RESUMO
This study investigates the maximal range of motion (ROM) during wrist deviation and forearm rotation for five different primate genera and the possible correlation with the shape of the distal ulna, triquetrum and hamate. A two-block phylogenetic partial least square analysis was performed to test this covariation in a phylogenetic context, using shape coordinates and a matrix of maximal ROM data as input data. The results show that gibbons have the highest ROM for both ulnar deviation and supination, whereas Macaca exhibited the lowest ROM for supination, and Pan had the lowest ROM for ulnar deviation. These results can be attributed to differences in locomotor behaviour, as gibbons need a large wrist mobility in all directions for their highly arboreal lifestyle, whereas Macaca and Pan need a stable wrist during terrestrial locomotion. However, we found no correlation between distal ulna/triquetrum/hamate shape and maximal ROM during ulnar deviation and supination in the different primate taxa. A larger dataset, in combination with behavioural and biomechanical studies, is needed to establish form-function relationships of the primate hand, which will aid the functional interpretation of primate fossil remains.
Assuntos
Hylobates , Punho , Animais , Supinação , Filogenia , MacacaRESUMO
OBJECTIVES: The guenons (tribe Cercopithecini) are a diverse and primarily arboreal radiation of Old World monkeys from Africa. However, preliminary behavioral observations of the lesula (Cercopithecus lomamiensis), a little-known guenon species described in 2012, report it spending substantial amounts of time on the ground. New specimens allow us to present the first description of lesula postcranial morphology and apply a comparative functional morphology approach to supplement our knowledge of its locomotor behavior. MATERIALS AND METHODS: To infer the substrate use preferences of the lesula, 22 postcranial variables correlated with locomotion were assessed in a sample of 151 adult guenon specimens, including two C. lomamiensis. Using multivariate statistical analyses, we predict the amount of time the lesula spends on the ground relative to the comparative sample. RESULTS: Results suggest that the lesula spends nearly half its time on the ground, and the two available individuals were classified as semiterrestrial and terrestrial with strong support. Comparisons with two outgroup cercopithecid taxa (Colobus guereza and Macaca mulatta) demonstrate that, as a group, guenons retain signals of a generalized, semiterrestrially adapted postcranium compared to specialized arboreal cercopithecids. DISCUSSION: These results corroborate preliminary behavioral observations of the lesula as a semiterrestrial to terrestrial primate and imply multiple evolutionary transitions in substrate use among the guenon radiation. A broader view of cercopithecoid evolution suggests that a semiterrestrial ancestor for extant guenons is more parsimonious than an arboreal one, indicating that the arboreal members of the group are probably recently derived from a more semiterrestrial ancestor.
Assuntos
Evolução Biológica , Cercopithecus/anatomia & histologia , Cercopithecus/fisiologia , Locomoção , Esqueleto/anatomia & histologia , Animais , República Democrática do Congo , Feminino , MasculinoRESUMO
Plesiadapiforms, like other Paleogene mammals, are known mostly from fossil teeth and jaw fragments. The several families of plesiadapiforms known from partial skeletons have all been reconstructed as arborealists, but differences in postcranial morphology among these taxa indicate a diversity of positional behaviors. Here we provide the first detailed descriptions and comparisons of a dentally associated partial skeleton (NMMNH P-54500) and of the most complete dentary with anterior teeth (NMMNH P-71598) pertaining to Torrejonia wilsoni, from the early Paleocene (late Torrejonian To3 interval zone) of the Nacimiento Formation, San Juan Basin, New Mexico, USA. NMMNH P-54500 is the oldest known partial skeleton of a plesiadapiform and the only known postcrania for the Palaechthonidae. This skeleton includes craniodental fragments with all permanent teeth fully erupted, and partial forelimbs and hind limbs with some epiphyses unfused, indicating that this individual was a nearly fully-grown subadult. Analysis of the forelimb suggests mobile shoulder and elbow joints, a habitually flexed forearm, and capacity for manual grasping. The hip joint allowed abduction and lateral rotation of the thigh and provides evidence for frequent orthograde postures on large diameter supports. Other aspects of the hind limb suggest a habitually flexed thigh and knee with no evidence for specialized leaping, and mobile ankle joints capable of high degrees of inversion and eversion. Although it is likely that some variability exists within the group, analysis of this skeleton suggests that palaechthonids are most like paromomyids among plesiadapiforms, but retain more plesiomorphic postcranial features than has been documented for the Paromomyidae. These observations are congruent with craniodental evidence supporting palaechthonids and paromomyids as closely related within the Paromomyoidea. The skeleton of T. wilsoni also demonstrates that many regions of the postcranium were already well adapted for arboreality within the first few million years of the diversification of placental mammals following the Cretaceous-Paleogene extinction event.
Assuntos
Osso e Ossos/anatomia & histologia , Fósseis/anatomia & histologia , Primatas/anatomia & histologia , Animais , Características de História de Vida , Mamíferos/anatomia & histologia , Mamíferos/classificação , New Mexico , Paleontologia , Primatas/classificação , Primatas/fisiologiaRESUMO
OBJECTIVES: Integration and modularity reflect the coordinated action of past evolutionary processes and, in turn, constrain or facilitate phenotypic evolvability. Here, we analyze magnitudes of integration in the macaque postcranium to test whether 20 a priori defined modules are (1) more tightly integrated than random sets of postcranial traits, and (2) are differentiated based on mode of definition, with developmental modules expected to be more integrated than functional or anatomical modules. MATERIALS AND METHODS: The 3D morphometric data collected for eight limb and girdle bones for 60 macaques were collated into anatomical, developmental, and functional modules. A resampling technique was used to create random samples of integration values for each module for statistical comparison. RESULTS: Our results found that not all a priori defined modules were more strongly integrated than random samples of postcranial traits and that specific types of modules did not present consistent patterns of integration. Rather, girdle and joint modules were consistently less integrated than limb modules, and forelimb elements were less integrated than hindlimbs. DISCUSSION: The results suggest that morphometrically complex modules tend to be less integrated than simple limb bones, irrespective of the number of available traits. However, differences in integration of the fore- and hindlimb more likely reflects the multitude of locomotory, feeding, and social functions involved. It remains to be tested whether patterns of integration identified here are primate universals, and to what extent they vary depending on phylogenetic or functional factors.
Assuntos
Osso e Ossos/anatomia & histologia , Osso e Ossos/fisiologia , Macaca fascicularis/anatomia & histologia , Macaca fascicularis/fisiologia , Animais , Antropologia Física , Extremidades/anatomia & histologia , Extremidades/fisiologia , Feminino , MasculinoRESUMO
Sigmodontinae rodents constitute the second-largest subfamily among mammals. Alongside the taxonomic diversity, they are also ecologically diverse, exhibiting a wide array of locomotion modes, with semifossorial, terrestrial, semiaquatic, scansorial, arboreal, and saltatorial forms. To understand the ecomorphologic aspects that allow these rodents to display such locomotion diversity, we analyzed 35 qualitative characters of the appendicular skeleton (humerus, ulna, radius, scapula, femur, tibia, ilium, ischium and pubis) in 795 specimens belonging to 64 species, 34 genera and 10 tribes, representing all locomotion modes assigned to this subfamily. We performed a statistical analysis based upon the coefficient of trait differentiation to test the congruence of character states and the different locomotion modes. We also mapped characters states in a molecular phylogeny in order to reconstruct ancestral states and to evaluate how appendicular characters evolved within main lineages of Sigmodontinae radiation under a phylogenetic framework. The statistical analyses revealed six characters related to specific locomotion modes, except terrestrial. The mapping and parsimony ancestral states reconstruction identified two characters with phylogenetical signal and eight characters that are exclusively or more frequently recorded in certain modes of locomotion, four of them also detected by the statistical analysis. Notwithstanding the documented morphological variation, few changes characterize the transition to each of the locomotion modes, at least regarding the appendicular skeleton. This finding corroborates previous results that showed that sigmodontines exhibit an all-purpose appendicular morphology that allows them to use and explore a great variety of habitats.
Assuntos
Locomoção , Filogenia , Roedores/anatomia & histologia , Esqueleto/anatomia & histologia , Animais , Feminino , Masculino , Roedores/fisiologia , Esqueleto/fisiologiaRESUMO
Here we provide the most extensive metric and morphological analysis performed to date on the Neandertal lumbar spine. Neandertal lumbar vertebrae show differences from modern humans in both the vertebral body and in the neural arch, although not all Neandertal lumbar vertebrae differ from modern humans in the same way. Differences in the vertebral foramen are restricted to the lowermost lumbar vertebrae (L4 and L5), differences in the orientation of the upper articular facets appear in the uppermost lumbar vertebrae (probably in L1 and L2-L3), and differences in the horizontal angle of the transverse process appear in L2-L4. Neandertals, when compared to modern humans, show a smaller degree of lumbar lordosis. Based on a still limited fossil sample, early hominins (australopiths and Homo erectus) had a lumbar lordosis that was similar to but below the mean of modern humans. Here, we hypothesize that from this ancestral degree of lumbar lordosis, the Neandertal lineage decreased their lumbar lordosis and Homo sapiens slightly increased theirs. From a postural point of view, the lower degree of lordosis is related to a more vertical position of the sacrum, which is also positioned more ventrally with respect to the dorsal end of the pelvis. This results in a spino-pelvic alignment that, though different from modern humans, maintained an economic postural equilibrium. Some features, such as a lower degree of lumbar lordosis, were already present in the middle Pleistocene populations ancestral to Neandertals. However, these middle Pleistocene populations do not show the full suite of Neandertal lumbar morphologies, which probably means that the characteristic features of the Neandertal lumbar spine did not arise all at once.
Assuntos
Vértebras Lombares/anatomia & histologia , Homem de Neandertal/anatomia & histologia , Animais , Hominidae , Humanos , Lordose/patologia , Postura , Coluna Vertebral/anatomia & histologiaRESUMO
Cervical vertebrae not only protect the spinal cord but also are the insertion and origin points for muscles related to the movement of the head, upper limb, and trunk, among others, and are thus important elements in primate evolution. While previous work has been undertaken on the first two cervical vertebrae, there is a dearth of studies on the subaxial cervical spine in hominines. In this paper, we provide detailed morphological information on two important aspects of the subaxial cervical vertebrae (C3 - C7): mid-sagittal morphology and superior facet orientation. We studied large samples of African apes including modern humans and the most complete fossil hominin subaxial cervical vertebrae using both traditional and geometric morphometrics. There are significant differences between extant hominoids related to the relative length and orientation of the spinous process as well as to the orientation of the articular facets, which are related to size, locomotion, and neck posture. In fact, fossil hominins do not completely conform to any of the extant groups. Our assessment of mid-sagittal morphology and superior articular facet orientation shows that australopiths have more Homo-like upper subaxial cervical vertebrae coupled with more "primitive" lower cervical vertebrae. Based on these results, we hypothesize that those changes, maybe related to postural changes derived from bipedalism, did not affect the entire subaxial cervical spine at once. From a methodological point of view, the combination of traditional and geometric morphometric data provides a more integrative perspective of morphological change and evolution, which is certainly useful in human evolutionary studies.
Assuntos
Vértebras Cervicais/anatomia & histologia , Hominidae/anatomia & histologia , Hominidae/fisiologia , Locomoção , Postura , Animais , Evolução Biológica , Feminino , Fósseis/anatomia & histologia , MasculinoRESUMO
The first evidence of the partial infant Neandertal skeleton La Ferrassie 8 (LF8) was discovered in 1970, although most of the remains were found in 1973 as part of the 1968-1973 work at the site by H. Delporte. This individual and the other Neandertal children from La Ferrassie were published in the early 1980s by J.-L. Heim, and since then LF8 has been regarded as coming from a poorly documented excavation. The recent rediscovery of the box that contained the hominin bones given by Delporte to Heim in the Muséum national d'Histoire naturelle (MNHN) collection provided new fossils and helped to locate LF8 in the site: level M2 in square 1. Two visits to the Musée d'Archéologie nationale et Domaine national de Saint-Germain-en-Laye (MAN) yielded additional fossil remains from both the 1970 and 1973 excavations and resulted in the discovery of all of the notes from the excavation of H. Delporte between 1968 and 1973. Here the new fossil remains (47 after performing all possible refits), representing significant portions of the cranium, mandible, and vertebral column together with fragmentary hand and costal remains, are described. Unsurprisingly, the morphology of the bony labyrinth and of a complete stapes from the nearly complete left temporal show clear Neandertal affinities. Additionally, a complete reassessment of the original LF8 collection has resulted in the identification of several errors in the anatomical determination. Despite the significant increase in the anatomical representation of LF8, the skeletal remains are still limited to the head, thorax, pelvis, and four hand phalanges, with some very fragile elements relatively well preserved. Different hypotheses are proposed to explain this anatomical representation, which can be tested during future fieldwork.
Assuntos
Osso e Ossos/anatomia & histologia , Fósseis , Homem de Neandertal/anatomia & histologia , Paleontologia , Animais , Falanges dos Dedos da Mão/anatomia & histologia , França , História Antiga , Humanos , Lactente , Ossos Pélvicos/anatomia & histologia , Costelas/anatomia & histologia , Crânio/anatomia & histologia , Coluna Vertebral/anatomia & histologiaRESUMO
The estimation of body size among the earliest members of the genus Homo (2.4-1.5Myr [millions of years ago]) is central to interpretations of their biology. It is widely accepted that Homo ergaster possessed increased body size compared with Homo habilis and Homo rudolfensis, and that this may have been a factor involved with the dispersal of Homo out of Africa. The study of taxonomic differences in body size, however, is problematic. Postcranial remains are rarely associated with craniodental fossils, and taxonomic attributions frequently rest upon the size of skeletal elements. Previous body size estimates have been based upon well-preserved specimens with a more reliable species assessment. Since these samples are small (n < 5) and disparate in space and time, little is known about geographical and chronological variation in body size within early Homo. We investigate temporal and spatial variation in body size among fossils of early Homo using a 'taxon-free' approach, considering evidence for size variation from isolated and fragmentary postcranial remains (n = 39). To render the size of disparate fossil elements comparable, we derived new regression equations for common parameters of body size from a globally representative sample of hunter-gatherers and applied them to available postcranial measurements from the fossils. The results demonstrate chronological and spatial variation but no simple temporal or geographical trends for the evolution of body size among early Homo. Pronounced body size increases within Africa take place only after hominin populations were established at Dmanisi, suggesting that migrations into Eurasia were not contingent on larger body sizes. The primary evidence for these marked changes among early Homo is based upon material from Koobi Fora after 1.7Myr, indicating regional size variation. The significant body size differences between specimens from Koobi Fora and Olduvai support the cranial evidence for at least two co-existing morphotypes in the Early Pleistocene of eastern Africa.
Assuntos
Tamanho Corporal , Hominidae/anatomia & histologia , Análise Espaço-Temporal , África Oriental , Animais , Evolução Biológica , Classificação , História AntigaRESUMO
Sigmodontine rats are one of the most diverse components of the Neotropical mammal fauna. They exhibit a wide ecological diversity and a variety of locomotor types that allow them to occupy different environments. To explore the relationship between morphology and locomotor types, we analyzed traits of the postcranial osteology (axial and appendicular skeletons) of 329 specimens belonging to 51 species and 29 genera of sigmodontines exhibiting different locomotor types. In this work, postcranial skeletal characters of these rats are considered in an ecomorphological study for the first time. Statistical analyses showed that of the 34 osteological characters considered, 15 were related to the locomotor types studied, except for ambulatory. However, character mapping showed that climbing and jumping sigmodontines are the only taxa exhibiting clear adaptations in their postcranial osteology, which are highly consistent with the tendencies described in many other mammal taxa. Climbing, digging and swimming rats presented statistically differences in traits associated with their vertebral column and limbs, whereas jumping rats showed modifications associated with all the skeletal regions. Our data suggest that sigmodontine rats retain an all-purpose morphology that allows them to use a variety of habitats. This versatility is particularly important when considering the lack of specialization of sigmodontines for a specific locomotor mode. Another possible interpretation is that our dataset probably did not consider relevant information about these groups and should be increased with other types of characters (e.g. characters from the external morphology, myology, etc.).
Assuntos
Osso e Ossos/anatomia & histologia , Locomoção/fisiologia , Sigmodontinae/anatomia & histologia , Anatomia Comparada , Animais , Evolução Biológica , Movimento/fisiologiaRESUMO
The osteohistology of vertebrates provides a reliable source to deduce biological information, particularly regarding growth and development. Although osteohistological studies in Neosuchia (Crocodyliformes, Mesoeucrocodylia) are relatively numerous, the number of species studied within the group is still small. Extant crocodilians are known to exhibit intraspecific variability linked to environmental conditions, habitat, feeding, and other intrapopulation factors. Here, we analyzed the osteohistology of the living South American Caiman latirostris throughout posthatching ontogeny. The histology of several appendicular bones of 13 different-sized captive and wild individuals were examined. Although some thin sections revealed the classic lamellar, parallel-fibered, or woven bone matrices, others showed a variation and a mix between the organization of the bone tissue. These histological differences are likely related to variability in the growth dynamics of caimans. In some bones of the juveniles studied, remnants of embryonic bone were observed. Osteohistological variation related to prevailing environmental conditions is documented. Furthermore, our results show ontogenetic variation in the type of bone tissues deposited throughout the development of C. latirostris. This study offers a broad framework for life history interpretations for C. latirostris and provides insight into the evolutionary history and ontogenetic growth of extinct crocodylian lineages.
Assuntos
Jacarés e Crocodilos , Humanos , Animais , Osso e Ossos , Evolução Biológica , Ecossistema , Crescimento e DesenvolvimentoRESUMO
The Neolithic transition in Europe was a complex mosaic spatio-temporal process, involving both demic diffusion from the Near East and the cultural adoption of farming practices by indigenous hunter-gatherers. Previous analyses of Mesolithic hunter-gatherers and Early Neolithic farmers suggest that cranial shape variation preserves the population history signature of the Neolithic transition. However, the extent to which these same demographic processes are discernible in the postcranium is poorly understood. Here, for the first time, crania and postcranial elements from the same 11 prehistoric populations are analysed together in an internally consistent theoretical and methodological framework. Results show that while cranial shape reflects the population history differences between Mesolithic and Neolithic lineages, relative limb dimensions exhibit significant congruence with environmental variables such as latitude and temperature, even after controlling for geography and time. Also, overall limb size is found to be consistently larger in hunter-gatherers than farmers, suggesting a reduction in size related to factors other than thermoregulatory adaptation. Therefore, our results suggest that relative limb dimensions are not tracking the same demographic population history as the cranium, and point to the strong influence of climatic, dietary and behavioural factors in determining limb morphology, irrespective of underlying neutral demographic processes.
Assuntos
Agricultura , Arqueologia , Ossos do Braço/anatomia & histologia , Clavícula/anatomia & histologia , Ossos da Perna/anatomia & histologia , Crânio/anatomia & histologia , Evolução Biológica , Demografia , Europa (Continente) , HumanosRESUMO
The question of how complex morphologies evolve, given constraints imposed by genetic, developmental and functional factors, has been a topic of inquiry for many decades. In the mid-twentieth century the study of morphological trait covariation, and the implications of this for evolutionary diversification, was developed under the general concept of "morphological integration". Given the polygenic inheritance model underlying quantitative skeletal traits, and the existence of differential pleiotropic effects, it is assumed that variation in the genotype to phenotype map will lead to the emergence of semi-autonomous "modules" that share relatively stronger covariance (integration) among traits within them. Understanding these potential patterns of modularity in the primate skeleton is important for clarifying the seeming inconsistencies presented by "mosaic" morphologies found in fossil taxa, as well as providing hypothetical units of morphological evolution that can be compared across the primate order. A review of the primate skeletal integration and modularity literature was conducted with the aim of assessing (i) the general nature of primate skeletal integration patterns, and (ii) the extent to which any identified modularity patterns are ubiquitous across primates. The vast literature on cranial integration reveals some consistency in suggesting that the face and the neurocranium (and in some cases, the basicranium and vault) form distinct modules, but the intensity of this modular pattern varies across taxa. The much more modest postcranial integration literature suggests that apes show overall reduced covariation among skeletal regions compared with other anthropoid taxa, but the extent to which any identified modularity patterns hold true across primates is still very unclear. While much has been learned about primate skeletal integration in the past two decades, we still need more studies that establish benchmarks as to what constitutes an integrated modular structure, and that empirically test these potential modules across a wider range of primate taxa.