Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Ecol ; 92(7): 1404-1415, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37190852

RESUMO

Extreme climatic events may influence individual-level variability in phenotypes, survival and reproduction, and thereby drive the pace of evolution. Climate models predict increases in the frequency of intense hurricanes, but no study has measured their impact on individual life courses within animal populations. We used 45 years of demographic data of rhesus macaques to quantify the influence of major hurricanes on reproductive life courses using multiple metrics of dynamic heterogeneity accounting for life course variability and life-history trait variances. To reduce intraspecific competition, individuals may explore new reproductive stages during years of major hurricanes, resulting in higher temporal variation in reproductive trajectories. Alternatively, individuals may opt for a single optimal life-history strategy due to trade-offs between survival and reproduction. Our results show that heterogeneity in reproductive life courses increased by 4% during years of major hurricanes, despite a 2% reduction in the asymptotic growth rate due to an average decrease in mean fertility and survival by that is, shortened life courses and reduced reproductive output. In agreement with this, the population is expected to achieve stable population dynamics faster after being perturbed by a hurricane ( ρ = 1.512 ; 95% CI: 1.488, 1.538), relative to ordinary years ρ = 1.482 ; 1.475 , 1.490 . Our work suggests that natural disasters force individuals into new demographic roles to potentially reduce competition during unfavourable environments where mean reproduction and survival are compromised. Variance in lifetime reproductive success and longevity are differently affected by hurricanes, and such variability is mostly driven by survival.


Assuntos
Tempestades Ciclônicas , Características de História de Vida , Animais , Macaca mulatta , Dinâmica Populacional , Reprodução
2.
Theor Popul Biol ; 133: 159-167, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31958474

RESUMO

Individuals differ in their life courses, but how this diversity is generated, how it has evolved and how it is maintained is less understood. However, this understanding is crucial to comprehend evolutionary and ecological population dynamics. In structured populations, individual life courses represent sequences of stages that end in death. These life course trajectories or sequences can be described by a Markov chain and individuals diversify over the course of their lives by transitioning through diverse discrete stages. The rate at which stage sequences diversify with age can be quantified by the population entropy of a Markov chain. Here, we derive sensitivities of the population entropy of a Markov chain to identify which stage transitions generate - or contribute - most to diversification in stage sequences, i.e. life courses. We then use these sensitivities to reveal potential selective forces on the dynamics of life courses. To do so we correlated the sensitivity of each matrix element (stage transition) with respect to the population entropy, to its sensitivity with respect to fitness λ, the population growth rate. Positive correlation between the two sensitivities would suggest that the stage transitions that selection has acted most strongly on (high sensitivities with respect to λ) are also those that contributed most to the diversification of life courses. Using an illustrative example on a seabird population, the Thick-billed Murres on Coats Island, that is structured by reproductive stages, we show that the most influential stage transitions for diversification of life courses are not correlated with the most influential transitions for population growth. Our finding suggests that observed diversification in life courses is neutral rather than adaptive, note this does not imply that the life histories themselves are not adaptive. We are at an early stage of understanding how individual level dynamics shape ecological and evolutionary dynamics, and many discoveries await.


Assuntos
Evolução Biológica , Reprodução , Entropia , Humanos , Cadeias de Markov , Dinâmica Populacional
3.
Am Nat ; 190(6): E132-E144, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29166155

RESUMO

Heterogeneity in life courses among individuals of a population influences the speed of adaptive evolutionary processes, but it is less clear how biotic and abiotic environmental fluctuations influence such heterogeneity. We investigate principal drivers of variability in sequence of stages during an individual's life in a stage-structured population. We quantify heterogeneity by measuring population entropy of a Markov chain, which computes the rate of diversification of individual life courses. Using individual data of a primate population, we show that density regulates the stage composition of the population but that its entropy and the generating moments of heterogeneity are independent of density. This lack of influence of density on heterogeneity is due to neither low year-to-year variation in entropy nor differences in survival among stages but is rather due to differences in stage transitions. Our analysis thus shows that well-known classical ecological selective forces, such as density regulation, are not linked to potential selective forces governing heterogeneity through underlying stage dynamics. Despite evolution acting heavily on individual variability in fitness components, our understanding is poor whether observed heterogeneity is adaptive and how it evolves and is maintained. Our analysis illustrates how entropy represents a more integrated measure of diversity compared to the population structural composition, giving us new insights about the underlying drivers of individual heterogeneity within populations and potential evolutionary mechanisms.


Assuntos
Características de História de Vida , Macaca mulatta/fisiologia , Envelhecimento , Animais , Meio Ambiente , Feminino , Ilhas , Masculino , Modelos Biológicos , Densidade Demográfica , Porto Rico , Reprodução
4.
J Theor Biol ; 419: 159-183, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28202283

RESUMO

We demonstrate an application of a core notion of information theory, typical sequences and their related properties, to analysis of population genetic data. Based on the asymptotic equipartition property (AEP) for nonstationary discrete-time sources producing independent symbols, we introduce the concepts of typical genotypes and population entropy and cross entropy rate. We analyze three perspectives on typical genotypes: a set perspective on the interplay of typical sets of genotypes from two populations, a geometric perspective on their structure in high dimensional space, and a statistical learning perspective on the prospects of constructing typical-set based classifiers. In particular, we show that such classifiers have a surprising resilience to noise originating from small population samples, and highlight the potential for further links between inference and communication.


Assuntos
Algoritmos , Teoria da Informação , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Simulação por Computador , Frequência do Gene , Genética Populacional , Genótipo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa