Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39295135

RESUMO

Phytoplasmas are minute phytopathogenic bacteria that induce excessive vegetative growth, known as witches'-broom (WB), in many infected plant species during the later stages of infection. The WB structure is characterized by densely clustered little (small) leaves, which are frequently accompanied by chlorosis (yellowing). The mechanisms behind the formation of little leaves within WB structures (LL-WB) are poorly understood. To address this gap, the LL-WB formation was extensively studied using sweet cherry virescence (SCV) phytoplasma-infected sweet cherry plants. Based on morphological examinations, signs of premature leaf senescence were observed in LL-WB samples, including reduced leaf size, chlorosis, and alterations in shape. Subsequent physiological analyses indicated decreased sucrose and glucose levels and changes in hormone concentrations in LL-WB samples. Additionally, the transcriptomic analysis revealed impaired ribosome biogenesis and DNA replication. As an essential process in protein production, the compromised ribosome biogenesis and the inhibited DNA replication led to cell cycle arrest, thus affecting leaf morphogenesis and further plant development. Moreover, the expression of marker genes involved in premature leaf senescence was significantly altered. These results indicate a complicated interplay between the development of leaves, premature leaf senescence, and the pathogen-induced stress responses in SCV phytoplasma-infected sweet cherry trees. The results of this study provide insight into understanding the underlying molecular mechanisms driving the formation of little leaves and interactions between plants and pathogens. The findings might help control phytoplasma diseases in sweet cherry cultivation.

2.
Int J Mol Sci ; 23(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35163732

RESUMO

Witches'-broom (WB, excessive initiation, and outgrowth of axillary buds) is one of the remarkable symptoms in plants caused by phytoplasmas, minute wall-less intracellular bacteria. In healthy plants, axillary bud initiation and outgrowth are regulated by an intricate interplay of nutrients (such as sugars), hormones, and environmental factors. However, how these factors are involved in the induction of WB by phytoplasma is poorly understood. We postulated that the WB symptom is a manifestation of the pathologically induced redistribution of sugar and phytohormones. Employing potato purple top phytoplasma and its alternative host tomato (Solanum lycopersicum), sugar metabolism and transportation, and the spatiotemporal distribution of phytohormones were investigated. A transmission electron microscopy (TEM) analysis revealed that starch breakdown was inhibited, resulting in the degradation of damaged chloroplasts, and in turn, premature leaf senescence. In the infected source leaves, two marker genes encoding asparagine synthetase (Sl-ASN) and trehalose-6-phosphate synthase (Sl-TPS) that induce early leaf senescence were significantly up-regulated. However, the key gibberellin biosynthesis gene that encodes ent-kaurene synthase (Sl-KS) was suppressed. The assessment of sugar content in various infected tissues (mature leaves, stems, roots, and leaf axils) indicated that sucrose transportation through phloem was impeded, leading to sucrose reallocation into the leaf axils. Excessive callose deposition and the resulting reduction in sieve pore size revealed by aniline blue staining and TEM provided additional evidence to support impaired sugar transport. In addition, a spatiotemporal distribution study of cytokinin and auxin using reporter lines detected a cytokinin signal in leaf axils where the axillary buds initiated. However, the auxin responsive signal was rarely present in such leaf axils, but at the tips of the newly elongated buds. These results suggested that redistributed sucrose as well as cytokinin in leaf axils triggered the axillary bud initiation, and auxin played a role in the bud elongation. The expression profiles of genes encoding squamosa promoter-binding proteins (Sl-SBP1), and BRANCHED1 (Sl-BRC1a and Sl-BRC1b) that control axillary bud release, as determined by quantitative reverse transcription (qRT)-PCR, indicated their roles in WB induction. However, their interactions with sugars and cytokinins require further study. Our findings provide a comprehensive insight into the mechanisms by which phytoplasmas induce WB along with leaf chlorosis, little leaf, and stunted growth.


Assuntos
Phytoplasma , Solanum lycopersicum , Cloroplastos/metabolismo , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/metabolismo , Phytoplasma/metabolismo , Doenças por Fitoplasmas , Reguladores de Crescimento de Plantas/metabolismo , Senescência Vegetal , Amido , Sacarose , Açúcares/metabolismo
3.
Plant J ; 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29901843

RESUMO

Premature leaf senescence in rice is one of the most common factors affecting the plant's development and yield. Although methyltransferases are involved in diverse biological functions, their roles in rice leaf senescence have not been previously reported. In this study, we identified the premature leaf senescence 3 (pls3) mutant in rice, which led to early leaf senescence and early heading date. Further investigations revealed that premature leaf senescence was triggered by the accumulation of reactive oxygen species. Using physiological analysis, we found that chlorophyll content was reduced in the pls3 mutant leaves, while hydrogen peroxide (H2 O2 ) and malondialdehyde levels were elevated. Consistent with these findings, the pls3 mutant exhibited hypersensitivity to exogenous hydrogen peroxide. The expression of other senescence-associated genes such as Osh36 and RCCR1 was increased in the pls3 mutant. Positional cloning indicated the pls3 phenotype was the result of a mutation in OsMTS1, which encodes an O-methyltransferase in the melatonin biosynthetic pathway. Functional complementation of OsMTS1 in pls3 completely restored the wild-type phenotype. We found leaf melatonin content to be dramatically reduced in pls3, and that exogenous application of melatonin recovered the pls3 mutant's leaf senescence phenotype to levels comparable to that of wild-type rice. Moreover, overexpression of OsMTS1 in the wild-type plant increased the grain yield by 15.9%. Our results demonstrate that disruption of OsMTS1, which codes for a methyltransferase, can trigger leaf senescence as a result of decreased melatonin production.

4.
Plant Mol Biol ; 100(1-2): 133-149, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30843130

RESUMO

KEY MESSAGE: The OsPLS2 locus was isolated and cloned by map-based cloning that encodes a Upf1-like helicase. Disruption of OsPLS2 accelerated light-dependent leaf senescence in the rice mutant of ospls2. Leaf senescence is a very complex physiological process controlled by both genetic and environmental factors, however its underlying molecular mechanisms remain elusive. In this study, we report a novel Oryza sativa premature leaf senescence mutant (ospls2). Through map-based cloning, a G-to-A substitution was determined at the 1st nucleotide of the 13th intron in the OsPLS2 gene that encodes a Upf1-like helicase. This mutation prompts aberrant splicing of OsPLS2 messenger and consequent disruption of its full-length protein translation, suggesting a negative role of OsPLS2 in regulating leaf senescence. Wild-type rice accordingly displayed a progressive drop of OsPSL2 protein levels with age-dependent leaf senescence. Shading and light filtration studies showed that the ospls2 phenotype, which was characteristic of photo-oxidative stress and reactive oxygen species (ROS) accumulation, was an effect of irritation by light. When continuously exposed to far-red light, exogenous H2O2 and/or abscisic acid (ABA), the ospls2 mutant sustained hypersensitive leaf senescence. In consistence, light and ROS signal pathways in ospls2 were activated by down-regulation of phytochrome genes, and up-regulation of PHYTOCHROME-INTERACTING FACTORS (PIFs) and WRKY genes, all promoting leaf senescence. Together, these data indicated that OsPLS2 played an essential role in leaf senescence and its disruption triggered light-dependent leaf senescence in rice.


Assuntos
DNA Helicases/genética , Genes de Plantas , Luz , Oryza/crescimento & desenvolvimento , Oryza/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Sequência de Aminoácidos , Antioxidantes/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação/genética , Oryza/enzimologia , Oryza/efeitos da radiação , Fenótipo , Fotossíntese/genética , Folhas de Planta/genética , Folhas de Planta/efeitos da radiação , Folhas de Planta/ultraestrutura , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
5.
Int J Mol Sci ; 20(2)2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30634648

RESUMO

Abiotic stresses trigger premature leaf senescence by affecting some endogenous factors, which is an important limitation for plant growth and grain yield. Among these endogenous factors that regulate leaf senescence, abscisic acid (ABA) works as a link between the oxidase damage of cellular structure and signal molecules responding to abiotic stress during leaf senescence. Considering the importance of ABA, we collect the latest findings related to ABA biosynthesis, ABA signaling, and its inhibitory effect on chloroplast structure destruction, chlorophyll (Chl) degradation, and photosynthesis reduction. Post-translational changes in leaf senescence end with the exhaustion of nutrients, yellowing of leaves, and death of senescent tissues. In this article, we review the literature on the ABA-inducing leaf senescence mechanism in rice and Arabidopsis starting from ABA synthesis, transport, signaling receptors, and catabolism. We also predict the future outcomes of investigations related to other plants. Before changes in translation occur, ABA signaling that mediates the expression of NYC, bZIP, and WRKY transcription factors (TFs) has been investigated to explain the inducing effect on senescence-associated genes. Various factors related to calcium signaling, reactive oxygen species (ROS) production, and protein degradation are elaborated, and research gaps and potential prospects are presented. Examples of gene mutation conferring the delay or induction of leaf senescence are also described, and they may be helpful in understanding the inhibitory effect of abiotic stresses and effective measures to tolerate, minimize, or resist their inducing effect on leaf senescence.


Assuntos
Ácido Abscísico/metabolismo , Redes e Vias Metabólicas , Transdução de Sinais , Estresse Fisiológico , Cálcio/metabolismo , Morte Celular , Senescência Celular , Regulação da Expressão Gênica de Plantas , Mutação , Estresse Oxidativo , Folhas de Planta/metabolismo , Plantas/genética , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sistemas do Segundo Mensageiro
6.
Plant Mol Biol ; 98(1-2): 19-32, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30117035

RESUMO

Key message The OsPLS3 locus was isolated by map-based cloning that encodes a DUF266-containing protein. OsPLS3 regulates the onset of leaf senescence in rice. Glycosyltransferases (GTs) are one of the most important enzyme groups required for the modification of plant secondary metabolites and play a crucial role in plant growth and development, however the biological functions of most GTs remain elusive. We reported here the identification and characterization of a novel Oryza sativa premature leaf senescence mutant (ospls3). Through map-based cloning strategy, we determined that 22-bp deletion in the OsPLS3 gene encoding a domain of unknown function 266 (DUF266)-containing protein, a member of GT14-like, underlies the premature leaf senescence phenotype in the ospls3 mutant. The OsPLS3 mRNA levels progressively declined with the age-dependent leaf senescence in wild-type rice, implying a negative role of OsPLS3 in regulating leaf senescence. Physiological analysis, and histochemical staining and transmission electron microscopy assays indicated that the ospls3 mutant accumulated higher levels of ethylene and reactive oxygen species than its wild type. Furthermore, the ospls3 mutant showed hypersensitivity to exogenous 1-aminocyclopropane-1-carboxylic acid, H2O2 and high level of cytokinins. Our results indicated that the DUF266-containing gene OsPLS3 plays an important role in the onset of leaf senescence, in part through cytokinin and ethylene signaling in rice.


Assuntos
Pareamento de Bases , Genes de Plantas , Oryza/crescimento & desenvolvimento , Oryza/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Proteínas de Plantas/genética , Deleção de Sequência/genética , Sequência de Bases , Citocininas/farmacologia , Etilenos/biossíntese , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Fenótipo , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Transporte Proteico/efeitos dos fármacos , Explosão Respiratória/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
7.
BMC Plant Biol ; 18(1): 264, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30382816

RESUMO

BACKGROUND: Spotted-leaf mutants are important to reveal programmed cell death and defense-related pathways in rice. We previously characterized the phenotype performance of a rice spotted-leaf mutant spl21 and narrowed down the causal gene locus spl21(t) to an 87-kb region in chromosome 12 by map-based cloning. RESULT: We showed that a single base substitution from A to G at position 836 in the coding sequence of Oryza sativa beta-1,6-N-acetylglucosaminyl transferase (OsGCNT), effectively mutating Tyr to Cys at position 279 in the translated protein sequence, was responsible for the spotted-leaf phenotype as it could be rescued by functional complementation. Compared to the wild type IR64, the spotted-leaf mutant spl21 exhibited loss of chlorophyll, breakdown of chloroplasts, down-regulation of photosynthesis-related genes, and up-regulation of senescence associated genes, which indicated that OsGCNT regulates premature leaf senescence. Moreover, the enhanced resistance to the bacterial leaf blight pathogen Xanthomonas oryzae pv. oryzae, up-regulation of pathogenesis-related genes and increased level of jasmonate which suggested that OsGCNT is a negative regulator of defense response in rice. OsGCNT was expressed constitutively in the leaves, sheaths, stems, roots, and panicles, and OsGCNT-GFP was localized to the Golgi apparatus. High throughput RNA sequencing analysis provided further evidence for the biological effects of loss of OsGCNT function on cell death, premature leaf senescence and enhanced disease resistance in rice. Thus, we demonstrated that the novel OsGCNT regulated rice innate immunity and immunity-associated leaf senescence probably by changing the jasmonate metabolic pathway. CONCLUSIONS: These results reveal that a novel gene Oryza sativa beta-1,6-N-acetylglucosaminyl transferase (OsGCNT) is responsible for the spotted-leaf mutant spl21, and OsGCNT acts as a negative-regulator mediating defense response and immunity-associated premature leaf senescence probably by activating jasmonate signaling pathway.


Assuntos
Oryza/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Xanthomonas/patogenicidade , Morte Celular/genética , Clonagem Molecular , Ciclopentanos/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno/genética , Mutação , Oxilipinas/metabolismo , Filogenia , Imunidade Vegetal , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
8.
Int J Mol Sci ; 18(9)2017 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-28926933

RESUMO

Premature leaf senescence occurs in the ultimate phase of the plant, and it occurs through a complex series of actions regulated by stress, hormones and genes. In this study, a proteomic analysis was performed to analyze the factors that could induce premature leaf senescence in two cotton cultivars. We successfully identified 443 differential abundant proteins (DAPs) from 7388 high-confidence proteins at four stages between non-premature senescence (NS) and premature senescence (PS), among which 158 proteins were over-accumulated, 238 proteins were down-accumulated at four stages, and 47 proteins displayed overlapped accumulation. All the DAPs were mapped onto 21 different categories on the basis of a Clusters of Orthologous Groups (COG) analysis, and 9 clusters were based on accumulation. Gene Ontology (GO) enrichment results show that processes related to stress responses, including responses to cold temperatures and responses to hormones, are significantly differentially accumulated. More importantly, the enriched proteins were mapped in The Arabidopsis Information Resource (TAIR), showing that 58 proteins play an active role in abiotic stress, hormone signaling and leaf senescence. Among these proteins, 26 cold-responsive proteins (CRPs) are significantly differentially accumulated. The meteorological data showed that the median temperatures declined at approximately 15 days before the onset of aging, suggesting that a decrease in temperature is tightly linked to an onset of cotton leaf senescence. Because accumulations of H2O2 and increased jasmonic acid (JA) were detected during PS, we speculate that two pathways associated with JA and H2O2 are closely related to premature leaf senescence in cotton.


Assuntos
Resposta ao Choque Frio , Gossypium/genética , Proteínas de Plantas/genética , Proteoma/genética , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo
9.
J Exp Bot ; 67(9): 2761-76, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26994476

RESUMO

Leaf senescence is a programmed developmental process orchestrated by many factors, but its molecular regulation is not yet fully understood. In this study, a novel Oryza sativa premature leaf senescence mutant (ospls1) was examined. Despite normal development in early seedlings, the ospls1 mutant leaves displayed lesion-mimics and early senescence, and a high transpiration rate after tillering. The mutant also showed seed dormancy attributable to physical (defect of micropyle structure) and physiological (abscisic acid sensitivity) factors. Using a map-based cloning approach, we determined that a cytosine deletion in the OsPLS1 gene encoding vacuolar H(+)-ATPase subunit A1 (VHA-A1) underlies the phenotypic abnormalities in the ospls1 mutant. The OsPSL1/VHA-A1 transcript levels progressively declined with the age-dependent leaf senescence in both the ospls1 mutant and its wild type. The significant decrease in both OsPSL1/VHA-A1 gene expression and VHA enzyme activity in the ospls1 mutant strongly suggests a negative regulatory role for the normal OsPLS1/VHA-A1 gene in the onset of rice leaf senescence. The ospls1 mutant featured higher salicylic acid (SA) levels and reactive oxygen species (ROS) accumulation, and activation of signal transduction by up-regulation of WRKY genes in leaves. Consistent with this, the ospls1 mutant exhibited hypersensitivity to exogenous SA and/or H2O2 Collectively, these results indicated that the OsPSL1/VAH-A1 mutation played a causal role in premature leaf senescence through a combination of ROS and SA signals. To conclude, OsPLS1 is implicated in leaf senescence and seed dormancy in rice.


Assuntos
Envelhecimento/genética , Genes de Plantas/genética , Oryza/genética , Dormência de Plantas/fisiologia , Folhas de Planta/fisiologia , ATPases Vacuolares Próton-Translocadoras/genética , Envelhecimento/fisiologia , Mapeamento Cromossômico , Clonagem Molecular , Citosina , Genes de Plantas/fisiologia , Oryza/fisiologia , Dormência de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência , Deleção de Sequência/genética , Deleção de Sequência/fisiologia , Transdução de Sinais , ATPases Vacuolares Próton-Translocadoras/fisiologia
10.
Plants (Basel) ; 11(9)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35567229

RESUMO

High temperature causes premature grape leaf senescence, abnormal berry softening, and shortening of the fruiting period. Furthermore, the fruit quality and yield are severely affected. Here, the "Jumeigui" grape quality and leaf senescence were evaluated under shading; green, blue, black, and gray nets were used for shading, and their spectra were measured. At the same density, the shade-net color significantly affected cooling and shading efficiencies, with gray nets showing the best light transmission and cooling effect. Shading significantly alleviated abnormal heat-induced grape softness. The total soluble solids (TSS) content and grape coloration were affected under gray, blue, and green shade nets. Nonetheless, TSS exceeded 18 °Brix under gray, blue, and green nets, as required of first-class high-quality fruit. The peel color was not significantly affected under gray or blue shade nets, whereas unshaded grapes showed clear heat-stress damage, especially on the edges of unshaded bottom leaves, in which the net photosynthesis rate was significantly lower than that under shading, indicating that high light intensity and heat caused premature leaf senescence. Colored shade nets reduced greenhouse temperature and light intensity, thereby alleviating the premature senescence of grape plants. Grape quality under black shade nets was poor, whereas superior quality was achieved using gray or blue shade nets.

11.
Plant Physiol Biochem ; 186: 31-39, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35803089

RESUMO

Exploring novel growth regulators for premature senescence regulation is important for tobacco production. In the present study, chlorine dioxide (ClO2) was explored as a novel plant growth regulator for tobacco growth, particularly its effect on leaf senescence and root development. The results showed that 0.15 µM ClO2 maintained the lushness of detached leaves and whole plants. Also, the leaves of ClO2-treated plants exhibited a chlorophyll content of 58% higher than in CK (control) plants (P < 0.05). Besides, ClO2 treatment increased the biomass of roots and aboveground parts by 54 and 16%, respectively. The ClO2-treated plants also showed enhanced activities of antioxidant enzymes and significantly reduced malondialdehyde contents (P < 0.05). Moreover, ClO2 treatment remarkably alleviated drought-caused premature senescence in the tobacco plants and partly rescued the exogenous ethylene-caused plant dwarfism. The indole-3-acetic acid content in ClO2-treated plants was higher than in non-treated plants (P < 0.05), but ethylene content was significantly lower (P < 0.05). Gene expression analysis showed that ClO2 treatment remarkably suppressed ethylene synthase genes. However, the auxin biosynthesis and transport genes were up-regulated, with NtIAA17 increasing by five folds (P < 0.05). Further, ClO2 remarkably up-regulated the expression of chlorophyll biosynthesis genes, with a >20-fold increase in NtHEMA1 and NtCHLH expressions. These results designate ClO2 as a potential regulator for improving tobacco productivity by retaining higher chlorophyll content and promoting root growth.


Assuntos
Nicotiana , Senescência Vegetal , Compostos Clorados , Clorofila/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Óxidos , Folhas de Planta/metabolismo , Nicotiana/metabolismo
12.
J Genet Eng Biotechnol ; 19(1): 177, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34812974

RESUMO

BACKGROUND: Leaf senescence occurs in an age-dependent manner, but the rate and timing of leaf senescence may be influenced by various biotic and abiotic factors. In the course of stress, the function, composition, and different components of photosynthetic apparatus occur to be synthesized homogeneously or degraded paradoxically due to different senescence-related processes. Nitrogen (N) deficiency is one of the critical environmental factors that induce leaf senescence, and its incidence may curtail leaf photosynthetic function and markedly alter the genetic information of plants that might result in low grain yield. However, the physiological and genetic mechanism underlying N deficiency regulates premature senescence, and flag leaf function, ROS homeostasis, and intercellular sugar concentration in rice during grain filling are not well understood. In this paper, Zhehui7954 an excellent indica restorer line (wildtype) and its corresponding mutant (psf) with the premature senescence of flag leaves were used to study the effect of different N supplies in the alteration of physiological and biochemical components of flag leaf organ and its functions during grain filling. RESULTS: The results showed that the psf mutant appeared to be more susceptible to the varying N supply levels than WT. For instance, the psf mutant showed considerably lower Pn, Chl a, Chl b, and Car contents than its WT. N deficiency (LN) decreased leaves photosynthetic activities, N metabolites, but significantly burst O2•-, H2O2, and relative conductivity (R1/R2) concentrations, which was consistent with the expression levels of senescence-associated genes. Sucrose, glucose, and C/N ratio concentrations increased with a decrease in N level, which was closely associated with N and non-structural carbohydrate translocation rates. Increases in POD activity were positively linked with the senescence-related enhancement of ROS generation under LN conditions, whereas, SOD, CAT, and APX activities showed opposite trends. High N (HN) supply significantly inhibits the transcripts of carbohydrate biosynthesis genes, while N assimilation gene transcripts gradually increased along with leaf senescence. The psf mutant had a relatively higher grain yield under HN treatment than LN, while WT had a higher grain yield under MN than HN and LN. CONCLUSIONS: This work revealed that the C/N ratio and ROS undergo a gradual increase driven by interlinking positive feedback, providing a physiological framework connecting the participation of sugars and N assimilation in the regulation of leaf senescence. These results could be useful for achieving a higher yield of rice production by appropriate N supply and plant senescence regulation.

13.
Plant Physiol Biochem ; 157: 47-59, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33075710

RESUMO

Soil salinity and drought stress (DS) are the massive problem for worldwide agriculture. Both stresses together become more toxic to the plant growth and development. Silicon (Si) being the second most abundant element in the earth's crust, exerts beneficial effects on plants under both stress and non-stress conditions. However, limited information is available to substantiate the beneficial role of Si in delaying the premature leaf senescence and imparting tolerance of mustard (Brassica juncea L.) plants to salinity and DS. Therefore, the present study aimed to explore the role of Si (source K2SiO3) in chlorophyll (Chl) biosynthesis, nutrients uptake, relative water content (RWC), proline (Pro) metabolism, antioxidant system and delaying of premature leaf senescence in mustard plants under sodium chloride (NaCl) and DS conditions. Results of this study show that exogenous Si (1.7 mM) significantly delayed the salt plus DS-induced premature leaf senescence. This was further accompanied by the enhanced nutrients accumulation and activity of chlorophyll metabolizing enzymes [δ-aminolevulinic acid (δ-ALA) dehydratase and porphobilinogen deaminase] and levels of δ-ALA, and Chls a and b and also by decreased the Chl degradation and Chl degrading enzymes (Chlorophyllase, Chl-degrading peroxidase, pheophytinase) activity. Exogenous Si treatment induced redox homoeostasis in B. juncea L. plants, which is evident by a reduced generation of reactive oxygen species (ROS) resulting due to suppressed activity of their generating enzymes (glycolate oxidase and NADPH oxidase) and enhanced defence system. Furthermore, application of Si inhibited the activity of protease and triggered the activity of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) and plasma membrane H+-ATPase activity. In conclusion, all these results reveal that Si could help in the modulation of Chl metabolism, redox hemostasis, and the regulation of nutrients (nitrogen, phosphorus, Si and potassium) uptake in the mustard plants that lead to the postponement of premature leaf senescence under salinity plus DS.


Assuntos
Antioxidantes/fisiologia , Secas , Mostardeira/fisiologia , Salinidade , Silício/farmacologia , Estresse Fisiológico , Homeostase , Mostardeira/efeitos dos fármacos , Folhas de Planta/fisiologia , Plântula
14.
Plants (Basel) ; 8(10)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618834

RESUMO

As the last stage of plant development, leaf senescence has a great impact on plant's life cycle. Genetic manipulation of leaf senescence has been used as an efficient approach in improving the yield and quality of crop plants. Here we describe an ethyl methane sulfonate (EMS) mutagenesis induced premature leaf senescence mutant yellow leaf 1 (yl1) in common tobacco (Nicotiana tabacum L.). The yl1 plants displayed early leaf yellowing. Physiological parameters and marker genes expression indicated that the yl1 phenotype was caused by premature leaf senescence. Genetic analyses indicated that the yl1 phenotype was controlled by a single recessive gene that was subsequently mapped to a specific interval of tobacco linkage group 11 using simple sequence repeat (SSR) markers. Exogenous plant hormone treatments of leaves showed that the yl1 mutant was more sensitive to ethylene and jasmonic acid than the wild type. No similar tobacco premature leaf senescence mutants have been reported. This study laid a foundation for finding the gene controlling the mutation phenotype and revealing the molecular regulation mechanism of tobacco leaf senescence in the next stage.

15.
Methods Mol Biol ; 1744: 161-171, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29392666

RESUMO

Premature leaf senescence in cotton, which often happens during the mid to late growth period, has been occurring with an increasing frequency in many cotton-growing areas and causing serious reduction in yield and quality. One of the key factors causing cotton leaf senescence is the infection of Alternaria leaf spot pathogens (Alternaria species), which often happens when cotton plants encounter adverse environmental conditions, such as chilling stress and physiological impairment. Stressed cotton leaves are apt to be infected by Alternaria leaf spot pathogens (Alternaria alternata) because of the reduction in disease resistance, leading to the initiation of leaf senescence. Here we describe the induction of cotton leaf senescence by Alternaria alternata infection, including the evaluation of the disease index and measure of physiological impairment associated with cotton leaf senescence and analysis of possible molecular mechanism using microarray.


Assuntos
Envelhecimento , Alternaria/fisiologia , Gossypium/metabolismo , Gossypium/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Biomarcadores , Clorofila/metabolismo , Eletrólitos/metabolismo , Interações Hospedeiro-Patógeno , Desenvolvimento Vegetal
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa