significant trend in CPUE over the three BsM cycles nor did CPUE vary significantly among BsM cycles at the provincial scale, but CPUE varied significantly among fisheries management zones (FMZs). Multiple variables were examined to explain the variation in CPUE across the province; a negative association with species diversity was the only variable considered significant. Furthermore, S. fontinalis were more associated with the relative abundance of small cyprinids (i.e., chubs and shiners) and negatively associated with centrarchids, smelt, and other game species. Mean growth potential was greater for males than females but not significantly, whereas longevity favored females. Growth potential and parameters were similar between sexes within FMZs but varied among FMZs. Mean survival among these populations was 25.7%, ranging from 15.2% to 45.6%, with a mean instantaneous mortality of 1.41. This study provided a contemporary assessment of the current range and variability in relative abundance population dynamics of S. fontinalis in lakes within Ontario. This provides a benchmark to assess changes with the pending stressors of climate change and human expansion across the landscape.
Assuntos
Lagos , Truta , Animais , Truta/fisiologia , Ontário , Masculino , Feminino , Densidade Demográfica , Dinâmica Populacional , FenótipoRESUMO
A central question in ecology is understanding the influence of the spatial topology on the dynamics of a metacommunity. This is not an easy task, as most fragmented ecosystems have trophic interactions involving many species and patches. Recent attempts to solve this challenge have introduced certain simplifying assumptions or focused on a limited set of examples. These simplifications make the models mathematically tractable but keep away from real-world problems. In this paper, we provide a novel methodology to describe the influence of the spatial topology on the total population size of the species when the dispersal rates are small. The main conclusion is that the influence of the spatial topology is the result of the influence of each path in isolation. Here, a path refers to a pairwise connection between two patches. Our framework can be readily used with any metacommunity, and therefore represents a unification of biological insights. We also discuss several applications regarding the construction of ecological corridors.
Assuntos
Ecossistema , Densidade Demográfica , Dinâmica PopulacionalRESUMO
BACKGROUND: The tea aphid, Toxoptera aurantii (Boyer de Fonscolombe) is a polyphagous pest predominant in tea orchards and has become the most pernicious pest deteriorating tea quality. Nitrogen (N) is essential to plant growth improvement, and it can significantly impact plant defensive ability against aphid infestation. This study was designed to quantify the influence of reduced N-fertilizer application on foliar chemicals and functional quality parameters of tea plants against the infestation of T. aurantii. In this study, the tea seedlings (cv. Longjing43) were applied with normal level (NL) of N-fertilizer (240 kg N ha-1) along with reduced N-fertilizer levels (70%NL and 50%NL), and with and without T. aurantii infestation. RESULTS: The results showed that N-fertilizer application significantly affected plant biomass and photosynthetic indexes, foliar soluble nutrients and polyphenols, tea catechins, caffeine, essential amino acids, volatile organic compounds of tea seedlings, and the population dynamics of T. aurantii. Compared with the normal N-fertilizer level, the reduced N-fertilizer application (70%NL and 50%NL) significantly decreased all the foliar functional quality components of tea seedlings without aphid infestation, while these components were increased in tea seedlings with aphid infestation. Moreover, the transcript expression levels of foliar functional genes (including CsTCS, CsTs1, and CsGT1) were significantly higher in the NL, and significantly lower in the 50%NL for tea seedlings without aphid infestation, while the transcript expression levels were significantly higher in 50%NL in aphid inoculated tea seedlings. CONCLUSION: The results demonstrated that the reduced N-fertilizer application could enhance foliar chemicals and functional quality parameters of tea plants especially with T. aurantii infestation, which can relieve soil nitrogen pressure and reduce pesticide use for control of tea aphid infestation in tea plantations.
Assuntos
Afídeos , Camellia sinensis , Animais , Camellia sinensis/metabolismo , Fertilizantes/análise , Nitrogênio/metabolismo , CháRESUMO
For the two-patch logistic model, we study the effect of dispersal intensity and dispersal asymmetry on the total population abundance and its distribution. Two complete classifications of the model parameter space are given: one concerning when dispersal causes smaller or larger total biomass than no dispersal, and the other addressing how the total biomass changes with dispersal intensity and dispersal asymmetry. The dependencies of the population abundance of each individual patch on dispersal intensity and dispersal asymmetry are also fully characterized. In addition, the maximal and minimal total population sizes induced by dispersal are determined for the logistic model with an arbitrary number of patches, and a weak order-preserving result correlated the local population abundances with and without dispersal is established.
Assuntos
Ecossistema , Modelos Biológicos , Biomassa , Densidade Demográfica , Dinâmica PopulacionalRESUMO
Insect-pathogen dynamics can show seasonal and inter-annual variations that covary with fluctuations in insect abundance and climate. Long-term analyses are especially needed to track parasite dynamics in migratory insects, in part because their vast habitat ranges and high mobility might dampen local effects of density and climate on infection prevalence. Monarch butterflies Danaus plexippus are commonly infected with the protozoan Ophryocystis elektroscirrha (OE). Because this parasite lowers monarch survival and flight performance, and because migratory monarchs have experienced declines in recent decades, it is important to understand the patterns and drivers of infection. Here we compiled data on OE infection spanning 50 years, from wild monarchs sampled in the United States, Canada and Mexico during summer breeding, fall migrating and overwintering periods. We examined eastern versus western North American monarchs separately, to ask how abundance estimates, resource availability, climate and breeding season length impact infection trends. We further assessed the intensity of migratory culling, which occurs when infected individuals are removed from the population during migration. Average infection prevalence was four times higher in western compared to eastern subpopulations. In eastern North America, the proportion of infected monarchs increased threefold since the mid-2000s. In the western region, the proportion of infected monarchs declined sharply from 2000 to 2015, and increased thereafter. For both eastern and western subpopulations, years with greater summer adult abundance predicted greater infection prevalence, indicating that transmission increases with host breeding density. Environmental variables (temperature and NDVI) were not associated with changes in the proportion of infected adults. We found evidence for migratory culling of infected butterflies, based on declines in parasitism during fall migration. We estimated that tens of millions fewer monarchs reach overwintering sites in Mexico as a result of OE, highlighting the need to consider the parasite as a potential threat to the monarch population. Increases in infection among eastern North American monarchs post-2002 suggest that changes to the host's ecology or environment have intensified parasite transmission. Further work is needed to examine the degree to which human practices, such as mass caterpillar rearing and the widespread planting of exotic milkweed, have contributed to this trend.
Assuntos
Borboletas , Parasitos , Migração Animal , Animais , Borboletas/parasitologia , México , Melhoramento Vegetal , Estações do Ano , Estados UnidosRESUMO
Ecological theory postulates that the size and isolation of habitat patches impact the colonization/extinction dynamics that determine community species richness and population persistence. Given the key role of lotic habitats for life-history completion in rheophilic fish, evaluating how the distribution of swift-flowing habitats affects the abundance and dynamics of subpopulations is essential. Using extensive electrofishing data, we show that merging island biogeography with meta-population theory, where lotic habitats are considered as islands in a lentic matrix, can explain spatio-temporal variation in occurrence and density of brown trout (Salmo trutta). Subpopulations in larger and less isolated lotic habitat patches had higher average densities and smaller between-year density fluctuations. Larger lotic habitat patches also had a lower predicted risk of excessive zero-catches, indicative of lower extinction risk. Trout density further increased with distance from the edge of adjacent lentic habitats with predator (Esox lucius) presence, suggesting that edge- and matrix-related mortality contributes to the observed patterns. These results can inform the prioritization of sites for habitat restoration, dam removal and reintroduction by highlighting the role of suitable habitat size and connectivity in population abundance and stability for riverine fish populations.
Assuntos
Rios , Truta , Animais , Ecossistema , Dinâmica PopulacionalRESUMO
The local abundance or population density of different organisms often varies widely. Understanding what determines this variation is an important, but not yet fully resolved question in ecology. Differences in population density are partly driven by variation in body size and diet among organisms. Here we propose that the size of an organism' brain could be an additional, overlooked, driver of mammalian population densities. We explore two possible contrasting mechanisms by which brain size, measured by its mass, could affect population density. First, because of the energetic demands of larger brains and their influence on life history, we predict mammals with larger relative brain masses would occur at lower population densities. Alternatively, larger brains are generally associated with a greater ability to exploit new resources, which would provide a competitive advantage leading to higher population densities among large-brained mammals. We tested these predictions using phylogenetic path analysis, modelling hypothesized direct and indirect relationships between diet, body mass, brain mass and population density for 656 non-volant terrestrial mammalian species. We analysed all data together and separately for marsupials and the four taxonomic orders with most species in the dataset (Carnivora, Cetartiodactyla, Primates, Rodentia). For all species combined, a single model was supported showing lower population density associated with larger brains, larger bodies and more specialized diets. The negative effect of brain mass was also supported for separate analyses in Primates and Carnivora. In other groups (Rodentia, Cetartiodactyla and marsupials) the relationship was less clear: supported models included a direct link from brain mass to population density but 95% confidence intervals of the path coefficients overlapped zero. Results support our hypothesis that brain mass can explain variation in species' average population density, with large-brained species having greater area requirements, although the relationship may vary across taxonomic groups. Future research is needed to clarify whether the role of brain mass on population density varies as a function of environmental (e.g. environmental stability) and biotic conditions (e.g. level of competition).
Assuntos
Carnívoros , Mamíferos , Animais , Encéfalo , Tamanho do Órgão , Filogenia , Densidade Demográfica , PrimatasRESUMO
Megadams are among the key modern drivers of habitat and biodiversity loss in emerging economies. The Balbina Hydroelectric Dam of Central Brazilian Amazonia inundated 312,900 ha of primary forests and created approximately 3500 variable-sized islands that still harbor vertebrate populations after nearly 3 decades after isolation. We estimated the species richness, abundance, biomass, composition, and group size of medium- to large-bodied forest vertebrates in response to patch, landscape, and habitat-quality metrics across 37 islands and 3 continuous forest sites throughout the Balbina archipelago. We conducted 1168 km of diurnal censuses and had 12,420 camera-trapping days along 81 transects with 207 camera stations. We determined the number of individuals (or groups) detected per 10 km walked and the number of independent photographs per 10 camera-trapping days, respectively, for each species. We recorded 34 species, and patch area was the most significant predictor of vertebrate population relative abundance and aggregate biomass. The maximum group size of several group-living species was consistently larger on large islands and in continuous patches than on small islands. Most vertebrate populations were extirpated after inundation. Remaining populations are unlikely to survive further ecological disruptions. If all vertebrate species were once widely distributed before inundation, we estimated that approximately 75% of all individual vertebrates were lost from all 3546 islands and 7.4% of the animals in all persisting insular populations are highly likely to be extirpated. Our results demonstrate that population abundance estimates should be factored into predictions of community disassembly on small islands to robustly predict biodiversity outcomes. Given the rapidly escalating hydropower infrastructure projects in developing counties, we suggest that faunal abundance and biomass estimates be considered in environmental impact assessments and large strictly protected reserves be established to minimize detrimental effects of dams on biodiversity. Conserving large tracts of continuous forests represents the most critical conservation measure to ensure that animal populations can persist at natural densities in Amazonian forests.
Determinantes de la Persistencia Poblacional y la Abundancia de Vertebrados Terrestres y Arbóreos Varados en Islas con Puentes Terrestres en los Bosques Tropicales Resumen Las megapresas se encuentran entre los causantes modernos de la pérdida de hábitat y biodiversidad en las economías emergentes. La Presa Hidroeléctrica Balbina de la Amazonia central en Brasil inundó 312, 900 ha de bosques primarios y creó â¼3500 islas de tamaños variables que todavía albergan poblaciones de vertebrados después de casi tres décadas de aislamiento. Estimamos la riqueza de especies, abundancia, biomasa, composición y tamaño grupal de los vertebrados de talla mediana a grande del bosque como respuesta a la a las medidas de calidad del fragmento, paisaje y hábitat en 37 islas y tres sitios de bosque continuo en todo el archipiélago de Balbina. Realizamos censos diurnos a lo largo de 1,168 km y tuvimos 12,420 días de trampeo con cámaras a lo largo de 81 transectos con 207 estaciones de cámara. Determinamos el número de individuos (o grupos) detectados en cada diez kilómetros recorridos y el número de fotografías independientes para cada diez días de trampeo con cámara, respectivamente, para cada especie. Registramos 34 especies y el área del fragmento fue el pronosticador más importante de la población de vertebrados en relación con la abundancia y la biomasa agregada. El tamaño grupal máximo de varias de las especies gregarias fue sistemáticamente mayor en las islas grandes y en los fragmentos continuos que en las islas pequeñas. La mayoría de las poblaciones de vertebrados fueron extirpadas después de la inundación. Las poblaciones remanentes tienen pocas probabilidades de sobrevivir más perturbaciones ecológicas. Si todas las especies de vertebrados tuvieron alguna vez una distribución amplia previa a la inundación, estimamos que se perdió â¼75% de todos los vertebrados individuales en todas las 3, 546 islas y el 7.4% de los animales en las poblaciones insulares remanentes tienen una alta probabilidad de desaparecer. Nuestros resultados demuestran que las estimaciones de abundancia poblacional deberían incluirse en las predicciones del desmontaje comunitario en islas pequeñas para predecir con solidez los resultados de biodiversidad. Ya que cada vez existen más proyectos de infraestructura hidroeléctrica en los países en desarrollo, sugerimos que las estimaciones de abundancia de fauna y de biomasa sean consideradas en las evaluaciones de impacto ambiental y que se establezcan grandes reservas con protección estricta para minimizar los efectos dañinos que tienen las presas sobre la biodiversidad. La conservación de grandes tramos continuos de bosque representa la medida de conservación más crítica para asegurar que las poblaciones animales puedan persistir con densidades naturales en los bosques de la Amazonia.
Assuntos
Conservação dos Recursos Naturais , Árvores , Animais , Biodiversidade , Brasil , Ecossistema , Florestas , Ilhas , VertebradosRESUMO
Previous mathematical analyses have shown that, for certain parameter ranges, a population, described by logistic equations on a set of connected patches, and diffusing among them, can reach a higher equilibrium total population when the local carrying capacities are heterogeneously distributed across patches, than when carrying capacities having the same total sum are homogeneously distributed across the patches. It is shown here that this apparently paradoxical result is explained when the resultant differences in energy inputs to the whole multi-patch system are taken into account. We examine both Pearl-Verhulst and Original Verhulst logistic models and show that, when total input of energy or limiting resource, is constrained to be the same in the homogeneous and heterogeneous cases, the total population in the heterogeneous patches can never reach an asymptotic equilibrium that is greater than the sum of the carrying capacities over the homogeneous patches. We further show that, when the dynamics of the limiting resources are explicitly modeled, as in a chemostat model, the paradoxical result of the logistic models does not occur. These results have implications concerning the use of some ubiquitous equations of population ecology in modeling populations in space.
Assuntos
Modelos Logísticos , Dinâmica Populacional , Conservação dos Recursos Naturais , EcossistemaRESUMO
In this study, I explored the impact of constructing a new dispersal route between two different patches in a metapopulation. My results indicated that its success/failure on the population abundance greatly depends on the patches directly involved and negligibly on the network topology. Specifically, constructing a dispersal route is highly recommended if it connects a source to a source that is close to becoming a sink or a sink that is close to becoming a source. This biological property is the basis for understanding the influence of the network topology on the population abundance. According to some thresholds discussed in this manuscript, I identified when a given route has a positive or negative effect on the population size. Consequently, as a simple rule of thumb, managers should look for metapopulations that have the maximum (resp. minimum) number paths with a positive (resp. negative) effect on the population abundance. As emphasized, the biological results of this paper do not depend on the model formulation.
Assuntos
Biomassa , Modelos Biológicos , Dinâmica Populacional , Conservação dos Recursos Naturais , Ecossistema , Humanos , Densidade DemográficaRESUMO
In Kazakhstan, plague outbreaks occur when its main host, the great gerbil, exceeds an abundance threshold. These live in family groups in burrows, which can be mapped using remote sensing. Occupancy (percentage of burrows occupied) is a good proxy for abundance and hence the possibility of an outbreak. Here we use time series of satellite images to estimate occupancy remotely. In April and September 2013, 872 burrows were identified in the field as either occupied or empty. For satellite images acquired between April and August, 'burrow objects' were identified and matched to the field burrows. The burrow objects were represented by 25 different polygon types, then classified (using a majority vote from 10 Random Forests) as occupied or empty, using Normalized Difference Vegetation Indices (NDVI) calculated for all images. Throughout the season NDVI values were higher for empty than for occupied burrows. Occupancy status of individual burrows that were continuously occupied or empty, was classified with producer's and user's accuracy values of 63 and 64% for the optimum polygon. Occupancy level was predicted very well and differed 2% from the observed occupancy. This establishes firmly the principle that occupancy can be estimated using satellite images with the potential to predict plague outbreaks over extensive areas with much greater ease and accuracy than previously.
RESUMO
Species distributions are often simplified to binary representations of the ranges where they are present and absent. It is then common to look for changes in these ranges as indicators of the effects of climate change, the expansion or control of invasive species or the impact of human land-use changes. We argue that there are inherent problems with this approach, and more emphasis should be placed on species relative abundance rather than just presence. The sampling effort required to be confident of absence is often impractical to achieve, and estimates of species range changes based on survey data are therefore inherently sensitive to sampling intensity. Species niches estimated using presence-absence or presence-only models are broader than those for abundance and may exaggerate the viability of small marginal sink populations. We demonstrate that it is possible to transform models of predicted probability of presence to expected abundance if the sampling intensity is known. Using case studies of Antarctic mosses and temperate rain forest trees, we demonstrate additional insights into biotic change that can be gained using this method. While species becoming locally extinct or colonising new areas are extreme and obviously important impacts of global environmental change, changes in abundance could still signal important changes in biological systems and be an early warning indicator of larger future changes.
Assuntos
Mudança Climática , Ecossistema , Briófitas , Florestas , Humanos , ÁrvoresRESUMO
Tail autotomy is mainly considered an antipredator mechanism. Theory suggests that predation pressure relaxes on islands, subsequently reducing autotomy rates. Intraspecific aggression, which may also cause tail loss, probably intensifies on islands due to the higher abundance. We studied whether tail autotomy is mostly affected by predation pressure or by intraspecific competition. We further studied whether predator abundance or predator richness is more important in this context. To test our predictions, we examined multiple populations of two gecko species: Kotschy's gecko (Mediodactylus kotschyi; mainland and 41 islands) and the Mediterranean house gecko (Hemidactylus turcicus; mainland and 17 islands), and estimated their abundance together with five indices of predation. In both species, autotomy rates are higher on islands and decline with most predation indices, in contrast with common wisdom, and increase with gecko abundance. In M. kotschyi, tail-loss rates are higher on predator and viper-free islands, but increase with viper abundance. We suggest that autotomy is not simply, or maybe even mainly, an antipredatory mechanism. Rather, such defence mechanisms are a response to complex direct and indirect biotic interactions and perhaps, in the case of tail autotomy in insular populations, chiefly to intraspecific aggression.
Assuntos
Agressão , Cadeia Alimentar , Lagartos/anatomia & histologia , Lagartos/fisiologia , Cauda/anatomia & histologia , Animais , Ilhas , Masculino , Comportamento PredatórioRESUMO
Sharks are increasingly being recognized as important members of coral-reef communities, but their overall conservation status remains uncertain. Nine of the 29 reef-shark species are designated as data deficient in the IUCN Red List, and three-fourths of reef sharks had unknown population trends at the time of their assessment. Fortunately, reef-shark research is on the rise. This new body of research demonstrates reef sharks' high site restriction, fidelity and residency on coral reefs, their broad trophic roles connecting reef communities and their high population genetic structure, all information that should be useful for their management and conservation. Importantly, recent studies on the abundance and population trends of the three classic carcharhinid reef sharks (grey reef shark Carcharhinus amblyrhynchos, blacktip reef shark Carcharhinus melanopterus and whitetip reef shark Triaenodon obesus) may contribute to reassessments identifying them as more vulnerable than currently realized. Because over half of the research effort has focused on only these three reef sharks and the nurse shark Ginglymostoma cirratum in only a few locales, there remain large taxonomic and geographic gaps in reef-shark knowledge. As such, a large portion of reef-shark biodiversity remains uncharacterized despite needs for targeted research identified in their red list assessments. A research agenda for the future should integrate abundance, life history, trophic ecology, genetics, habitat use and movement studies, and expand the breadth of such research to understudied species and localities, in order to better understand the conservation requirements of these species and to motivate effective conservation solutions.
Assuntos
Conservação dos Recursos Naturais , Recifes de Corais , Tubarões/fisiologia , Animais , Comportamento Animal , Biodiversidade , Ecologia , Ecossistema , Genética Populacional , Densidade DemográficaRESUMO
In this study, the spot pattern in Hippocampus guttulatus was analysed using a computer programme algorithm that allowed individual comparison. This methodology was first tested in a controlled environment using 51 adult and 55 juvenile H. guttulatus. Positive matches were obtained in 86·3 and 83·6% of the adults and juveniles, respectively. In a second experiment, monthly surveys were carried out in five selected locations in the Ria Formosa Lagoon, south Portugal, over the course of a year and a total of 980 photographs were analysed. Photographed H. guttulatus were re-sighted one to nine times during the course of the survey period with an overall re-sight record of over 30%. Photo-identification was therefore shown to be a useful tool for non-invasive mark-recapture studies that can be successfully used to survey the population abundance of H. guttulatus aged 6 months or older in consecutive years. This could be of great value when considering the assessment of H. guttulatus populations and understanding changes over time.
Assuntos
Sistemas de Identificação Animal , Processamento de Imagem Assistida por Computador , Smegmamorpha , Algoritmos , Animais , Conservação dos Recursos Naturais/métodos , Fotografação , Densidade Demográfica , Portugal , SoftwareRESUMO
Species abundance patterns are influenced by a myriad of factors, including habitat availability and ecological niche characteristics. However, the evidence concerning the specific impact factors such as niche position and niche breadth on mean and maximum abundances in vertebrates at a broad geographical scale remains inconclusive. In this study, we investigated the influence of niche position and breadth on the abundance of 47 species of birds belonging to the Parulidae family, commonly known as New World Warblers. We obtained data on abundance and presence records spanning the reproductive distribution of these species and employed the outlying mean index analysis to calculate niche position and niche breadth. We assessed the relationship between abundance metrics and niche descriptors using phylogenetic regressions to account for the non-independence resulting from phylogenetic ancestry. Initially, we developed individual models for each predictor and subsequently formulated a multi-predictor model encompassing niche position, niche breadth, and their interaction. Our findings revealed a negative relationship between niche position and both mean and maximum abundance, while niche breadth exhibited a positive relationship with these niche characteristics. Notably, the results of the multi-predictor models indicated that niche position exerted the most substantial influence on both mean and maximum abundance. Additionally, the interaction between niche position and niche breadth had the most positive and significant contribution to mean population abundance. This study underscores the need for future research in other vertebrates to delve into the mechanisms underlying these patterns. Such endeavors will not only enhance our understanding of ecological dynamics but also equip us with predictive capabilities to anticipate population responses to environmental changes effectively.
RESUMO
Understanding the consequences on population dynamics of the variability in dispersal over a fragmented habitat remains a major focus of ecological and environmental inquiry. Dispersal is often asymmetric: wind, marine currents, rivers, or human activities produce a preferential direction of dispersal between connected patches. Here, we study how this asymmetry affects population dynamics by considering a discrete-time two-patch model with asymmetric dispersal. We conduct a rigorous analysis of the model and describe all the possible response scenarios of the total realized asymptotic population abundance to a change in the dispersal rate for a fixed symmetry level. In addition, we discuss which of these scenarios can be achieved just by restricting mobility in one specific direction. Moreover, we also report that changing the order of events does not alter the population dynamics in our model, contrary to other situations discussed in the literature.
Assuntos
Ecossistema , Dinâmica Populacional , Dinâmica Populacional/estatística & dados numéricos , Modelos Biológicos , Animais , Densidade Demográfica , HumanosRESUMO
Artificial light at night (ALAN) is a pervasive but still under-recognized driver of global change. In coastal settings, a large majority of the studies assessing ALAN impacts has focused on individual species, even though it is unclear whether results gathered from single species can be used to predict community-wide responses. Similarly, these studies often treat species as single life-stage entities, ignoring the variation associated with distinct life stages. This study addresses both limitations by focusing on the effects of ALAN on a sandy beach community consisting of species with distinct early- and late-life stages. Our hypothesis was that ALAN alters community structure and these changes are mediated by individual species and also by their ontogenetic stages. A field experiment was conducted in a sandy beach of north-central Chile using an artificial LED system. Samples were collected at different night hours (8-levels in total) across the intertidal (9-levels) over several days in November and January (austral spring and summer seasons). The abundance of adults of all species was significantly lower in ALAN treatments. Early stages of isopods showed the same pattern, but the opposite was observed for the early stages of the other two species. Clear differences were detected in the zonation of these species during natural darkness versus those exposed to ALAN, with some adult-juvenile differences in this response. These results support our hypothesis and document a series of changes affecting differentially both early and late life stages of these species, and ultimately, the structure of the entire community. Although the effects described correspond to short-term responses, more persistent effects are likely to occur if ALAN sources become established as permanent features in sandy beaches. The worldwide growth of ALAN suggests that the scope of its effect will continue to grow and represents a concern for sandy beach systems.
Assuntos
Ecossistema , Poluição Luminosa , Chile , Estações do Ano , LuzRESUMO
Our research was focused on determining the geomorphological characteristics of streams, characteristics of sediment in streams, habitat, emergence sites and flight period. Larvae were recorded in 19 streams (altitude of 35-680 m a.s.l.), with an average minimum width of 44.2 cm, an average maximum width of 352.9 cm, an average minimum depth of 9 cm and an average maximum depth (in pools) of 55 cm, with an average stream gradient of 12 grades (range 0.6-45 grades). In terms of grain size, the sediment in these biotopes can be characterized as sandy gravel, medium-grained gravel with an admixture of fine sand and an admixture of coarse-grained gravel prevails (with dominancy of fraction 2-5 mm with a representation of 47%). The larval density reached 0.1-62.2 larvae per 1 m2 of suitable sediment. Exuviae (100 exuviae found in total) occurred at an average of 66 cm horizontal distance from the shore and an average vertical height of 124 cm above the ground. The average total distance of larval movement was 190 cm. The emergence site was categorized as larvae-dominated tree trunks (57% of cases), rocks (51%) and overhanging rocks (11%). The flight period was recorded from 17th May to 15th July (literary record-to 15th August) with peak flight activity noted in the third quarter of June. Considering the size of the area-extent of occurrence, the population of C. buchholzi is strongly threatened; according to the IUCN categories it should be classified as endangered (EN).