RESUMO
This paper introduces a lightweight flame detection algorithm, enhancing the accuracy and speed of gas-flame state recognition in low-pressure environments using an improved YOLOv8n model. This method effectively resolves the aforementioned problems. Firstly, GhostNet is integrated into the backbone to form the GhostConv module, reducing the model's computational parameters. Secondly, the C2f module is improved by integrating RepGhost, forming the C2f_RepGhost module, which performs deep convolution, extends feature dimensions, and simplifies the inference structure. Additionally, the CBAM attention mechanism is added to enhance the model's ability to capture fine-grained features of flames in both channel and spatial dimensions. The replacement of CIoU with WIoU improves the sensitivity and accuracy of the model's regression loss. Experimental results on a simulated dataset of the theoretical testbed indicate that compared to the original model, the proposed improvements achieve good performance in low-pressure flame state detection. The model's parameter count is reduced by 12.64%, the total floating-point operations are reduced by 12.2%, and the detection accuracy is improved by 21.2%. Although the detection frame rate slightly decreases, it still meets real-time detection requirements. The experimental results demonstrate that the feasibility and effectiveness of the proposed algorithm have been significantly improved.
RESUMO
Passengers in aircraft cabins are exposed to low-pressure environments. One of the missing links in the research on thermal comfort under cabin conditions is the influence of low air pressure on the metabolic rate. In this research, we simulated the cabin pressure regime in a chamber in which the pressure level could be controlled. Three pressure levels (101/85/70 kPa) were tested to investigate how metabolic rate changed at different pressure levels. The results show that as pressure decreased, the respiratory flow rate (RFR) at standard condition (STPD: 0°C, 101 kPa) significantly decreased. Yet the oxygen (O2 ) consumption and carbon dioxide (CO2 ) production significantly increased, as reflected in the larger concentration difference between inhaled and exhaled air. A significant increase in the respiratory quotient (RQ) was also observed. For metabolic rate, no significant increase (P > 0.05) was detected when pressure decreased from 101 kPa to 85 kPa; however, the increase associated with a pressure decrease from 85 kPa to 70kPa was significant (P < 0.05). Empirical equations describing the above parameters are provided, which can be helpful for thermal comfort assessment in short-haul flights.
Assuntos
Aclimatação/fisiologia , Pressão do Ar , Aeronaves , Exposição Ambiental/efeitos adversos , Fatores de Tempo , Dióxido de Carbono/análise , Feminino , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Adulto JovemRESUMO
Monomeric cytochrome c5 from deep-sea piezophilic Shewanella violacea (SVcytc5) was stable against heat and denaturant compared with the homologous protein from shallow-sea piezo-sensitive Shewanella livingstonensis (SLcytc5). Here, the SVcytc5 crystal structure revealed that the Lys-50 side chain on the flexible loop formed a hydrogen bond with heme whereas that of corresponding hydrophobic Leu-50 could not form such a bond in SLcytc5, which appeared to be one of possible factors responsible for the difference in stability between the two proteins. This structural insight was confirmed by a reciprocal mutagenesis study on the thermal stability of these two proteins. As SVcytc5 was isolated from a deep-sea piezophilic bacterium, the present comparative study indicates that adaptation of monomeric SVcytc5 to high pressure environments results in stabilization against heat.
Assuntos
Citocromos c/química , Shewanella/enzimologia , Cristalografia por Raios X , Citocromos c/genética , Citocromos c/metabolismo , Estabilidade Enzimática , Heme/química , Ligação de Hidrogênio , Modelos Moleculares , Mutagênese , Mutação , Conformação Proteica , TemperaturaRESUMO
Hypobaric Hypoxia (HH) negatively affects the cardiovascular and respiratory systems as well as gonadal development and the therefore next generation. This study investigated the effects of HH on zebrafish and SD rats, by exposing them to a low-pressure environment at 6000â¯m elevation for 30 days to simulate high-altitude conditions. It was indicated that parental zebrafish reared amh under HH had increased embryo mortality, reduced hatchability, and abnormal cartilage development in the offspring. Furthermore, the HH-exposed SD rats had fewer reproductive cells and smaller litters. Moreover, the transcriptome analysis revealed the down-regulation of steroid hormone biosynthesis pathways. The expression of the gonad-associated genes (amh, pde8a, man2a2 and lhcgr), as well as the gonad and cartilage-related gene bmpr1a, were also down-regulated. In addition, Western blot analysis validated reduced bmpr1a protein expression in the ovaries of HH-treated rats. In summary, these data indicate the negative impact of HH on reproductive organs and offspring development, emphasizing the need for further research and precautions to protect future generations' health.
Assuntos
Fertilidade , Hipóxia , Ratos Sprague-Dawley , Peixe-Zebra , Animais , Feminino , Masculino , Desenvolvimento Ósseo , Embrião não Mamífero , RatosRESUMO
In a chamber-based digital PCR (dPCR) chip fabricated with polydimethylsiloxane (PDMS), bubble generation in the chambers at high temperatures is a critical issue. Here, we found that the main reason for bubble formation in PDMS chips is the too-high saturated vapor pressure of water at an elevated temperature. The bubbles should be completely prevented by reducing the initial pressure of the system to under 13.6 kPa to eliminate the effects of increased-pressure water vapor. Then, a cavity was designed and fabricated above the PCR reaction layer, and Parylene C was used as a shell covering the chip. The cavity was used for the negative generator in sample loading, PDMS degassing, PCR solution degassing in the digitization process and water storage in the thermal reaction process. The analysis was confirmed and finally achieved a desirable bubble-free, fast-digitization, valve-free and no-tubing connection dPCR.