Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 702
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(4): e2212227120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36652475

RESUMO

Propagating spatiotemporal neural patterns are widely evident across sensory, motor, and association cortical areas. However, it remains unclear whether any characteristics of neural propagation carry information about specific behavioral details. Here, we provide the first evidence for a link between the direction of cortical propagation and specific behavioral features of an upcoming movement on a trial-by-trial basis. We recorded local field potentials (LFPs) from multielectrode arrays implanted in the primary motor cortex of two rhesus macaque monkeys while they performed a 2D reach task. Propagating patterns were extracted from the information-rich high-gamma band (200 to 400 Hz) envelopes in the LFP amplitude. We found that the exact direction of propagating patterns varied systematically according to initial movement direction, enabling kinematic predictions. Furthermore, characteristics of these propagation patterns provided additional predictive capability beyond the LFP amplitude themselves, which suggests the value of including mesoscopic spatiotemporal characteristics in refining brain-machine interfaces.


Assuntos
Interfaces Cérebro-Computador , Córtex Motor , Animais , Macaca mulatta , Fenômenos Biomecânicos , Movimento , Potenciais de Ação
2.
J Neurosci ; 44(4)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38050100

RESUMO

What happens once a cortical territory becomes functionally redundant? We studied changes in brain function and behavior for the remaining hand in humans (male and female) with either a missing hand from birth (one-handers) or due to amputation. Previous studies reported that amputees, but not one-handers, show increased ipsilateral activity in the somatosensory territory of the missing hand (i.e., remapping). We used a complex finger task to explore whether this observed remapping in amputees involves recruiting more neural resources to support the intact hand to meet greater motor control demands. Using basic fMRI analysis, we found that only amputees had more ipsilateral activity when motor demand increased; however, this did not match any noticeable improvement in their behavioral task performance. More advanced multivariate fMRI analyses showed that amputees had stronger and more typical representation-relative to controls' contralateral hand representation-compared with one-handers. This suggests that in amputees, both hand areas work together more collaboratively, potentially reflecting the intact hand's efference copy. One-handers struggled to learn difficult finger configurations, but this did not translate to differences in univariate or multivariate activity relative to controls. Additional white matter analysis provided conclusive evidence that the structural connectivity between the two hand areas did not vary across groups. Together, our results suggest that enhanced activity in the missing hand territory may not reflect intact hand function. Instead, we suggest that plasticity is more restricted than generally assumed and may depend on the availability of homologous pathways acquired early in life.


Assuntos
Amputados , Mapeamento Encefálico , Masculino , Humanos , Feminino , Mapeamento Encefálico/métodos , Mãos , Amputação Cirúrgica , Análise e Desempenho de Tarefas , Imageamento por Ressonância Magnética/métodos , Lateralidade Funcional
3.
J Neurosci ; 44(21)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38589229

RESUMO

Hand movements are associated with modulations of neuronal activity across several interconnected cortical areas, including the primary motor cortex (M1) and the dorsal and ventral premotor cortices (PMd and PMv). Local field potentials (LFPs) provide a link between neuronal discharges and synaptic inputs. Our current understanding of how LFPs vary in M1, PMd, and PMv during contralateral and ipsilateral movements is incomplete. To help reveal unique features in the pattern of modulations, we simultaneously recorded LFPs in these areas in two macaque monkeys performing reach and grasp movements with either the right or left hand. The greatest effector-dependent differences were seen in M1, at low (≤13 Hz) and γ frequencies. In premotor areas, differences related to hand use were only present in low frequencies. PMv exhibited the greatest increase in low frequencies during instruction cues and the smallest effector-dependent modulation during movement execution. In PMd, δ oscillations were greater during contralateral reach and grasp, and ß activity increased during contralateral grasp. In contrast, ß oscillations decreased in M1 and PMv. These results suggest that while M1 primarily exhibits effector-specific LFP activity, premotor areas compute more effector-independent aspects of the task requirements, particularly during movement preparation for PMv and production for PMd. The generation of precise hand movements likely relies on the combination of complementary information contained in the unique pattern of neural modulations contained in each cortical area. Accordingly, integrating LFPs from premotor areas and M1 could enhance the performance and robustness of brain-machine interfaces.


Assuntos
Lateralidade Funcional , Força da Mão , Macaca mulatta , Córtex Motor , Desempenho Psicomotor , Animais , Córtex Motor/fisiologia , Força da Mão/fisiologia , Masculino , Desempenho Psicomotor/fisiologia , Lateralidade Funcional/fisiologia , Movimento/fisiologia , Mãos/fisiologia
4.
J Neurosci ; 44(10)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38238073

RESUMO

Experience-dependent gene expression reshapes neural circuits, permitting the learning of knowledge and skills. Most learning involves repetitive experiences during which neurons undergo multiple stages of functional and structural plasticity. Currently, the diversity of transcriptional responses underlying dynamic plasticity during repetition-based learning is poorly understood. To close this gap, we analyzed single-nucleus transcriptomes of L2/3 glutamatergic neurons of the primary motor cortex after 3 d motor skill training or home cage control in water-restricted male mice. "Train" and "control" neurons could be discriminated with high accuracy based on expression patterns of many genes, indicating that recent experience leaves a widespread transcriptional signature across L2/3 neurons. These discriminating genes exhibited divergent modes of coregulation, differentiating neurons into discrete clusters of transcriptional states. Several states showed gene expressions associated with activity-dependent plasticity. Some of these states were also prominent in the previously published reference, suggesting that they represent both spontaneous and task-related plasticity events. Markedly, however, two states were unique to our dataset. The first state, further enriched by motor training, showed gene expression suggestive of late-stage plasticity with repeated activation, which is suitable for expected emergent neuronal ensembles that stably retain motor learning. The second state, equally found in both train and control mice, showed elevated levels of metabolic pathways and norepinephrine sensitivity, suggesting a response to common experiences specific to our experimental conditions, such as water restriction or circadian rhythm. Together, we uncovered divergent transcriptional responses across L2/3 neurons, each potentially linked with distinct features of repetition-based motor learning such as plasticity, memory, and motivation.


Assuntos
Aprendizagem , Plasticidade Neuronal , Masculino , Camundongos , Animais , Plasticidade Neuronal/genética , Aprendizagem/fisiologia , Neurônios/fisiologia , Destreza Motora/fisiologia , Água/metabolismo
5.
J Neurosci ; 44(12)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38290848

RESUMO

The subthalamic nucleus (STN) receives cortical inputs via the hyperdirect and indirect pathways, projects to the output nuclei of the basal ganglia, and plays a critical role in the control of voluntary movements and movement disorders. STN neurons change their activity during execution of movements, while recent studies emphasize STN activity specific to cancelation of movements. To address the relationship between execution and cancelation functions, we examined STN activity in two Japanese monkeys (Macaca fuscata, both sexes) who performed a goal-directed reaching task with a delay that included Go, Cancel, and NoGo trials. We first examined responses to the stimulation of the forelimb regions in the primary motor cortex and/or supplementary motor area. STN neurons with motor cortical inputs were found in the dorsal somatomotor region of the STN. All these STN neurons showed activity changes in Go trials, suggesting their involvement in execution of movements. Part of them exhibited activity changes in Cancel trials and sustained activity during delay periods, suggesting their involvement in cancelation of planed movements and preparation of movements, respectively. The STN neurons rarely showed activity changes in NoGo trials. Go- and Cancel-related activity was selective to the direction of movements, and the selectivity was higher in Cancel trials than in Go trials. Changes in Go- and Cancel-related activity occurred early enough to initiate and cancel movements, respectively. These results suggest that the dorsal somatomotor region of the STN, which receives motor cortical inputs, is involved in preparation and execution of movements and cancelation of planned movements.


Assuntos
Córtex Motor , Núcleo Subtalâmico , Masculino , Feminino , Animais , Haplorrinos , Núcleo Subtalâmico/fisiologia , Gânglios da Base , Córtex Motor/fisiologia , Neurônios/fisiologia
6.
J Neurosci ; 43(6): 1008-1017, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36609455

RESUMO

Response inhibition is essential for terminating inappropriate actions. A substantial response delay may occur in the nonstopped effector when only part of a multieffector action is terminated. This stopping-interference effect has been attributed to nonselective response inhibition processes and can be reduced with proactive cuing. This study aimed to elucidate the role of interhemispheric primary motor cortex (M1-M1) influences during selective stopping with proactive cuing. We hypothesized that stopping-interference would be reduced as stopping certainty increased because of proactive recruitment of interhemispheric facilitation or inhibition when cued to respond or stop, respectively. Twenty-three healthy human participants of either sex performed a bimanual anticipatory response inhibition paradigm with cues signaling the likelihood of a stop-signal occurring. Dual-coil transcranial magnetic stimulation was used to determine corticomotor excitability (CME), interhemispheric inhibition (IHI), and interhemispheric facilitation (IHF) in the left hand at rest and during response preparation. Response times slowed and stopping-interference decreased with increased stopping certainty. Proactive response inhibition was marked by a reduced rate of rise and faster cancel time in electromyographical bursts during stopping. There was a nonselective release of IHI but not CME from rest to in-task response preparation, whereas IHF was not observed in either context. An effector-specific reduction in CME but no reinstatement of IHI was observed when the left hand was cued to stop. These findings indicate that stopping speed and selectivity are better with proactive cueing and that interhemispheric M1-M1 channels modulate inhibitory tone during response preparation to support going but not proactive response inhibition.SIGNIFICANCE STATEMENT Response inhibition is essential for terminating inappropriate actions and, in some cases, may be required for only part of a multieffector action. The present study examined interhemispheric influences between the primary motor cortices during selective stopping with proactive cuing. Stopping selectivity was greater with increased stopping certainty and was marked by proactive adjustments to the hand cued to stop and hand cued to respond separately. Inhibitory interhemispheric influences were released during response preparation but were not directly involved in proactive response inhibition. These findings indicate that between-hand stopping can be selective with proactive cuing, but cue-related improvements are unlikely to reflect the advance engagement of interhemispheric influences between primary motor cortices.


Assuntos
Inibição Neural , Estimulação Magnética Transcraniana , Humanos , Inibição Neural/fisiologia , Tempo de Reação/fisiologia , Mãos/fisiologia , Sinais (Psicologia) , Potencial Evocado Motor , Lateralidade Funcional
7.
J Neurosci ; 43(27): 5030-5044, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37236809

RESUMO

Human motor behavior involves planning and execution of actions, some more frequently. Manipulating probability distribution of a movement through intensive direction-specific repetition causes physiological bias toward that direction, which can be cortically evoked by transcranial magnetic stimulation (TMS). However, because evoked movement has not been used to distinguish movement execution and plan histories to date, it is unclear whether the bias is because of frequently executed movements or recent planning of movement. Here, in a cohort of 40 participants (22 female), we separately manipulate the recent history of movement plans and execution and probe the resulting effects on physiological biases using TMS and on the default plan for goal-directed actions using a timed-response task. Baseline physiological biases shared similar low-level kinematic properties (direction) to a default plan for upcoming movement. However, manipulation of recent execution history via repetitions toward a specific direction significantly affected physiological biases, but not plan-based goal-directed movement. To further determine whether physiological biases reflect ongoing motor planning, we biased plan history by increasing the likelihood of a specific target location and found a significant effect on the default plan for goal-directed movements. However, TMS-evoked movement during preparation did not become biased toward the most frequent plan. This suggests that physiological biases may either provide a readout of the default state of primary motor cortex population activity in the movement-related space, but not ongoing neural activation in the planning-related space, or that practice induces sensitization of neurons involved in the practiced movement, calling into question the relevance of cortically evoked physiological biases to voluntary movements.SIGNIFICANCE STATEMENT Human motor performance depends not only on ability to make movements relevant to the environment/body's current state, but also on recent action history. One emerging approach to study recent movement history effects on the brain is via physiological biases in cortically-evoked involuntary movements. However, because prior movement execution and plan histories were indistinguishable to date, to what extent physiological biases are due to pure execution-dependent history, or to prior planning of the most probable action, remains unclear. Here, we show that physiological biases are profoundly affected by recent movement execution history, but not ongoing movement planning. Evoked movement, therefore, provides a readout of the default state within the movement space, but not of ongoing activation related to voluntary movement planning.


Assuntos
Discinesias , Movimento , Humanos , Feminino , Movimento/fisiologia , Estimulação Magnética Transcraniana , Encéfalo , Potencial Evocado Motor/fisiologia , Desempenho Psicomotor/fisiologia
8.
J Neurosci ; 43(10): 1682-1691, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36693756

RESUMO

The premotor (PM) and primary motor (M1) cortical areas broadcast voluntary motor commands through multiple neuronal pathways, including the corticorubral projection that reaches the red nucleus (RN). However, the respective contribution of M1 and PM to corticorubral projections as well as changes induced by motor disorders or injuries are not known in nonhuman primates. Here, we quantified the density and topography of axonal endings of the corticorubral pathway in RN in intact monkeys, as well as in monkeys subjected to either cervical spinal cord injury (SCI), Parkinson's disease (PD)-like symptoms or primary motor cortex injury (MCI). Twenty adult macaque monkeys of either sex were injected with the biotinylated dextran amine anterograde tracer either in PM or in M1. We developed a semiautomated algorithm to reliably detect and count axonal boutons within the magnocellular and parvocellular (pRN) subdivisions of RN. In intact monkeys, PM and M1 preferentially target the medial part of the ipsilateral pRN, reflecting its somatotopic organization. Projection of PM to the ipsilateral pRN is denser than that of M1, matching previous observations for the corticotectal, corticoreticular, and corticosubthalamic projections (Fregosi et al., 2018, 2019; Borgognon et al., 2020). In all three types of motor disorders, there was a uniform and strong decrease (near loss) of the corticorubral projections from PM and M1. The RN may contribute to functional recovery after SCI, PD, and MCI, by reducing direct cortical influence. This reduction possibly privileges direct access to the final output motor system, via emphasis on the direct corticospinal projection.SIGNIFICANCE STATEMENT We measured the corticorubral projection density arising from the PM or the M1 cortices in adult macaques. The premotor cortex sent denser corticorubral projections than the primary motor cortex, as previously observed for the corticotectal, corticoreticular, and corticosubthalamic projections. The premotor cortex may thus exert more influence than primary motor cortex onto subcortical structures. We next asked whether the corticorubral motor projections undergo lesion-dependent plasticity after either cervical spinal cord injury, Parkinson's disease-like symptoms, or primary motor cortex lesion. In all three types of pathology, there was a strong decrease of the corticorubral motor projection density, suggesting that the red nucleus may contribute to functional recovery after such motor system disorders based on a reduced direct cortical influence.


Assuntos
Córtex Motor , Doença de Parkinson , Traumatismos da Medula Espinal , Animais , Córtex Motor/fisiologia , Núcleo Rubro/patologia , Macaca fascicularis/fisiologia
9.
J Physiol ; 602(5): 933-948, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358314

RESUMO

Non-invasive brain stimulation has the potential to boost neuronal plasticity in the primary motor cortex (M1), but it remains unclear whether the stimulation of both superficial and deep layers of the human motor cortex can effectively promote M1 plasticity. Here, we leveraged transcranial ultrasound stimulation (TUS) to precisely target M1 circuits at depths of approximately 5 mm and 16 mm from the cortical surface. Initially, we generated computed tomography images from each participant's individual anatomical magnetic resonance images (MRI), which allowed for the generation of accurate acoustic simulations. This process ensured that personalized TUS was administered exactly to the targeted depths within M1 for each participant. Using long-term depression and long-term potentiation (LTD/LTP) theta-burst stimulation paradigms, we examined whether TUS over distinct depths of M1 could induce LTD/LTP plasticity. Our findings indicated that continuous theta-burst TUS-induced LTD-like plasticity with both superficial and deep M1 stimulation, persisting for at least 30 min. In comparison, sham TUS did not significantly alter M1 excitability. Moreover, intermittent theta-burst TUS did not result in the induction of LTP- or LTD-like plasticity with either superficial or deep M1 stimulation. These findings suggest that the induction of M1 plasticity can be achieved with ultrasound stimulation targeting distinct depths of M1, which is contingent on the characteristics of TUS. KEY POINTS: The study integrated personalized transcranial ultrasound stimulation (TUS) with electrophysiology to determine whether TUS targeting superficial and deep layers of the human motor cortex (M1) could elicit long-term depression (LTD) or long-term potentiation (LTP) plastic changes. Utilizing acoustic simulations derived from individualized pseudo-computed tomography scans, we ensured the precision of TUS delivery to the intended M1 depths for each participant. Continuous theta-burst TUS targeting both the superficial and deep layers of M1 resulted in the emergence of LTD-like plasticity, lasting for at least 30 min. Administering intermittent theta-burst TUS to both the superficial and deep layers of M1 did not lead to the induction of LTP- or LTD-like plastic changes. We suggest that theta-burst TUS targeting distinct depths of M1 can induce plasticity, but this effect is dependent on specific TUS parameters.


Assuntos
Córtex Motor , Humanos , Córtex Motor/fisiologia , Potencial Evocado Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Plasticidade Neuronal/fisiologia , Potenciação de Longa Duração/fisiologia
10.
J Physiol ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814805

RESUMO

Stroke is a leading cause of adult disability that results in motor deficits and reduced independence. Regaining independence relies on motor recovery, particularly regaining function of the hand and arm. This review presents evidence from human studies that have used transcranial magnetic stimulation (TMS) to identify neurophysiological mechanisms underlying upper limb motor recovery early after stroke. TMS studies undertaken at the subacute stage after stroke have identified several neurophysiological factors that can drive motor impairment, including membrane excitability, the recruitment of corticomotor neurons, and glutamatergic and GABAergic neurotransmission. However, the inherent variability and subsequent poor reliability of measures derived from motor evoked potentials (MEPs) limit the use of TMS for prognosis at the individual patient level. Currently, prediction tools that provide the most accurate information about upper limb motor outcomes for individual patients early after stroke combine clinical measures with a simple neurophysiological biomarker based on MEP presence or absence, i.e. MEP status. Here, we propose a new compositional framework to examine MEPs across several upper limb muscles within a threshold matrix. The matrix can provide a more comprehensive view of corticomotor function and recovery after stroke by quantifying the evolution of subthreshold and suprathreshold MEPs through compositional analyses. Our contention is that subthreshold responses might be the most sensitive to reduced output of corticomotor neurons, desynchronized firing of the remaining neurons, and myelination processes that occur early after stroke. Quantifying subthreshold responses might provide new insights into post-stroke neurophysiology and improve the accuracy of prediction of upper limb motor outcomes.

11.
J Physiol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949035

RESUMO

Ageing induces a decline in GABAergic intracortical inhibition, which seems to be associated not only with decremental changes in well-being, sleep quality, cognition and pain management but also with impaired motor control. So far, little is known regarding whether targeted interventions can prevent the decline of intracortical inhibition in the primary motor cortex in the elderly. Therefore, the present study investigated whether age-related cortical dis-inhibition could be reversed after 6 months of balance learning and whether improvements in postural control correlated with the extent of reversed dis-inhibition. The results demonstrated that intracortical inhibition can be upregulated in elderly subjects after long-term balance learning and revealed a correlation between changes in balance performance and intracortical inhibition. This is the first study to show physical activity-related upregulation of GABAergic inhibition in a population with chronic dis-inhibition and may therefore be seminal for many pathologies in which the equilibrium between inhibitory and excitatory neurotransmitters is disturbed. KEY POINTS: Ageing induces a decline in GABAergic intracortical inhibition. So far, little is known regarding whether targeted interventions can prevent the decline of intracortical inhibition in the primary motor cortex in the elderly. After 6 months of balance learning, intracortical inhibition can be upregulated in elderly subjects. The results of this study also revealed a correlation between changes in balance performance and intracortical inhibition. This is the first study to show physical activity-related upregulation of GABAergic inhibition in a population with chronic dis-inhibition.

12.
Neurobiol Dis ; 193: 106435, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38336279

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease, involving the selective degeneration of cortical upper synapses in the primary motor cortex (M1). Excitotoxicity in ALS occurs due to an imbalance between excitation and inhibition, closely linked to the loss/gain of astrocytic function. Using the ALS SOD1G93A mice, we investigated the astrocytic contribution for the electrophysiological alterations observed in the M1 of SOD1G93A mice, throughout disease progression. Results showed that astrocytes are involved in synaptic dysfunction observed in presymptomatic SOD1G93A mice, since astrocytic glutamate transport currents are diminished and pharmacological inhibition of astrocytes only impaired long-term potentiation and basal transmission in wild-type mice. Proteomic analysis revealed major differences in neuronal transmission, metabolism, and immune system in upper synapses, confirming early communication deficits between neurons and astroglia. These results provide valuable insights into the early impact of upper synapses in ALS and the lack of supportive functions of cortical astrocytes, highlighting the possibility of manipulating astrocytes to improve synaptic function.


Assuntos
Esclerose Lateral Amiotrófica , Córtex Motor , Doenças Neurodegenerativas , Camundongos , Animais , Astrócitos/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Camundongos Transgênicos , Doenças Neurodegenerativas/metabolismo , Proteômica , Modelos Animais de Doenças , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
13.
Neurobiol Dis ; 196: 106518, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38679112

RESUMO

Resting tremor is the most common presenting motor symptom in Parkinson's disease (PD). The supplementary motor area (SMA) is a main target of the basal-ganglia-thalamo-cortical circuit and has direct, facilitatory connections with the primary motor cortex (M1), which is important for the execution of voluntary movement. Dopamine potentially modulates SMA and M1 activity, and both regions have been implicated in resting tremor. This study investigated SMA-M1 connectivity in individuals with PD ON and OFF dopamine medication, and whether SMA-M1 connectivity is implicated in resting tremor. Dual-site transcranial magnetic stimulation was used to measure SMA-M1 connectivity in PD participants ON and OFF levodopa. Resting tremor was measured using electromyography and accelerometry. Stimulating SMA inhibited M1 excitability OFF levodopa, and facilitated M1 excitability ON levodopa. ON medication, SMA-M1 facilitation was significantly associated with smaller tremor than SMA-M1 inhibition. The current findings contribute to our understanding of the neural networks involved in PD which are altered by levodopa medication and provide a neurophysiological basis for the development of interventions to treat resting tremor.


Assuntos
Antiparkinsonianos , Eletromiografia , Levodopa , Córtex Motor , Doença de Parkinson , Estimulação Magnética Transcraniana , Tremor , Humanos , Levodopa/uso terapêutico , Levodopa/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Masculino , Córtex Motor/efeitos dos fármacos , Córtex Motor/fisiopatologia , Feminino , Tremor/fisiopatologia , Tremor/tratamento farmacológico , Idoso , Pessoa de Meia-Idade , Estimulação Magnética Transcraniana/métodos , Antiparkinsonianos/uso terapêutico , Antiparkinsonianos/farmacologia , Vias Neurais/fisiopatologia , Vias Neurais/efeitos dos fármacos , Potencial Evocado Motor/efeitos dos fármacos , Potencial Evocado Motor/fisiologia
14.
Eur J Neurosci ; 59(8): 2046-2058, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38270331

RESUMO

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique which was found to have a positive modulatory effect on online sequence acquisition or offline motor consolidation, depending on the relative role of the associated brain region. Primary motor regions (M1) and dorsolateral prefrontal cortices (DLPFC) have both been related to sequential learning. However, research so far did not systematically disentangle their differential roles in online and offline learning especially in more complex sequential paradigms. In this study, the influence of anodal M1 leg area-tDCS and anodal DLPFC-tDCS applied during complex sequential learning (online and offline) was investigated using a complex whole body serial reaction time task (CWB-SRTT) in 42 healthy volunteers. TDCS groups did not differ from sham tDCS group regarding their response and reaction time (online) and also not in terms of overnight consolidation (offline). Sequence specific learning and the number of recalled items also did not differ between groups. Results may be related to unspecific parameters such as timing of the stimulation or current intensity but can also be attributed to the relative role of M1 and DLPFC during early complex learning. Taken together, the current study provides preliminary evidence that M1 leg area or DLPFC modulation by means of tDCS does not improve complex sequential skill learning. SIGNIFICANCE STATEMENT: Understanding motor learning is helpful to deepen our knowledge about the human ability to acquire new skills. Complex sequential learning tasks have only been studied, sparsely, but are particularly mimicking challenges of daily living. The present study studied early motor learning in a complex serial reaction time task while transcranial direct current stimulation (tDCS) was either applied to leg primary motor cortex or bilateral dorsolateral prefrontal cortex. TDCS did not affect sequential learning, neither directly during performance nor in terms of sequence consolidation. Results provide preliminary information that M1 or bilateral DLPFC modulation does not improve early complex motor learning.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Córtex Pré-Frontal Dorsolateral , Córtex Motor/fisiologia , Aprendizagem/fisiologia , Tempo de Reação/fisiologia , Córtex Pré-Frontal/fisiologia
15.
J Neurosci Res ; 102(4): e25328, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38651310

RESUMO

Although manifesting contrasting phenotypes, Parkinson's disease and dystonia, the two most common movement disorders, can originate from similar pathophysiology. Previously, we demonstrated that lesioning (silencing) of a discrete dorsal region in the globus pallidus (rodent equivalent to globus pallidus externa) in rats and produced parkinsonism, while lesioning a nearby ventral hotspot-induced dystonia. Presently, we injected fluorescent-tagged multi-synaptic tracers into these pallidal hotspots (n = 36 Long Evans rats) and permitted 4 days for the viruses to travel along restricted connecting pathways and reach the motor cortex before sacrificing the animals. Viral injections in the Parkinson's hotspot fluorescent labeled a circumscribed region in the secondary motor cortex, while injections in the dystonia hotspot labeled within the primary motor cortex. Custom probability mapping and N200 staining affirmed the segregation of the cortical territories for Parkinsonism and dystonia to the secondary and primary motor cortices. Intracortical microstimulation localized territories specifically to their respective rostral and caudal microexcitable zones. Parkinsonian features are thus explained by pathological signaling within a secondary motor subcircuit normally responsible for initiation and scaling of movement, while dystonia is explained by abnormal (and excessive) basal ganglia signaling directed at primary motor corticospinal transmission.


Assuntos
Gânglios da Base , Distonia , Córtex Motor , Vias Neurais , Transtornos Parkinsonianos , Ratos Long-Evans , Animais , Córtex Motor/fisiopatologia , Córtex Motor/patologia , Transtornos Parkinsonianos/fisiopatologia , Transtornos Parkinsonianos/patologia , Ratos , Vias Neurais/fisiopatologia , Distonia/fisiopatologia , Distonia/patologia , Distonia/etiologia , Gânglios da Base/patologia , Masculino , Globo Pálido/patologia , Modelos Animais de Doenças
16.
Cerebellum ; 23(1): 56-66, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36633829

RESUMO

Cerebellar brain inhibition (CBI), a neural connection between the cerebellum and primary motor cortex (M1), has been researched as a target pathway for neuromodulation to improve clinical outcomes in various neurological diseases. However, conflicting results of anodal cerebellar transcranial direct current stimulation (acb-tDCS) on M1 excitability indicate that additional investigation is required to examine its precise effect. This study aimed to gather evidence of the neuromodulatory effect of acb-tDCS on the M1 using functional near-infrared spectroscopy (fNIRS). Sixteen healthy participants were included in this cross-over study. Participants received real and sham acb-tDCS randomly, with a minimum 1-week washout period between them. The anode and cathode were placed on the right cerebellum and the right buccinator muscle, respectively. Stimulation lasted 20 min at an intensity of 2 mA, and fNIRS data were recorded for 42 min (including a 4-min baseline before stimulation and an 18-min post-stimulation duration) using eight channels attached bilaterally on the M1. acb-tDCS induced a significant decrease in oxyhemoglobin (HbO) concentration (inhibitory effect) in the left (contralateral) M1, whereas it induced a significant increase in HbO concentration (excitatory effect) in the right (ipsilateral) M1 compared to sham tDCS during (p < 0.05) and after stimulation (p < 0.01) in a group level analysis. At the individual level, variations in response to acb-tDCS were observed. Our findings demonstrate the neuromodulatory effects of acb-tDCS on the bilateral M1 in terms of neuronal hemodynamics.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Espectroscopia de Luz Próxima ao Infravermelho , Córtex Motor/fisiologia , Estudos Cross-Over , Cerebelo/fisiologia , Eletrodos , Potencial Evocado Motor/fisiologia
17.
Exp Brain Res ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842754

RESUMO

OBJECTIVE: The role of ipsilateral descending motor pathways in voluntary movement of humans is still a matter of debate, with partly contradictory results. The aim of our study therefore was to examine the excitability of ipsilateral motor evoked potentials (iMEPs) regarding site and the specificity for unilateral and bilateral elbow flexion extension tasks. METHODS: MR-navigated transcranial magnetic stimulation mapping of the dominant hemisphere was performed in twenty healthy participants during tonic unilateral (iBB), bilateral homologous (bBB) or bilateral antagonistic elbow flexion-extension (iBB-cAE), the map center of gravity (CoG) and iMEP area from BB were obtained. RESULTS: The map CoG of the ipsilateral BB was located more anterior-laterally than the hotspot of the contralateral BB within the primary motor cortex, with a significant difference in CoG in iBB and iBB-cAE, but not bBB compared to the hotspot for the contralateral BB (each p < 0.05). However, different tasks had no effect on the size of the iMEPs. CONCLUSION: Our data demonstrated that excitability of ipsilateral and contralateral MEP differ spatially in a task-specific manner suggesting the involvement of different motor networks within the motor cortex.

18.
Brain ; 146(4): 1511-1522, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36170332

RESUMO

Musician's dystonia presents with a persistent deterioration of motor control during musical performance. A predominant hypothesis has been that this is underpinned by maladaptive neural changes to the somatotopic organization of finger representations within primary somatosensory cortex. Here, we tested this hypothesis by investigating the finger-specific activity patterns in the primary somatosensory and motor cortex using functional MRI and multivariate pattern analysis in nine musicians with dystonia and nine healthy musicians. A purpose-built keyboard device allowed characterization of activity patterns elicited during passive extension and active finger presses of individual fingers. We analysed the data using both traditional spatial analysis and state-of-the art multivariate analyses. Our analysis reveals that digit representations in musicians were poorly captured by spatial analyses. An optimized spatial metric found clear somatotopy but no difference in the spatial geometry between fingers with dystonia. Representational similarity analysis was confirmed as a more reliable technique than all spatial metrics evaluated. Significantly, the dissimilarity architecture was equivalent for musicians with and without dystonia. No expansion or spatial shift of digit representation maps were found in the symptomatic group. Our results therefore indicate that the neural representation of generic finger maps in primary sensorimotor cortex is intact in musician's dystonia. These results speak against the idea that task-specific dystonia is associated with a distorted hand somatotopy and lend weight to an alternative hypothesis that task-specific dystonia is due to a higher-order disruption of skill encoding. Such a formulation can better explain the task-specific deficit and offers alternative inroads for therapeutic interventions.


Assuntos
Distonia , Distúrbios Distônicos , Música , Córtex Sensório-Motor , Humanos , Dedos , Córtex Somatossensorial/diagnóstico por imagem
19.
Cereb Cortex ; 33(8): 4432-4447, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36218995

RESUMO

Rhythmic movements are the building blocks of human behavior. However, given that rhythmic movements are achieved through complex interactions between neural modules, it remains difficult to clarify how the central nervous system controls motor rhythmicity. Here, using a novel tempo-precision trade-off paradigm, we first modeled interindividual behavioral differences in tempo-dependent rhythmicity for various external tempi. We identified 2 behavioral extremes: conventional and paradoxical tempo-precision trade-off types. We then explored the neural substrates of these behavioral differences using task and resting-state functional magnetic resonance imaging. We found that the responsibility of interhemispheric motor network connectivity to tempi was a key to the behavioral repertoire. In the paradoxical trade-off type, interhemispheric connectivity was low at baseline but increased in response to increasing tempo; in the conventional trade-off type, strong baseline connectivity was coupled with low responsivity. These findings suggest that tunable interhemispheric connectivity underlies tempo-dependent rhythmicity control.


Assuntos
Córtex Motor , Humanos , Córtex Motor/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Movimento/fisiologia , Periodicidade , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico
20.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34507986

RESUMO

The origins of oscillatory activity in the brain are currently debated, but common to many hypotheses is the notion that they reflect interactions between brain areas. Here, we examine this possibility by manipulating the strength of coupling between two human brain regions, ventral premotor cortex (PMv) and primary motor cortex (M1), and examine the impact on oscillatory activity in the motor system measurable in the electroencephalogram. We either increased or decreased the strength of coupling while holding the impact on each component area in the pathway constant. This was achieved by stimulating PMv and M1 with paired pulses of transcranial magnetic stimulation using two different patterns, only one of which increases the influence exerted by PMv over M1. While the stimulation protocols differed in their temporal patterning, they were comprised of identical numbers of pulses to M1 and PMv. We measured the impact on activity in alpha, beta, and theta bands during a motor task in which participants either made a preprepared action (Go) or withheld it (No-Go). Augmenting cortical connectivity between PMv and M1, by evoking synchronous pre- and postsynaptic activity in the PMv-M1 pathway, enhanced oscillatory beta and theta rhythms in Go and No-Go trials, respectively. Little change was observed in the alpha rhythm. By contrast, diminishing the influence of PMv over M1 decreased oscillatory beta and theta rhythms in Go and No-Go trials, respectively. This suggests that corticocortical communication frequencies in the PMv-M1 pathway can be manipulated following Hebbian spike-timing-dependent plasticity.


Assuntos
Relógios Biológicos/fisiologia , Encéfalo/fisiologia , Ritmo beta/fisiologia , Mapeamento Encefálico/métodos , Eletromiografia/métodos , Potencial Evocado Motor/fisiologia , Feminino , Força da Mão/fisiologia , Humanos , Masculino , Córtex Motor/fisiologia , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Desempenho Psicomotor/fisiologia , Ritmo Teta/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa