Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cell ; 184(15): 4064-4072.e28, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34133942

RESUMO

Transcription initiation requires assembly of the RNA polymerase II (Pol II) pre-initiation complex (PIC) and opening of promoter DNA. Here, we present the long-sought high-resolution structure of the yeast PIC and define the mechanism of initial DNA opening. We trap the PIC in an intermediate state that contains half a turn of open DNA located 30-35 base pairs downstream of the TATA box. The initially opened DNA region is flanked and stabilized by the polymerase "clamp head loop" and the TFIIF "charged region" that both contribute to promoter-initiated transcription. TFIIE facilitates initiation by buttressing the clamp head loop and by regulating the TFIIH translocase. The initial DNA bubble is then extended in the upstream direction, leading to the open promoter complex and enabling start-site scanning and RNA synthesis. This unique mechanism of DNA opening may permit more intricate regulation than in the Pol I and Pol III systems.


Assuntos
DNA/química , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/metabolismo , Iniciação da Transcrição Genética , Sequência de Aminoácidos , Microscopia Crioeletrônica , DNA/ultraestrutura , Modelos Biológicos , Modelos Moleculares , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , RNA Polimerase II/ultraestrutura , Deleção de Sequência , Fator de Transcrição TFIIH , Fatores de Transcrição TFII/metabolismo
2.
Mol Cell ; 84(12): 2287-2303.e10, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38821049

RESUMO

Cyclin-dependent kinase 7 (CDK7), part of the general transcription factor TFIIH, promotes gene transcription by phosphorylating the C-terminal domain of RNA polymerase II (RNA Pol II). Here, we combine rapid CDK7 kinase inhibition with multi-omics analysis to unravel the direct functions of CDK7 in human cells. CDK7 inhibition causes RNA Pol II retention at promoters, leading to decreased RNA Pol II initiation and immediate global downregulation of transcript synthesis. Elongation, termination, and recruitment of co-transcriptional factors are not directly affected. Although RNA Pol II, initiation factors, and Mediator accumulate at promoters, RNA Pol II complexes can also proceed into gene bodies without promoter-proximal pausing while retaining initiation factors and Mediator. Further downstream, RNA Pol II phosphorylation increases and initiation factors and Mediator are released, allowing recruitment of elongation factors and an increase in RNA Pol II elongation velocity. Collectively, CDK7 kinase activity promotes the release of initiation factors and Mediator from RNA Pol II, facilitating RNA Pol II escape from the promoter.


Assuntos
Quinase Ativadora de Quinase Dependente de Ciclina , Quinases Ciclina-Dependentes , Regiões Promotoras Genéticas , RNA Polimerase II , Iniciação da Transcrição Genética , Humanos , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Complexo Mediador/metabolismo , Complexo Mediador/genética , Células HeLa , Fator de Transcrição TFIIH/metabolismo , Fator de Transcrição TFIIH/genética , Células HEK293
3.
Cell ; 166(6): 1411-1422.e16, 2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27610567

RESUMO

A complete, 52-protein, 2.5 million dalton, Mediator-RNA polymerase II pre-initiation complex (Med-PIC) was assembled and analyzed by cryo-electron microscopy and by chemical cross-linking and mass spectrometry. The resulting complete Med-PIC structure reveals two components of functional significance, absent from previous structures, a protein kinase complex and the Mediator-activator interaction region. It thereby shows how the kinase and its target, the C-terminal domain of the polymerase, control Med-PIC interaction and transcription.


Assuntos
Complexo Mediador/química , Complexo Mediador/metabolismo , Modelos Moleculares , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Microscopia Crioeletrônica , Regulação da Expressão Gênica , Espectrometria de Massas , Fosforilação , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Mol Cell ; 83(11): 1798-1809.e7, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37148879

RESUMO

At active human genes, the +1 nucleosome is located downstream of the RNA polymerase II (RNA Pol II) pre-initiation complex (PIC). However, at inactive genes, the +1 nucleosome is found further upstream, at a promoter-proximal location. Here, we establish a model system to show that a promoter-proximal +1 nucleosome can reduce RNA synthesis in vivo and in vitro, and we analyze its structural basis. We find that the PIC assembles normally when the edge of the +1 nucleosome is located 18 base pairs (bp) downstream of the transcription start site (TSS). However, when the nucleosome edge is located further upstream, only 10 bp downstream of the TSS, the PIC adopts an inhibited state. The transcription factor IIH (TFIIH) shows a closed conformation and its subunit XPB contacts DNA with only one of its two ATPase lobes, inconsistent with DNA opening. These results provide a mechanism for nucleosome-dependent regulation of transcription initiation.


Assuntos
Nucleossomos , RNA Polimerase II , Humanos , Nucleossomos/genética , RNA Polimerase II/metabolismo , Regiões Promotoras Genéticas , Fator de Transcrição TFIIH/metabolismo , DNA/genética , DNA/química , Transcrição Gênica , Sítio de Iniciação de Transcrição
5.
Mol Cell ; 83(4): 574-588.e11, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36731470

RESUMO

Most eukaryotic promoter regions are divergently transcribed. As the RNA polymerase II pre-initiation complex (PIC) is intrinsically asymmetric and responsible for transcription in a single direction, it is unknown how divergent transcription arises. Here, the Saccharomyces cerevisiae Mediator complexed with a PIC (Med-PIC) was assembled on a divergent promoter and analyzed by cryoelectron microscopy. The structure reveals two distinct Med-PICs forming a dimer through the Mediator tail module, induced by a homodimeric activator protein localized near the dimerization interface. The tail dimer is associated with ∼80-bp upstream DNA, such that two flanking core promoter regions are positioned and oriented in a suitable form for PIC assembly in opposite directions. Also, cryoelectron tomography visualized the progress of the PIC assembly on the two core promoter regions, providing direct evidence for the role of the Med-PIC dimer in divergent transcription.


Assuntos
RNA Polimerase II , Proteínas de Saccharomyces cerevisiae , RNA Polimerase II/metabolismo , Microscopia Crioeletrônica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Regiões Promotoras Genéticas , Transcrição Gênica , Complexo Mediador/genética , Iniciação da Transcrição Genética
6.
Mol Cell ; 82(3): 660-676.e9, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051353

RESUMO

Previous structural studies of the initiation-elongation transition of RNA polymerase II (pol II) transcription have relied on the use of synthetic oligonucleotides, often artificially discontinuous to capture pol II in the initiating state. Here, we report multiple structures of initiation complexes converted de novo from a 33-subunit yeast pre-initiation complex (PIC) through catalytic activities and subsequently stalled at different template positions. We determine that PICs in the initially transcribing complex (ITC) can synthesize a transcript of ∼26 nucleotides before transitioning to an elongation complex (EC) as determined by the loss of general transcription factors (GTFs). Unexpectedly, transition to an EC was greatly accelerated when an ITC encountered a downstream EC stalled at promoter proximal regions and resulted in a collided head-to-end dimeric EC complex. Our structural analysis reveals a dynamic state of TFIIH, the largest of GTFs, in PIC/ITC with distinct functional consequences at multiple steps on the pathway to elongation.


Assuntos
RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Iniciação da Transcrição Genética , Microscopia Crioeletrônica , Regulação Fúngica da Expressão Gênica , Modelos Moleculares , Regiões Promotoras Genéticas , Conformação Proteica , RNA Polimerase II/genética , RNA Polimerase II/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Relação Estrutura-Atividade , Fatores de Tempo , Elongação da Transcrição Genética , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFII/metabolismo
7.
Mol Cell ; 71(1): 89-102.e5, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29979971

RESUMO

Accessible chromatin is important for RNA polymerase II recruitment and transcription initiation at eukaryotic promoters. We investigated the mechanistic links between promoter DNA sequence, nucleosome positioning, and transcription. Our results indicate that positioning of the transcription start site-associated +1 nucleosome in yeast is critical for efficient TBP binding and is driven by two key factors, the essential chromatin remodeler RSC and a small set of ubiquitous general regulatory factors (GRFs). Our findings indicate that the strength and directionality of RSC action on promoter nucleosomes depends on the arrangement and proximity of two specific DNA motifs. This, together with the effect on nucleosome position observed in double depletion experiments, suggests that, despite their widespread co-localization, RSC and GRFs predominantly act through independent signals to generate accessible chromatin. Our results provide mechanistic insight into how the promoter DNA sequence instructs trans-acting factors to control nucleosome architecture and stimulate transcription initiation.


Assuntos
Montagem e Desmontagem da Cromatina , Nucleossomos/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Nucleossomos/genética , RNA Polimerase II/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
EMBO J ; 40(16): e102509, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34155658

RESUMO

The SAGA coactivator complex is essential for eukaryotic transcription and comprises four distinct modules, one of which contains the ubiquitin hydrolase USP22. In yeast, the USP22 ortholog deubiquitylates H2B, resulting in Pol II Ser2 phosphorylation and subsequent transcriptional elongation. In contrast to this H2B-associated role in transcription, we report here that human USP22 contributes to the early stages of stimulus-responsive transcription, where USP22 is required for pre-initiation complex (PIC) stability. Specifically, USP22 maintains long-range enhancer-promoter contacts and controls loading of Mediator tail and general transcription factors (GTFs) onto promoters, with Mediator core recruitment being USP22-independent. In addition, we identify Mediator tail subunits MED16 and MED24 and the Pol II subunit RBP1 as potential non-histone substrates of USP22. Overall, these findings define a role for human SAGA within the earliest steps of transcription.


Assuntos
Ubiquitina Tiolesterase/genética , Apoptose , Estresse do Retículo Endoplasmático/genética , Células HCT116 , Humanos , Complexo Mediador/genética , Regiões Promotoras Genéticas , RNA Polimerase II , Transcrição Gênica
9.
Mol Cell ; 61(1): 27-38, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26669263

RESUMO

Gene activation in metazoans is accompanied by the presence of histone variants H2AZ and H3.3 within promoters and enhancers. It is not known, however, what protein deposits H3.3 into chromatin or whether variant chromatin plays a direct role in gene activation. Here we show that chromatin containing acetylated H2AZ and H3.3 stimulates transcription in vitro. Analysis of the Pol II pre-initiation complex on immobilized chromatin templates revealed that the E1A binding protein p400 (EP400) was bound preferentially to and required for transcription stimulation by acetylated double-variant chromatin. EP400 also stimulated H2AZ/H3.3 deposition into promoters and enhancers and influenced transcription in vivo at a step downstream of the Mediator complex. EP400 efficiently exchanged recombinant histones H2A and H3.1 with H2AZ and H3.3, respectively, in a chromatin- and ATP-stimulated manner in vitro. Our data reveal that EP400 deposits H3.3 into chromatin alongside H2AZ and contributes to gene regulation after PIC assembly.


Assuntos
Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Histonas/metabolismo , Regiões Promotoras Genéticas , Ativação Transcricional , Acetilação , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Genes Reporter , Histonas/genética , Humanos , Interferência de RNA , RNA Polimerase II/metabolismo , Fatores de Tempo , Transfecção
10.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077046

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman's disease. During KSHV lytic infection, lytic-related genes, categorized as immediate-early, early, and late genes, are expressed in a temporal manner. The transcription of late genes requires the virus-specific pre-initiation complex (vPIC), which consists of viral transcription factors. However, the protein-protein interactions of the vPIC factors have not been completely elucidated. KSHV ORF18 is one of the vPIC factors, and its interaction with other viral proteins has not been sufficiently revealed. In order to clarify these issues, we analyzed the interaction between ORF18 and another vPIC factor, ORF30, in living cells using the bimolecular fluorescence complementation (BiFC) assay. We identified four amino-acid residues (Leu29, Glu36, His41, and Trp170) of ORF18 that were responsible for its interaction with ORF30. Pull-down assays also showed that these four residues were required for the ORF18-ORF30 interaction. The artificial intelligence (AI) system AlphaFold2 predicted that the identified four residues are localized on the surface of ORF18 and are in proximity to each other. Thus, our AI-predicted model supports the importance of the four residues for binding ORF18 to ORF30. These results indicated that wet experiments in combination with AI may enhance the structural characterization of vPIC protein-protein interactions.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Inteligência Artificial , Fluorescência , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/genética , Humanos , Replicação Viral/genética
11.
EMBO J ; 36(18): 2698-2709, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28739580

RESUMO

In eukaryotic cells, RNA polymerase I (Pol I) synthesizes precursor ribosomal RNA (pre-rRNA) that is subsequently processed into mature rRNA. To initiate transcription, Pol I requires the assembly of a multi-subunit pre-initiation complex (PIC) at the ribosomal RNA promoter. In yeast, the minimal PIC includes Pol I, the transcription factor Rrn3, and Core Factor (CF) composed of subunits Rrn6, Rrn7, and Rrn11. Here, we present the cryo-EM structure of the 18-subunit yeast Pol I PIC bound to a transcription scaffold. The cryo-EM map reveals an unexpected arrangement of the DNA and CF subunits relative to Pol I. The upstream DNA is positioned differently than in any previous structures of the Pol II PIC. Furthermore, the TFIIB-related subunit Rrn7 also occupies a different location compared to the Pol II PIC although it uses similar interfaces as TFIIB to contact DNA. Our results show that although general features of eukaryotic transcription initiation are conserved, Pol I and Pol II use them differently in their respective transcription initiation complexes.


Assuntos
RNA Polimerase I/química , RNA Polimerase I/metabolismo , Saccharomyces cerevisiae/enzimologia , Transcrição Gênica , Microscopia Crioeletrônica , DNA Fúngico/metabolismo , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , RNA Ribossômico/biossíntese , Saccharomyces cerevisiae/genética
12.
EMBO Rep ; 19(12)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30361391

RESUMO

Canonical Wnt/ß-catenin signaling is an essential regulator of various cellular functions throughout development and adulthood. Aberrant Wnt/ß-catenin signaling also contributes to various pathologies including cancer, necessitating an understanding of cell context-dependent mechanisms regulating this pathway. Since protein-protein interactions underpin ß-catenin function and localization, we sought to identify novel ß-catenin interacting partners by affinity purification coupled with tandem mass spectrometry in vascular smooth muscle cells (VSMCs), where ß-catenin is involved in both physiological and pathological control of cell proliferation. Here, we report novel components of the VSMC ß-catenin interactome. Bioinformatic analysis of the protein networks implies potentially novel functions for ß-catenin, particularly in mRNA translation, and we confirm a direct interaction between ß-catenin and the fragile X mental retardation protein (FMRP). Biochemical studies reveal a basal recruitment of ß-catenin to the messenger ribonucleoprotein and translational pre-initiation complex, fulfilling a translational repressor function. Wnt stimulation antagonizes this function, in part, by sequestering ß-catenin away from the pre-initiation complex. In conclusion, we present evidence that ß-catenin fulfills a previously unrecognized function in translational repression.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Iniciação Traducional da Cadeia Peptídica , beta Catenina/metabolismo , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Cicloeximida/farmacologia , Ontologia Genética , Células HEK293 , Humanos , Camundongos , Iniciação Traducional da Cadeia Peptídica/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ratos , Via de Sinalização Wnt/efeitos dos fármacos
13.
Methods ; 159-160: 82-89, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30905750

RESUMO

Transcription initiation can be reconstituted from highly purified general transcription factors (GTFs), RNA polymerase II (pol II), and promoter DNA. However, earlier biochemical reconstitution systems had a serious technical limitation, namely very poor initiation efficiency. Due to the poor efficiency of the reaction and trace amounts of proteins involved in the pre-initiation complex (PIC) assembly, detection of transcription and PIC formation was only possible by the synthesis of a radiolabeled transcript and by immunoblotting for PIC components on templates. Here we describe a transcription system that is capable of initiating transcription with >90% efficiency of template usage using homogeneous, active yeast components including TFIIA, TFIIB, TBP, TFIIE, TFIIF, TFIIH, Sub1, and pol II. The abundant specifically assembled PICs on promoter DNA can be separated from free general transcription factors (GTFs) and pol II by density gradient sedimentation, irrespective of the length of promoter DNA. The system is robust, and can be modified to accommodate many other transcription factors, and the resulting complexes can be analyzed by SDS-PAGE followed by Coomassie Blue staining. This technical advance now paves the way to conduct definitive biochemical and structural studies of the complete process of pol II initiation from the PIC, through promoter escape, and finally to productive elongation.


Assuntos
Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Iniciação da Transcrição Genética , Complexos Multiproteicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIA/metabolismo , Fator de Transcrição TFIIB/metabolismo , Fatores de Transcrição TFII/metabolismo , Leveduras/enzimologia , Leveduras/genética , Leveduras/metabolismo
14.
EMBO Rep ; 18(10): 1752-1761, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28818838

RESUMO

Initiation of chromosomal DNA replication in eukaryotes involves two steps: licensing and firing. In licensing, a core component of the replicative helicase, the Mcm2-7 complex, is loaded onto replication origins as an inactive double hexamer, which is activated in the firing step by firing factors. A reaction intermediate called the pre-initiation complex (pre-IC) has been proposed to assemble transiently during firing, but the existence of the pre-IC has not yet been confirmed. Here, we show, by systematic chromatin immunoprecipitation, that a distinct intermediate that fits the definition of the pre-IC assembles during firing in the budding yeast Saccharomyces cerevisiae Pre-IC assembly is observed in the absence of Mcm10, one of the firing factors, and is mutually dependent on all the firing factors whose association to replication origins is triggered by cyclin-dependent kinase. In the pre-IC, the Mcm2-7 double hexamer is separated into single hexamers, as in the active helicase. Our data indicate that pre-IC assembly functions as an all-or-nothing molecular switch that splits the Mcm2-7 double hexamer.


Assuntos
Replicação do DNA , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Imunoprecipitação , Proteínas de Manutenção de Minicromossomo/genética , Origem de Replicação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/economia , Proteínas de Saccharomyces cerevisiae/genética
15.
Biochem Biophys Res Commun ; 483(3): 936-940, 2017 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-28082201

RESUMO

Protein synthesis is one of the main cellular functions inhibited during hypertonic challenge. The subsequent accumulation of the compatible osmolyte betaine during the later adaptive response allows not only recovery of translation but also its stimulation. In this paper, we show that betaine modulates translation by enhancing the formation of cap-independent 48 S pre-initiation complexes, leaving cap-dependent 48 S pre-initiation complexes basically unchanged. In the presence of betaine, CrPV IRES- and sodium-dependent neutral amino acid transporter-2 (SNAT2) 5'-UTR-driven translation is 2- and 1.5-fold stimulated in MCF7 cells, respectively. Thus, betaine could provide an advantage in translation of messengers coding for proteins implicated in the response of cells to different stressors, which are often recognized by ribosomal 40 S subunit through simplified cap-independent mechanisms.


Assuntos
Betaína/metabolismo , Betaína/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Capuzes de RNA/metabolismo , Regiões 5' não Traduzidas , Sistema A de Transporte de Aminoácidos/metabolismo , Animais , Sistema Livre de Células , Humanos , Soluções Hipertônicas , Luciferases/genética , Luciferases/metabolismo , Células MCF-7 , Pressão Osmótica , Polirribossomos/metabolismo , Biossíntese de Proteínas/genética , Coelhos , Reticulócitos/efeitos dos fármacos , Reticulócitos/metabolismo
16.
Cell Rep ; 39(4): 110732, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35476980

RESUMO

RNA polymerase II (Pol II)-mediated transcription in metazoans requires precise regulation. RNA Pol II-associated protein 2 (RPAP2) was previously identified to transport Pol II from cytoplasm to nucleus and dephosphorylates Pol II C-terminal domain (CTD). Here, we show that RPAP2 binds hypo-/hyper-phosphorylated Pol II with undetectable phosphatase activity. The structure of RPAP2-Pol II shows mutually exclusive assembly of RPAP2-Pol II and pre-initiation complex (PIC) due to three steric clashes. RPAP2 prevents and disrupts Pol II-TFIIF interaction and impairs in vitro transcription initiation, suggesting a function in inhibiting PIC assembly. Loss of RPAP2 in cells leads to global accumulation of TFIIF and Pol II at promoters, indicating a critical role of RPAP2 in inhibiting PIC assembly independent of its putative phosphatase activity. Our study indicates that RPAP2 functions as a gatekeeper to inhibit PIC assembly and transcription initiation and suggests a transcription checkpoint.


Assuntos
Núcleo Celular , RNA Polimerase II , Núcleo Celular/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Regiões Promotoras Genéticas/genética , RNA Polimerase II/metabolismo
17.
Microorganisms ; 10(5)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35630341

RESUMO

During Epstein-Barr virus (EBV) lytic replication, viral DNA synthesis is carried out in viral replication factories called replication compartments (RCs), which are located at discrete sites in the nucleus. Viral proteins constituting the viral replication machinery are accumulated in the RCs to amplify viral genomes. Newly synthesized viral DNA is stored in a subdomain of the RC termed the BMRF1-core, matured by host factors, and finally packed into assembled viral capsids. Late (L) genes are transcribed from DNA stored in the BMRF1-core through a process that is mainly dependent on the viral pre-initiation complex (vPIC). RC formation is a well-regulated system and strongly advantageous for EBV survival because of the following aspects: (1) RCs enable the spatial separation of newly synthesized viral DNA from the cellular chromosome for protection and maturation of viral DNA; (2) EBV-coded proteins and their interaction partners are recruited to RCs, which enhances the interactions among viral proteins, cellular proteins, and viral DNA; (3) the formation of RCs benefits continuous replication, leading to L gene transcription; and (4) DNA storage and maturation leads to efficient progeny viral production. Here, we review the state of knowledge of this important viral structure and discuss its roles in EBV survival.

18.
J Mol Biol ; 433(14): 166813, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-33453189

RESUMO

The general transcription factor TFIIH contains three ATP-dependent catalytic activities. TFIIH functions in nucleotide excision repair primarily as a DNA helicase and in Pol II transcription initiation as a dsDNA translocase and protein kinase. During initiation, the XPB/Ssl2 subunit of TFIIH couples ATP hydrolysis to dsDNA translocation facilitating promoter opening and the kinase module phosphorylates Pol II to facilitate the transition to elongation. These functions are conserved between metazoans and yeast; however, yeast TFIIH also drives transcription start-site scanning in which Pol II scans downstream DNA to locate productive start-sites. The ten-subunit holo-TFIIH from S. cerevisiae has a processive dsDNA translocase activity required for scanning and a structural role in scanning has been ascribed to the three-subunit TFIIH kinase module. Here, we assess the dsDNA translocase activity of ten-subunit holo- and core-TFIIH complexes (i.e. seven subunits, lacking the kinase module) from both S. cerevisiae and H. sapiens. We find that neither holo nor core human TFIIH exhibit processive translocation, consistent with the lack of start-site scanning in humans. Furthermore, in contrast to holo-TFIIH, the S. cerevisiae core-TFIIH also lacks processive translocation and its dsDNA-stimulated ATPase activity was reduced ~5-fold to a level comparable to the human complexes, potentially explaining the reported upstream shift in start-site observed in vitro in the absence of the S. cerevisiae kinase module. These results suggest that neither human nor S. cerevisiae core-TFIIH can translocate efficiently, and that the S. cerevisiae kinase module functions as a processivity factor to allow for robust transcription start-site scanning.


Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/genética , DNA/metabolismo , Regulação da Expressão Gênica , Fator de Transcrição TFIIH/metabolismo , Sítio de Iniciação de Transcrição , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Iniciação da Transcrição Genética
19.
Cancer Biol Ther ; 22(10-12): 587-597, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34705606

RESUMO

Nop2/Sun RNA methyltransferase (NSUN6) is an RNA 5-methyl cytosine (5mC) transferase with little information known of its function in cancer and response to cancer therapy. Here, we show that NSUN6 methylates both large and small RNA in glioblastoma and controls glioblastoma response to temozolomide with or without influence of the MGMT promoter status, with high NSUN6 expression conferring survival benefit to glioblastoma patients and in other cancers. Mechanistically, our results show that NSUN6 controls response to TMZ therapy via 5mC-mediated regulation of NELFB and RPS6BK2. Taken together, we present evidence that show that NSUN6-mediated 5mC deposition regulates transcriptional pause by accumulation of NELFB and the general transcription factor complexes (POLR2A, TBP, TFIIA, and TFIIE) on the preinitiation complex at the TATA binding site to control translation machinery in glioblastoma response to alkylating agents. Our findings open a new frontier into controlling of transcriptional regulation by RNA methyltransferase and 5mC.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Proteínas Quinases S6 Ribossômicas 70-kDa , Temozolomida , Fatores de Transcrição , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Metilases de Modificação do DNA , Enzimas Reparadoras do DNA , Glioblastoma/tratamento farmacológico , Humanos , Metiltransferases/uso terapêutico , RNA , Temozolomida/uso terapêutico , tRNA Metiltransferases
20.
Biochim Biophys Acta Rev Cancer ; 1876(2): 188620, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34454982

RESUMO

Cancer cells require high levels of transcription to survive and maintain their cancerous phenotype. For several years, global transcription inhibitors have been used in the treatment of cancer. However, recent advances in understanding the functioning of the basal transcription machinery and the discovery of new drugs that affect the components of this machinery have generated a new boom in the use of this type of drugs to treat cancer. Inhibiting transcription at the global level in the cell generates a stress situation in which the cancer cell responds by overexpressing hundreds of genes in response to this transcriptional stress. Many of these over-transcribed genes encode factors that may be involved in the selection of cells resistant to the treatment and with a greater degree of malignancy. In this study, we reviewed various examples of substances that inhibit global transcription, as well as their targets, that have a high potential to be used against cancer. We also analysed what kinds of genes are overexpressed in the response to transcriptional stress by different substances and finally we discuss what types of studies are necessary to understand this type of stress response to have more tools to fight cancer.


Assuntos
Neoplasias/genética , Neoplasias/terapia , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Humanos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa