Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Food Microbiol ; 422: 110809, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38955023

RESUMO

Sterigmatocystin (STC) is an emerging mycotoxin that poses a significant threat to the food security of cereal crops. To mitigate STC contamination in maize, this study employed selected lactic acid bacteria as biocontrol agents against Aspergillus versicolor, evaluating their biocontrol potential and analyzing the underlying mechanisms. Lactiplantibacillus plantarum HJ10, isolated from pickle, exhibited substantial in vitro antifungal activity and passed safety assessments, including antibiotic resistance and hemolysis tests. In vivo experiments demonstrated that L. plantarum HJ10 significantly reduced the contents of A. versicolor and STC in maize (both >84 %). The impact of heat, enzymes, alkali, and other treatments on the antifungal activity of cell-free supernatant (CFS) was investigated. Integrated ultra-high-performance liquid chromatography (UPLC) and gas chromatography-mass spectrometry (GC-MS) analysis revealed that lactic acid, acetic acid, and formic acid are the key substances responsible for the in vitro antifungal activity of L. plantarum HJ10. These metabolites induced mold apoptosis by disrupting cell wall structure, increasing cell membrane fluidity, reducing enzyme activities, and disrupting energy metabolism. However, in vivo antagonism by L. plantarum HJ10 primarily occurs through organic acid production and competition for growth space and nutrients. This study highlights the potential of L. plantarum HJ10 in reducing A. versicolor and STC contamination in maize.


Assuntos
Aspergillus , Lactobacillales , Esterigmatocistina , Zea mays , Zea mays/microbiologia , Aspergillus/metabolismo , Aspergillus/crescimento & desenvolvimento , Lactobacillales/metabolismo , Antifúngicos/farmacologia , Contaminação de Alimentos/prevenção & controle , Antibiose
2.
Microbiome ; 12(1): 25, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347598

RESUMO

BACKGROUND: Chickens are one of the most widely farmed animals worldwide and play a crucial role in meat and egg production. Gut microbiota is essential for chickens' health, disease, growth, and egg production. However, native chickens such as Jianghan chickens have better meat and egg production quality than centralized chickens, their intestinal microbial diversity is richer, and the potential gut microbial resources may bring health benefits to the host. RESULTS: The bacterial species composition in the gut microbiota of Jianghan chickens is similar to that of other chicken breeds, with Phocaeicola and Bacteroides being the most abundant bacterial genera. The LEfSe analysis revealed significant differences in species composition and functional profiles between samples from Jingzhou and the other three groups. Functional annotation indicated that the gut microbiota of Jianghan chickens were dominated by metabolic genes, with the highest number of genes related to carbohydrate metabolism. Several antibiotic resistance genes (ARGs) were found, and the composition of ARGs was similar to that of factory-farmed chickens, suggesting that antibiotics were widely present in the gut microbiota of Jianghan chickens. The resistance genes of Jianghan chickens are mainly carried by microorganisms of the Bacteroidota and Bacillota phylum. In addition, more than 829 isolates were selected from the microbiota of Jianghan chickens. Following three rounds of acid and bile tolerance experiments performed on all the isolated strains, it was determined that six strains of Pediococcus acidilactici exhibited consistent tolerance. Further experiments confirmed that three of these strains (A4, B9, and C2) held substantial probiotic potential, with P. acidilactici B9 displaying the highest probiotic potential. CONCLUSIONS: This study elucidates the composition of the intestinal microbiota and functional gene repertoire in Jianghan chickens. Despite the absence of antibiotic supplementation, the intestinal microbial community of Jianghan chickens still demonstrates a profile of antibiotic resistance genes similar to that of intensively reared chickens, suggesting resistance genes are prevalent in free-ranging poultry. Moreover, Jianghan and intensively reared chickens host major resistance genes differently, an aspect seldom explored between free-range and pastured chickens. Furthermore, among the 829 isolates, three strains of P. acidilatici exhibited strong probiotic potential. These findings provide insights into the unique gut microbiota of Jianghan chickens and highlight potential probiotic strains offering benefits to the host. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Probióticos , Animais , Galinhas/microbiologia , Microbioma Gastrointestinal/genética , Metagenoma , Pediococcus/genética , Antibacterianos/farmacologia , Bacteroidetes/genética
3.
Microbiol Spectr ; 12(4): e0326723, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38441475

RESUMO

Cellulolytic bacteria ferment dietary fiber into short-chain fatty acids, which play an important role in improving fiber utilization and maintaining intestinal health. Safe and effective cellulolytic bacteria are highly promising probiotic candidates. In this study, we isolated three strains of Bacillus cereus, which exhibited cellulolytic properties, from Kele pig feces. To assess the genetic basis of cellulose degradation by the isolates, whole-genome sequencing was used to detect functional genes associated with cellulose metabolism. Subsequently, we identified that the B. cereus CL2 strain was safe in mice by monitoring body weight changes, performing histopathologic evaluations, and determining routine blood indices. We next evaluated the biological characteristics of the CL2 strain in terms of its growth, tolerance, and antibiotic susceptibility, with a focus on its ability to produce short-chain fatty acids. Finally, the intestinal flora structure of the experimental animals was analyzed to assess the intestinal environment compatibility of the CL2 strain. In this study, we isolated a cellulolytic B. cereus CL2, which has multiple cellulolytic functional genes and favorable biological characteristics, from the feces of Kele pigs. Moreover, CL2 could produce a variety of short-chain fatty acids and does not significantly affect the diversity of the intestinal flora. In summary, the cellulolytic bacterium B. cereus CL2 is a promising strain for use as a commercial probiotic or in feed supplement. IMPORTANCE: Short-chain fatty acids are crucial constituents of the intestinal tract, playing an important and beneficial role in preserving the functional integrity of the intestinal barrier and modulating both immune responses and the structure of the intestinal flora. In the intestine, short-chain fatty acids are mainly produced by bacterial fermentation of cellulose. Therefore, we believe that safe and efficient cellulolytic bacteria have the potential to be novel probiotics. In this study, we systematically evaluated the safety and biological characteristics of the cellulolytic bacterium B. cereus CL2 and provide evidence for its use as a probiotic.


Assuntos
Bacillus cereus , Probióticos , Animais , Suínos , Camundongos , Bacillus cereus/genética , Ácidos Graxos Voláteis , Intestinos , Celulose
4.
Heliyon ; 9(4): e14641, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37035350

RESUMO

Previous studies documented that Lactobacillus paracasei has obvious in vitro cholesterol-lowering abilities. In this study, initially, L. paracasei was tested in terms of antibacterial properties as well as antibiogram profile. Then, the safety of the mentioned strain was evaluated in rats. Evaluation of antibiotic susceptibility revealed that the L. paracasei strain had high antibiotic resistance to several antibiotics as well as a great ability to autoaggregation. After identification of the probiotic aptitude, six groups of six rats from both sexes were used (three groups of each sex). L. paracasei was administered to the experimental groups via drinking water for 28 days (1 × 108 and 1 × 109, respectively). The negative control group received only tap water during this period. Hematological indicators, serum liver enzyme activity including (alanine transaminase (ALT), alkaline phosphatase (ALP), and aspartate transaminase (AST)) as well as serum creatinine and urea were evaluated at the end of 28 days. The blood and serum factors were not changed significantly during the 28 days. The only noticeable difference was the increase of blood urea in both sexes which was in a normal range. Furthermore, the evaluation of antagonistic properties revealed that L. paracasei had antibacterial aptitude against Escherichia coli and Staphylococcus aureus. In conclusion, this strain has good cholesterol-lowering and antibacterial properties and is a safe supplement in Wistar rats.

5.
Front Microbiol ; 14: 1213370, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744916

RESUMO

The present work aimed to identify probiotic candidates from Lithuanian homemade fermented food samples. A total of 23 lactic acid bacteria were isolated from different fermented food samples. Among these, only 12 showed resistance to low pH, tolerance to pepsin, bile salts, and pancreatin. The 12 strains also exhibited antimicrobial activity against Staphylococcus aureus ATCC 29213, Salmonella Typhimurium ATCC 14028, Streptococcus pyogenes ATCC 12384, Streptococcus pyogenes ATCC 19615, and Klebsiella pneumoniae ATCC 13883. Cell-free supernatants of isolate 3A and 55w showed the strongest antioxidant activity of 26.37 µg/mL and 26.06 µg/mL, respectively. Isolate 11w exhibited the strongest auto-aggregation ability of 79.96% as well as the strongest adhesion to HCT116 colon cells (25.671 ± 0.43%). The selected strains were tested for their synbiotic relation in the presence of a prebiotic. The selected candidates showed high proliferation in the presence of 4% as compared to 2% galactooligosaccharides. Among the strains tested for tryptophan production ability, isolate 11w produced the highest L-tryptophan levels of 16.63 ± 2.25 µm, exhibiting psychobiotic ability in the presence of a prebiotic. The safety of these strains was studied by ascertaining their antibiotic susceptibility, mucin degradation, gelatin hydrolysis, and hemolytic activity. In all, isolates 40C and 11w demonstrated the most desirable probiotic potentials and were identified by 16S RNA and later confirmed by whole genome sequencing as Lacticaseibacillus paracasei 11w, and Lactiplantibacillus plantarum 40C: following with the harboring plasmid investigation. Out of all the 23 selected strains, only Lacticaseibacillus paracasei 11w showed the potential and desirable probiotic properties.

6.
Front Cell Infect Microbiol ; 12: 984537, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189367

RESUMO

In order to evaluate the potential and safety of lactic acid bacteria (LAB) isolated from faeces samples of Ganan yak as probiotic for prevention and/or treatment of yak diarrhea, four strains of LAB including Latilactobacillus curvatus (FY1), Weissella cibaria (FY2), Limosilactobacillus mucosae (FY3), and Lactiplantibacillus pentosus (FY4) were isolated and identified in this study. Cell surface characteristics (hydrophobicity and cell aggregation), acid resistance and bile tolerance, compatibility, antibacterial activity and in vitro cell adhesion tests were also carried out to evaluate the probiotic potential of LAB. The results showed that the four isolates had certain acid tolerance, bile salt tolerance, hydrophobicity and cell aggregation, all of which contribute to the survival and colonization of LAB in the gastrointestinal tract. There is no compatibility between the four strains, so they can be combined into a mixed probiotic formula. Antimicrobial tests showed that the four strains were antagonistic to Escherichia coli, Staphylococcus aureus, and Salmonella typhimurium. Moreover, the in vitro safety of the four isolates were determined through hemolytic analysis, gelatinase activity, and antibacterial susceptibility experiments. The results suggest that all the four strains were considered as safe because they had no hemolytic activity, no gelatinase activity and were sensitive to most antibacterial agents. Moreover, the acute oral toxicity test of LAB had no adverse effect on body weight gain, food utilization and organ indices in Kunming mice. In conclusion, the four LAB isolated from yak feces have considerable potential to prevent and/or treat yak bacterial disease-related diarrhea.


Assuntos
Infecções Bacterianas , Lactobacillales , Probióticos , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bovinos , Diarreia/veterinária , Fezes/microbiologia , Lactobacillales/metabolismo , Camundongos
7.
Front Microbiol ; 12: 756519, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795651

RESUMO

Increasing evidence has indicated that oxidative stress is associated with the health of infants. Bifidobacterium, especially B. longum subsp. longum strains, are abundant in the gut microbiota of infants, which may have the potential to ameliorate oxidative damage. Thus, this study aimed to isolate and screen B. longum subsp. longum strains with probiotic characters and antioxidant properties as infants' dietary supplements. In this study, 24 B. longum subsp. longum strains were isolated from 15 healthy infants identified via 16S rRNA and heat shock protein 60 (hsp60) sequences. B. longum subsp. longum B13, F2, K4, K5, K10, K13, and K15 strains were selected based on high values obtained from autoaggregation, hydrophobicity, and adhesion assays to HT-29 cells. Among these seven strains, B. longum subsp. longum F2, K5, K10, and K15 were selected according to the high tolerance of gastrointestinal tract conditions compared to Bifidobacterium animalis subsp. lactis BB-12. Among these four strains, B. longum subsp. longum K5 was susceptible to common antibiotics and showed the highest intestinal epithelial cell proliferation of CCD 841 CoN. Additionally, B. longum subsp. longum K5 showed a strong antioxidant capacity, and its supernatant exhibited better activity of reducing power, hydroxyl radical scavenging, and DPPH radical scavenging than that of the intact cells with cell-free extracts. The findings indicated that B. longum subsp. longum K5 could be used as a probiotic candidate in infant nutrition.

8.
Res Vet Sci ; 105: 62-4, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27033910

RESUMO

One hundred and twenty bacterial isolates were obtained from the intestinal mucus of Nile tilapia (Oreochromis niloticus) and screened for antagonistic activity and adherence abilities. Based on in vitro antagonism against two pathogens (Streptococcus iniae and Edwardsiella piscicida), five isolates were selected and identified by 16S rRNA gene sequence analysis. All antagonistic isolates were affiliated to the genus Bacillus, which showed inhibitory activity against S. iniae. Only the isolate B191 (closely related to Bacillus mojavensis) inhibited the growth of both pathogens. Moreover, isolate B191 adhered significantly better to fish intestinal mucus than other antagonistic isolates. According to our results, these bacterial isolates, particularly isolate B191, should be further studied to explore their probiotic effects under in vivo conditions.


Assuntos
Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bacillus/metabolismo , Ciclídeos/microbiologia , Edwardsiella/efeitos dos fármacos , Streptococcus iniae/efeitos dos fármacos , Animais , Bacillus/classificação , Bacillus/genética , Probióticos/farmacologia , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa