Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Am Nat ; 202(4): 413-432, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37792920

RESUMO

AbstractClassic theory for density-dependent selection for delayed maturation requires that a population be regulated through some combination of adult fecundity and/or juvenile survival. We tested whether those demographic conditions were met in four experimental populations of Trinidadian guppies in which delayed maturation of males evolved when the densities of those populations became high. We used monthly mark-recapture data to examine population dynamics and demography in these populations. Three of the four populations displayed clear evidence of regulation. In all four populations, monthly adult survival rates were independent of biomass density or actually increased with increased biomass density. Juvenile recruitment, which is a combination of adult fecundity and juvenile survival, decreased as biomass density increased in all four populations. Demography showed marked seasonality, with greater survival and higher recruitment in the dry season than the wet season. Population regulation via juvenile recruitment supports the hypothesis that density-dependent selection was responsible for the evolution of delayed maturity in males. This body of work represents one of the few complete tests of density-dependent selection theory.


Assuntos
Poecilia , Animais , Masculino , Poecilia/fisiologia , Dinâmica Populacional , Biomassa , Fertilidade , Estações do Ano
2.
Glob Chang Biol ; 29(2): 324-340, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36229037

RESUMO

Understanding the environmental mechanisms that govern population change is a fundamental objective in ecology. Although the determination of how top-down and bottom-up drivers affect demography is important, it is often equally critical to understand the extent to which, environmental conditions that underpin these drivers fluctuate across time. For example, associations between climate and both food availability and predation risk may suggest the presence of trophic interactions that may influence inferences made from patterns in ecological data. Analytical tools have been developed to account for these correlations, while providing opportunities to ask novel questions regarding how populations change across space and time. Here, we combine two modeling disciplines-path analysis and mark-recapture-recovery models-to explore whether shifts in sea-surface temperatures (SSTs) influenced top-down (entanglement in fishing equipment) or bottom-up (forage fish production) population constraints over 60 years, and the extent to which these covarying processes shaped the survival of a long-lived seabird, the Royal tern. We found that hemispheric trends in SST were associated with variation in the amount of fish harvested along the Atlantic coast of North America and in the Caribbean, whereas reductions in forage fish production were mostly driven by shifts in the amount of fish harvested by commercial fisheries throughout the North Atlantic the year prior. Although the indirect (i.e., stock depletion) and direct (i.e., entanglement) impacts of commercial fishing on Royal tern mortality has declined over the last 60 years, increased SSTs during this time period has resulted in a comparable increase in mortality risk, which disproportionately impacted the survival of the youngest age-classes of Royal terns. Given climate projections for the North Atlantic, our results indicate that threats to Royal tern population persistence in the Mid-Atlantic will most likely be driven by failures to recruit juveniles into the breeding population.


Assuntos
Charadriiformes , Mudança Climática , Animais , Ecossistema , Pesqueiros , Comportamento Predatório , Dinâmica Populacional
3.
Oecologia ; 201(3): 609-623, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36864247

RESUMO

Chronic stress has long been hypothesized to play a role in driving population cycles. Christian (1950) hypothesized that high population density results in chronic stress and mass "die-offs" in small mammal populations. Updated variations of this hypothesis propose that chronic stress at high population density may reduce fitness, reproduction, or program aspects of phenotype, driving population declines. We tested the effect of density on the stress axis in meadow voles (Microtus pennsylvanicus) by manipulating population density in field enclosures over three years. Using fecal corticosterone metabolites as a non-invasive measure of glucocorticoid (GC) concentrations, we found that density alone was not associated with GC differences. However, we found that the seasonal relationship of GC levels differed by density treatment, with high-density populations having elevated GC levels early in the breeding season and decreasing towards late summer. We additionally tested hippocampal glucocorticoid receptor and mineralocorticoid receptor gene expression in juvenile voles born at different densities, with the hypothesis that high density may reduce receptor expression, altering negative feedback of the stress axis. We found that females had marginally higher glucocorticoid receptor expression at high density, no effect in males, and no detectable effect of density on mineralocorticoid receptor expression in either sex. Hence, we found no evidence that high density directly impairs negative feedback in the hippocampus, but rather female offspring may be better equipped for negative feedback. We compare our findings with prior studies to attempt to disentangle the complicated relationship between density, seasonality, sex, reproduction and the stress axis.


Assuntos
Receptores de Glucocorticoides , Receptores de Mineralocorticoides , Animais , Masculino , Feminino , Reprodução , Mamíferos , Arvicolinae
4.
Proc Biol Sci ; 289(1970): 20212530, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35232242

RESUMO

Classic population regulation theories usually concern the influence of immediate factors on current populations, but studies investigating the effect of parental environment factors on their offspring populations are scarce. The maternal environments can affect offspring life-history traits across generations, which may affect population dynamics and be a mechanism of population regulation. In cyclical parthenogens, sexual reproduction is typically linked with dormancy, thereby providing a negative feedback to population growth. In this study, we manipulated population sex ratios in the mother's environment to investigate whether this factor affected future population dynamics by regulating offspring sexual reproduction in the rotifer Brachionus calyciflorus. Compared with females in male-biased environments, those in female-biased environments produced fewer mictic (sexual) offspring, and their amictic (asexual) offspring also produced a lower proportion of mictic females at a gradient of population densities. Moreover, populations that were manipulated under male-biased conditions showed significantly smaller population sizes than those under female-biased conditions. Our results indicated that in cyclical parthenogens, mothers could adjust the sexual reproduction of their offspring in response to the current population sex ratio, thus providing fine-scale regulation of population dynamics in addition to population density.


Assuntos
Rotíferos , Razão de Masculinidade , Animais , Feminino , Humanos , Masculino , Herança Materna , Mães , Dinâmica Populacional , Reprodução/fisiologia , Rotíferos/fisiologia
5.
Proc Biol Sci ; 289(1970): 20212772, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35259989

RESUMO

Climate change has led to intensification and poleward migration of the Southeastern Pacific Anticyclone, forcing diverging regions of increasing, equatorward and decreasing, poleward coastal phytoplankton productivity along the Humboldt Upwelling Ecosystem, and a transition zone around 31° S. Using a 20-year dataset of barnacle larval recruitment and adult abundances, we show that striking increases in larval arrival have occurred since 1999 in the region of higher productivity, while slower but significantly negative trends dominate poleward of 30° S, where years of recruitment failure are now common. Rapid increases in benthic adults result from fast recruitment-stock feedbacks following increased recruitment. Slower population declines in the decreased productivity region may result from aging but still reproducing adults that provide temporary insurance against population collapses. Thus, in this region of the ocean where surface waters have been cooling down, climate change is transforming coastal pelagic and benthic ecosystems through altering primary productivity, which seems to propagate up the food web at rates modulated by stock-recruitment feedbacks and storage effects. Slower effects of downward productivity warn us that poleward stocks may be closer to collapse than current abundances may suggest.


Assuntos
Mudança Climática , Ecossistema , Cadeia Alimentar , Oceanos e Mares , Fitoplâncton
6.
Ecol Appl ; 32(6): e2635, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35403769

RESUMO

Understanding the relative strengths of intrinsic and extrinsic factors regulating populations is a long-standing focus of ecology and critical to advancing conservation programs for imperiled species. Conservation could benefit from an increased understanding of factors influencing vital rates (somatic growth, recruitment, survival) in small, translocated populations, which is lacking owing to difficulties in long-term monitoring of rare species. Translocations, here defined as the transfer of wild-captured individuals from source populations to new habitats, are widely used for species conservation, but outcomes are often minimally monitored, and translocations that are monitored often fail. To improve our understanding of how translocated populations respond to environmental variation, we developed and tested hypotheses related to intrinsic (density dependent) and extrinsic (introduced rainbow trout Oncorhynchus mykiss, stream flow and temperature regime) causes of vital rate variation in endangered humpback chub (Gila cypha) populations translocated to Colorado River tributaries in the Grand Canyon (GC), USA. Using biannual recapture data from translocated populations over 10 years, we tested hypotheses related to seasonal somatic growth, and recruitment and population growth rates with linear mixed-effects models and temporal symmetry mark-recapture models. We combined data from recaptures and resights of dispersed fish (both physical captures and continuously recorded antenna detections) from throughout GC to test survival hypotheses, while accounting for site fidelity, using joint live-recapture/live-resight models. While recruitment only occurred in one site, which also drove population growth (relative to survival), evidence supported hypotheses related to density dependence in growth, survival, and recruitment, and somatic growth and recruitment were further limited by introduced trout. Mixed-effects models explained between 67% and 86% of the variation in somatic growth, which showed increased growth rates with greater flood-pulse frequency during monsoon season. Monthly survival was 0.56-0.99 and 0.80-0.99 in the two populations, with lower survival during periods of higher intraspecific abundance and low flood frequency. Our results suggest translocations can contribute toward the recovery of large-river fishes, but continued suppression of invasive fishes to enhance recruitment may be required to ensure population resilience. Furthermore, we demonstrate the importance of flooding to population demographics in food-depauperate, dynamic, invaded systems.


Assuntos
Inundações , Oncorhynchus mykiss , Animais , Ecossistema , Rios , Estações do Ano
7.
Ecol Appl ; 32(2): e2498, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34787943

RESUMO

Sustainable human exploitation of living marine resources stems from a delicate balance between yield stability and population persistence to achieve socioeconomic and conservation goals. But our imperfect knowledge of how oceanic oscillations regulate temporal variation in an exploited species can obscure the risk of missing management targets. We illustrate how applying a management policy to suppress fluctuations in fishery yield in variable environments (prey density and regional climate) can present unintended outcomes in harvested predators and the sustainability of harvesting. Using Atlantic cod (Gadus morhua, an apex predatory fish) in the Barents Sea as a case study we simulate age-structured population and harvest dynamics through time-varying, density-dependent and density-independent processes with a stochastic, process-based model informed by 27-year monitoring data. In this model, capelin (Mallotus villosus, a pelagic forage fish), a primary prey of cod, fluctuations modulate the strength of density-dependent regulation primarily through cannibalistic pressure on juvenile cod survival; sea temperature fluctuations modulate thermal regulation of cod feeding, growth, maturation, and reproduction. We first explore how capelin and temperature fluctuations filtered through cod intrinsic dynamics modify catch stability and then evaluate how management to suppress short-term variability in catch targets alters overharvest risk. Analyses revealed that suppressing year-to-year catch variability impedes management responses to adjust fishing pressure, which becomes progressively out of sync with variations in cod abundance. This asynchrony becomes amplified in fluctuating environments, magnifying the amplitudes of both fishing pressure and cod abundance and then intensifying the density-dependent regulation of juvenile survival through cannibalism. Although these transient dynamics theoretically give higher average catches, emergent, quasicyclic behaviors of the population would increase long-term yield variability and elevate overharvest risk. Management strategies that overlook the interplay of extrinsic (fishing and environment) and intrinsic (life history and demography) fluctuations thus can inadvertently destabilize fish stocks, thereby jeopardizing the sustainability of harvesting. These policy implications underscore the value of ecosystem approaches to designing management measures to sustainably harvest ecologically connected resources while achieving socioeconomic security.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Pesqueiros , Gadus morhua , Animais , Gadus morhua/fisiologia , Oceanos e Mares , Dinâmica Populacional
8.
J Anim Ecol ; 91(8): 1582-1595, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35362147

RESUMO

In organisms with complex life cycles, the various stages occupy different habitats creating demographically open populations. The dynamics of these populations will depend on the occurrence and timing of stochastic influences relative to demographic density dependence, but understanding of these fundamentals, especially in the face of climate warming, has been hampered by the difficulty of empirical studies. Using a logically feasible organism, we conducted a replicated density-perturbation experiment to manipulate late-instar larvae of nine populations of a stream caddisfly, Zelandopsyche ingens, and measured the resulting abundance over 2 years covering the complete life cycle of one cohort to evaluate influences on dynamics. Negative density feedback occurred in the larval stage, and was sufficiently strong to counteract variation in abundance due to manipulation of larval density, adult caddis dispersal in the terrestrial environment as well as downstream drift of newly hatched and older larvae in the current. This supports theory indicating regulation of open populations must involve density dependence in local populations sufficient to offset variability associated with dispersal, especially during recruitment, and pinpoints the occurrence to late in the larval life cycle and driven by food resource abundance. There were large variations in adult, egg mass and early instar abundance that were not related to abundance in the previous stage, or the manipulation, pointing to large stochastic influences. Thus, the results also highlight the complementary nature of stochastic and deterministic influences on open populations. Such density dependence will enhance population persistence in situations where variable dispersal and transitioning between life stages frequently creates mismatches between abundance and the local availability of resources, such as might become more common with climate warming.


Assuntos
Ecossistema , Insetos , Animais , Humanos , Larva , Estágios do Ciclo de Vida , Densidade Demográfica , Dinâmica Populacional
9.
Front Zool ; 18(1): 56, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717666

RESUMO

Density-dependent change in aggressive behavior contributes to the population regulation of many small rodents, but the underlying neurological mechanisms have not been examined in field conditions. We hypothesized that crowding stress and aggression-associated oxytocin (OT) and arginine vasopressin (AVP) in specific regions of the brain may be closely related to aggressive behaviors and population changes of small rodents. We analyzed the association of OT and AVP expression, aggressive behavior, and population density of Brandt's voles in 24 large semi-natural enclosures (0.48 ha each) in Inner Mongolia grassland. We tested the effects of population density on the OT/AVP system and aggressive behavior by experimentally manipulating populations of Brandt's voles in the grassland enclosures. High density was positively and significantly associated with more aggressive behavior, and increased expression of mRNA and protein of AVP and its receptor, but decreased expression of mRNA and protein of OT and its receptor in specific brain regions of the voles. Our study suggests that changes in OT/AVP expression are likely a result of the increased psychosocial stress that these voles experience during overcrowding, and thus the OT/AVP system can be used as indicators of density-dependent stressors in Brandt's voles.

10.
J Theor Biol ; 526: 110280, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32333978

RESUMO

According to the competitive-exclusion principle, the number n of regulating variables describing a given community dynamics is an upper bound on the number of species (or types or morphs) that can coexist at equilibrium. On occasion, it is possible to reformulate a model with a lower number of regulating variables than appeared in the initial specification. We call the smallest number of such variables the dimension of the environmental feedback, or environmental dimension for short. For studying which species can invade a community, it is enough to know the sign of each species' long-term growth rate, i.e., invasion fitness. Therefore, different indicators of population growth - so-called fitness proxies, such as the basic reproduction number-are sometimes preferred. However, as we show, different fitness proxies may have different dimensions. Fundamental characteristics such as the environmental dimension should not depend on such arbitrary choices. Here, we resolve this difficulty by introducing a refined definition of environmental dimension that focuses on neutral fitness contours. On this basis, we show that this definition of environmental dimension is not only unambiguous, i.e., independent of the choice of fitness proxy, but also constructive, i.e., applicable without needing to assess an infinite number of possible fitness proxies. We then investigate how to determine environmental dimensions by analysing the two components of the environmental feedback: the impact map describing how a community's resident species affect the regulating variables and the sensitivity map describing how population growth depends on the regulating variables. The dimension of the impact map is lower than n when the set of feasible environments is of lower dimension than n, and the dimension of the sensitivity map is lower than n when not all n regulating variables affect the sign of population growth independently. While the minimum of the dimensions of the impact and sensitivity maps provides an upper bound on the environmental dimension, the combined effect of the two maps can result in an even lower environmental dimension, which happens when the sensitivity map is insensitive to some aspects of the impact map's image. To facilitate the applications of the framework introduced here, we illustrate all key concepts with detailed worked examples. In view of these results, we claim that the environmental dimension is the ultimate generalization of the traditional and widely used notions of the "number of regulating variables" or the "number of limiting factors", and is thus the sharpest generally applicable upper bound on the number of species that can robustly coexist in a community.

11.
Ecol Appl ; 31(7): e02425, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34296480

RESUMO

The management of North American waterfowl is predicated on long-term, continental-scale banding implemented prior to the hunting season (i.e., July-September) and subsequent reporting of bands recovered by hunters. However, single-season banding and encounter operations have a number of characteristics that limit their application to estimating demographic rates and evaluating hypothesized limiting factors throughout the annual cycle. We designed and implemented a two-season banding program for American Black Ducks (Anas rubripes), Mallards (A. platyrhynchos), and hybrids in eastern North America to evaluate potential application to annual life cycle conservation and sport harvest management. We assessed model fit and compared estimates of annual survival among data types (i.e., pre-hunting season only [July-September], post-hunting season only [January-March], and two-season [pre- and post-hunting season]) to evaluate model assumptions and potential application to population modeling and management. There was generally high agreement between estimates of annual survival derived using two-season and pre-season only data for all age and sex cohorts. Estimates of annual survival derived from post-season banding data only were consistently higher for adult females and juveniles of both sexes. We found patterns of seasonal survival varied by species, age, and to a lesser extent, sex. Hunter recovered birds exhibited similar spatial distributions regardless of banding season suggesting banded samples were from the same population. In contrast, goodness-of-fit tests suggest this assumption was statistically violated in some regions and years. We conclude that estimates of seasonal and annual survival for Black Ducks and Mallards based on the two-season banding program are valid and accurate based on model fit statistics, similarity in survival estimates across data and models, and similarities in the distribution of recoveries. The two-season program provides greater precision and insight into the survival process and will improve the ability of researchers and managers to test competing hypotheses regarding population regulation resulting in more effective management.


Assuntos
Migração Animal , Patos , Animais , Feminino , Masculino , Estações do Ano
12.
J Anim Ecol ; 90(5): 1071-1084, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33496338

RESUMO

Relevance of breeding season fecundity as a driver of population dynamics has been highlighted by many studies. Despite that, knowledge about how brood type specific (i.e. first, second or replacement) fecundity affects demography of multiple-brooded species is limited. In fact, estimation of brood type specific fecundity is often challenging due to imperfect detection of nesting attempts. We examined the demographic contribution and the feedback on population density of different components of fecundity, along with other vital rates, in a facultative multiple-brooded migratory bird. We used a novel formulation of a fecundity model that allows incorporating reproductive data for which information on the type of brood was unknown in some cases, and embedded it into an integrated population model (IPM) to obtain consensual estimates of all demographic rates, including brood type specific fecundities, reproductive success probabilities and proportion of breeding pairs that performed a second or replacement brood. We then conducted transient life table response experiments on IPM estimates to account for non-stationary environments. We applied the model to two 20-year datasets collected in a Swiss and a German local population of wrynecks Jynx torquilla. Brood type specific fecundities and temporal patterns of brood type specific probabilities of success, number of successful and unsuccessful first broods, probability of starting a second or a replacement brood and proportion of pairs that performed a second or a replacement brood differed between the two populations. However, changes in immigration rate and apparent survival were the dominant contributors to temporal variation and large sequential changes in realized population growth rates in both populations. In the Swiss population we also found that second brood fecundity declined when population size increased. Our study provides insight into the reproductive processes that affect population dynamics and mediate density-dependent fecundity in a migratory bird. In addition, the analytical approach proposed can be used in other studies of multiple-brooded species to maximize the use of available fecundity data through the estimation of unknown brood types, thus favouring a better understanding of the demographic contribution of brood type specific fecundity.


Assuntos
Aves , Fertilidade , Animais , Densidade Demográfica , Dinâmica Populacional , Reprodução
13.
Proc Biol Sci ; 287(1934): 20201111, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32873205

RESUMO

How genetic variation arises and persists over evolutionary time despite the depleting effects of natural selection remains a long-standing question. Here, we investigate the impacts of two extreme forms of population regulation-at the level of the total, mixed population (hard selection) and at the level of local, spatially distinct patches (soft selection)-on the emergence and fate of diversity under strong divergent selection. We find that while the form of population regulation has little effect on rates of diversification, it can modulate the long-term fate of genetic variation, diversity being more readily maintained under soft selection compared to hard selection. The mechanism responsible for coexistence is negative frequency-dependent selection which, while present initially under both forms of population regulation, persists over the long-term only under soft selection. Importantly, coexistence is robust to continued evolution of niche specialist types under soft selection but not hard selection. These results suggest that soft selection could be a general mechanism for the maintenance of ecological diversity over evolutionary time scales.


Assuntos
Evolução Biológica , Seleção Genética , Animais , Ecossistema , Variação Genética , Densidade Demográfica
14.
J Anim Ecol ; 89(2): 541-552, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31642512

RESUMO

Important variation in the shape and strength of density-dependent growth and mortality is observed across animal populations. Understanding this population variation is critical for predicting density-dependent relationships in natural populations, but comparisons amongst studies are challenging as studies differ in methodologies and in local environmental conditions. Consequently, it is unclear whether: (a) the shape and strength of density-dependent growth and mortality are population-specific; (b) the potential trade-off between density-dependent growth and mortality differs amongst populations; and (c) environmental characteristics can be related to population differences in density-dependent relationships. To elucidate these uncertainties, we manipulated the density (0.3-7 fish/ m2 ) of young-of-the-year brook trout (Salvelinus fontinalis) simultaneously in three neighbouring populations in a field experiment in Newfoundland, Canada. Within each population, our experiment included both spatial (three sites per stream) and temporal (three consecutive summers) replication. We detected temporally consistent population variation in the shape of density-dependent growth (negative linear and negative logarithmic), but not for mortality (positive logarithmic). The strength of density-dependent growth across populations was reduced in sections with a high percentage of boulder substrate, whereas density-dependent mortality increased with increasing flow, water temperature and more acidic pH. Neighbouring populations exhibited different mortality-growth trade-offs: the ratio of mortality-to-growth increased linearly with increasing density at different rates across populations (up to 4-fold differences), but also increased with increasing temperature. Our results are some of the first to demonstrate temporally consistent, population-specific density-dependent relationships and trade-offs at small spatial scales that match the magnitude of interspecific variation observed across the globe. Furthermore, key environmental characteristics explain some of these differences in predictable ways. Such population differences merit further attention in models of density dependence and in science-based management of animal populations.


Assuntos
Ecossistema , Rios , Animais , Canadá , Terra Nova e Labrador , Densidade Demográfica , Truta
15.
Annu Rev Entomol ; 64: 73-93, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30372159

RESUMO

Aphid invasions of North American cereal crops generally have started with colonization of a new region or crop, followed by range expansion and outbreaks that vary in frequency and scale owing to geographically variable influences. To improve understanding of this process and management, we compare the invasion ecology of and management response to three cereal aphids: sugarcane aphid, Russian wheat aphid, and greenbug. The region exploited is determined primarily by climate and host plant availability. Once an area is permanently or annually colonized, outbreak intensity is also affected by natural enemies and managed inputs, such as aphid-resistant cultivars and insecticides. Over time, increases in natural enemy abundance and diversity, improved compatibility among management tactics, and limited threshold-based insecticide use have likely increased resilience of aphid regulation. Application of pest management foundational practices followed by a focus on compatible strategies are relevant worldwide. Area-wide pest management is most appropriate to large-scale cereal production systems, as exemplified in the Great Plains of North America.


Assuntos
Afídeos , Grão Comestível , Espécies Introduzidas , Controle Biológico de Vetores , Animais
16.
Proc Biol Sci ; 286(1900): 20190191, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30966994

RESUMO

The regulation of population density is suggested to be indirect and occurs with a time-lag effect, as well as being female centred. Herein, we present a quantitative analysis on the precise, timely and male-dominated self-regulation of Chinese alligator ( Alligator sinensis) populations. Analysis of 31 years of data revealed gender differences in regulation patterns. Population dynamics were restricted by male density rather than population density, and population growth was halted (birth rate = 0) when male density exceeded 83.14 individuals per hectare, until some males were removed, especially adult males. This rapid and accurate response supports the notions of intrinsic mechanisms and population-wide regulation response. Furthermore, density stress affected mating success rather than parental care to juveniles, i.e. females avoided unnecessary reproduction costs, which may represent an evolutionary advantage. Our findings highlighted the importance of further studies on related physiological mechanisms that focus on four characteristics: quantity breeds quality, gender differences, male density thresholds and nonlinearity.


Assuntos
Jacarés e Crocodilos/fisiologia , Animais , China , Masculino , Densidade Demográfica , Dinâmica Populacional , Reprodução
17.
J Anim Ecol ; 88(2): 302-314, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30381827

RESUMO

The collapse of large wild herbivores with replacement of livestock is causing global plant community and diversity shifts, resulting in altered food availability and diet composition of other sympatric small herbivores in grasslands. How diet shifts affect the gut microbiota of small mammals and whether these changes may translate into complex interactions among coexisting herbivores remain largely unknown. We conducted both a field experiment and a laboratory diet manipulation experiment to test whether sheep grazing induces a diet shift and thus alters the gut microbiota of a small rodent species living in grassland. We found that enclosures subjected to grazing were mostly dominated by Stipa krylovii (accounting for 53.6% of the total biomass) and that voles consumed significantly more S. krylovii and less Cleistogenes squarrosa in grazed enclosures. Voles in grazing enclosures exhibited significantly lower abundances of Firmicutes, higher abundances of Bacteroidetes and significantly lower measurements of alpha diversity. The microbiota from voles in the grazed enclosures had a smaller and more simplified co-occurrence network with relatively higher percentage of positive interactions. Analysis based on dietary clusters indicated that grazing-induced changes in diet composition contributed to the distinct gut microbial community of voles in enclosures. We verified our findings using laboratory experiments, in which voles were exclusively fed C. squarrosa (high carbohydrate, high fibre and high in secondary compounds), S. krylovii (low carbohydrate, low fibre and low in secondary compounds) or Leymus chinensis (nutritionally intermediate). We observed that the gut microbiota of voles changed with the three different diets, supporting the idea that the effects of sheep grazing on the gut microbiota of Brandt's voles may be related to grazing-induced diet shifts. Our results highlighted the negative effects of livestock grazing on small mammals in grassland via changes in plant community and gut microbiota of small mammals and help to better understand the cascading consequences of realistic scenarios of world-wide decline in large wild herbivores.


Assuntos
Microbioma Gastrointestinal , Animais , Dieta , Herbivoria , Gado , Roedores , Ovinos
18.
Dis Aquat Organ ; 136(1): 63-78, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31575835

RESUMO

Dikerogammarus haemobaphes is a non-native amphipod in UK freshwaters. Studies have identified this species as a low-impact invader in the UK, relative to its cousin Dikerogammarus villosus. It has been suggested that regulation by symbionts (such as Microsporidia) could explain this difference in impact. The effect of parasitism on D. haemobaphes is largely unknown. This was explored herein using 2 behavioural assays measuring activity and aggregation. First, D. haemobaphes were screened histologically post-assay, identifying 2 novel viruses (D. haemobaphes bi-facies-like virus [DhbflV], D. haemobaphes bacilliform virus [DhBV]), Cucumispora ornata (Microsporidia), Apicomplexa, and Digenea, which could alter host behaviour. DhBV infection burden increased host activity, and C. ornata infection reduced host activity. Second, native invertebrates were collected from the invasion site at Carlton Brook, UK, and tested for the presence of C. ornata. PCR screening identified that Gammarus pulex and other native invertebrates were positive for C. ornata. The host range of this parasite, and its impact on host survival, was additionally explored using D. haemobaphes, D. villosus, and G. pulex in a laboratory trial. D. haemobaphes and G. pulex became infected by C. ornata, which also lowered survival rate. D. villosus did not become infected. A PCR protocol for DhbflV was also applied to D. haemobaphes after the survival trial, associating this virus with decreased host survival. In conclusion, D. haemobaphes has a complex relationship with parasites in the UK environment. C. ornata likely regulates populations by decreasing host survival and activity, but despite this benefit, the parasite threatens susceptible native wildlife.


Assuntos
Anfípodes/parasitologia , Anfípodes/virologia , Parasitos/patogenicidade , Animais , Interações Hospedeiro-Parasita , Microsporídios , Trematódeos , Reino Unido
19.
J Fish Biol ; 95(2): 673-678, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31102276

RESUMO

We tested the effect of population density on maximum body size in three sympatric species of annual killifishes Nothobranchius spp. from African ephemeral pools. We found a clear negative effect of population density on body size, limiting their capacity for extremely fast development and rapid growth. This suggests that density-dependent population regulation and the ephemeral character of their habitat impose contrasting selective pressures on the life history of annual killifishes.


Assuntos
Tamanho Corporal , Ciprinodontiformes/crescimento & desenvolvimento , Fundulidae/crescimento & desenvolvimento , África , Distribuição por Idade , Animais , Tamanho Corporal/fisiologia , Ecossistema , Feminino , Fundulidae/fisiologia , Masculino , Moçambique , Densidade Demográfica , Estações do Ano , Fatores Sexuais
20.
J Hist Biol ; 52(4): 635-686, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300940

RESUMO

Ecology in principle is tied to evolution, since communities and ecosystems result from evolution and ecological conditions determine fitness values (and ultimately evolution by natural selection). Yet the two disciplines of evolution and ecology were not unified in the twentieth-century. The architects of the Modern Synthesis, and especially Julian Huxley, constantly pushed for such integration, but the major ideas of the Synthesis-namely, the privileged role of selection and the key role of gene frequencies in evolution-did not directly or immediately translate into ecological science. In this paper I consider five stages through which the Synthesis was integrated into ecology and distinguish between various ways in which a possible integration was gained. I start with Elton's animal ecology (1927), then consider successively Ford's ecological genetics in the 1940s, the major textbook Principles of animal ecology edited by Allee et al. (1949), and the debates over the role of competition in population regulation in the 1950s, ending with Hutchinson's niche concept (1959) and McArthur and Wilson's Principles of Island Biogeography (1967) viewed as a formal transposition of Modern Synthesis explanatory schemes. I will emphasize the key role of founders of the Synthesis at each stage of this very nonlinear history.


Assuntos
Evolução Biológica , Ecologia/história , Genética Populacional/história , Seleção Genética , História do Século XX , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa